
Automated Documentation Inference to

Explain Failed Tests

Sai Zhang

University of Washington

Joint work with: Cheng Zhang, Michael D. Ernst

A failed test reveals a potential bug

Before bug-fixing, programmers must:

� find code relevant to the failure

� understand why the test fails

2

Programmers often need to guess about

relevant parts in the test and tested code

• Long test code

• Multiple class interactions

• Poor documentation

3

A failed test

4

Which parts of the test are most relevant to the failure?

(The test is minimized, and does not dump a useful stack trace.)

public void test1() {

int i = 1;

ArrayList lst = new ArrayList(i);

Object o = new Object();

boolean b = lst.add(o);

TreeSet ts = new TreeSet(lst);

Set set = Collections.synchronizedSet(ts);

assertTrue(set.equals(set));

}

FailureDoc: inferring explanatory documentation

• FailureDoc infers debugging clues:

– Indicates changes to the test that will make it pass

– Helps programmers understand why the test fails

• FailureDoc provides a high-level description of the

failure from the perspective of the test

– Automated fault localization tools pinpoint the buggy

statements without explaining why

5

6

Documenting the failed test

public void test1() {

int i = 1;

ArrayList lst = new ArrayList(i);

//Test passes if o implements Comparable

Object o = new Object();

//Test passes if o is not added to lst

boolean b = lst.add(o);

TreeSet ts = new TreeSet(lst);

Set set = Collections.synchronizedSet(ts);

assertTrue(set.equals(set));

}

(The red part is generated by FailureDoc)

The documentation indicates:
• The add method should not accept a non-Comparable object, but it does.

• It is a real bug.

Outline

• Overview

• The FailureDoc technique

• Implementation & Evaluation

• Related work

• Conclusion

7

The architecture of FailureDoc

A Failed

Test

A Failed Test with

Documentation

Property

Generalization

Mutant

Generation

Execution

Observation

Filter for

Root Causes

x = -1;

assert x > 0;

x = 0;

assert x>0;

x = 5;

assert x>0;

x = 2;

assert x>0;

x = 0;

assert x>0;

x = 5;

assert x>0;

x = 2;

assert x>0;

x = 5

x = 2

x > 0 //Test passes if x > 0

x = -1;

assert x > 0;

The architecture of FailureDoc

A Failed

Test

A Failed Test with

Documentation

Property

Generalization

Mutant

Generation

Execution

Observation

Filter for

Root Causes

x = -1;

assert x > 0;

x = 0;

assert x>0;

x = 5;

assert x>0;

x = 2;

assert x>0;

x = 0;

assert x>0;

x = 5;

assert x>0;

x = 2;

assert x>0;

x = 5

x = 2

x > 0 //Test passes if x > 0

x = -1;

assert x > 0;

Mutant generation via value replacement

• Mutate the failed test by repeatedly replacing an existing input

value with an alternative one

– Generate a set of slightly different tests

10

...

Object o = new Object();

boolean b = lst.add(o);

...

...

Object o = new Integer(1);

boolean b = lst.add(o);

...

...

TreeSet t = new TreeSet(l);

Set s = synchronizedSet(t);

...

...

TreeSet t = new TreeSet();

t.add(10);

Set s = synchronizedSet(t);

...

Original test Mutated test

Value selection in replacement

• Exhaustive selection is inefficient

• Random selection may miss some values

• FailureDoc selects replacement candidates by:

– mapping each value to an abstract domain using an abstract

object profile representation

– sample each abstract domain

11

The architecture of FailureDoc

A Failed

Test

A Failed Test with

Documentation

Property

Generalization

Mutant

Generation

Execution

Observation

Filter for

Root Causes

x = -1;

assert x > 0;

x = 0;

assert x>0;

x = 5;

assert x>0;

x = 2;

assert x>0;

x = 0;

assert x>0;

x = 5;

assert x>0;

x = 2;

assert x>0;

x = 5

x = 2

x > 0 //Test passes if x > 0

x = -1;

assert x > 0;

Execution result observation

• FailureDoc executes each mutated test, and classifies it as:

– Passing

– Failing

• The same failure as the original failed test

– Unexpected exception

• A different exception is thrown

13

...

int i = 1;

ArrayList lst = new ArrayList(i);

...

...

int i = -10;

ArrayList lst = new ArrayList(i);

...

Unexpected exception: IllegalArgumentException

Original test Mutated test

Record expression values in test execution

• After value replacement, FailureDoc only needs to

record expressions that can affect the test result:

– Computes a backward static slice from the assertion in

passing and failing tests

– Selectively records expression values in the slice

14

The architecture of FailureDoc

A Failed

Test

A Failed Test with

Documentation

Property

Generalization

Mutant

Generation

Execution

Observation

Filter for

Root Causes

x = -1;

assert x > 0;

x = 0;

assert x>0;

x = 5;

assert x>0;

x = 2;

assert x>0;

x = 0;

assert x>0;

x = 5;

assert x>0;

x = 2;

assert x>0;

x = 5

x = 2

x > 0 //Test passes if x > 0

x = -1;

assert x > 0;

Statistical failure correlation

• A statistical algorithm isolates suspicious statements in a

failed test

– A variant of the CBI algorithms [Liblit’05]

– Associate a suspicious statement with a set of failure-correcting

objects

• Characterize the likelihood of each observed value v to be

a failure-correcting object

– Define 3 metrics: Pass, Increase, and Importance for each

observed value v of each statement

16

17

Original test Observed value

in a mutant

public void test1() {

int i = 1;

ArrayList lst = new ArrayList(i);

Object o = new Object();

boolean b = lst.add(o); b = false

TreeSet ts = new TreeSet(lst);

Set set = synchronizedSet(ts);

//This assertion fails

assertTrue(set.equals(set));

}

PASS!

Pass(b=false) = 1

The test always passes, when b is observed as false

Pass(v): the percentage of passing tests when v is observed

18

Original test Observed value

in a mutant

public void test1() {

int i = 1;

ArrayList lst = new ArrayList(i);

Object o = new Object();

boolean b = lst.add(o);

TreeSet ts = new TreeSet(lst); ts = an empty set

Set set = synchronizedSet(ts);

//This assertion fails

assertTrue(set.equals(set));

}

PASS!

Pass(ts = an empty set) = 1

The test always passes, when ts is observed as an empty set!

Pass(v): the percentage of passing tests when v is observed

19

Original test Observed value

in a mutant

public void test1() {

int i = 1; i = 10

ArrayList lst = new ArrayList(i);

Object o = new Object();

boolean b = lst.add(o);

TreeSet ts = new TreeSet(lst);

Set set = synchronizedSet(ts);

//This assertion fails

assertTrue(set.equals(set));

}

FAIL!

Pass(i=10) = 0

Test never passes, when i is observed as 10.

Pass(v): the percentage of passing tests when v is observed

20

Original test Observed value

in a mutant

public void test1() {

int i = 1;

ArrayList lst = new ArrayList(i);

Object o = new Object();

boolean b = lst.add(o); b = false

TreeSet ts = new TreeSet(lst); ts = an empty set

Set set = synchronizedSet(ts);

//This assertion fails

assertTrue(set.equals(set));

}

PASS!

Increase(b = false) = 1

Increase(ts = an empty set) = 0
Distinguish the difference each

observed value makes

Increase(v): indicating root cause for test passing

Changing b’s initializer to false

implies ts is an empty set

Importance (v) :

- harmonic mean of increase(v) and the ratio of passing tests

- balance sensitivity and specificity

- prefer high score in both dimensions

21

Algorithm for isolating suspicious statements

Input: a failed test t

Output: suspicious statements with their failure-correcting objects

Statement s is suspicious if its failure-correcting object set FCs ≠ Ø

FCs = {v |

Pass(v) = 1 ∧∧∧∧ /* v corrects the failed test */

Increase(v) > 0 ∧∧∧∧ /* v is a root cause */

Importance(v) > threshold /* balance sensitivity & specificity */

}

22

Failure-correcting objects for the example

23

Original test Failure-correcting object set

public void test1() {

int i = 1;

ArrayList lst = new ArrayList(i);

Object o = new Object(); o ∈ { 100, (byte)1, “hi”}

boolean b = lst.add(o); b ∈ { false }

TreeSet ts = new TreeSet(lst);

Set set = synchronizedSet(ts);

//This assertion fails

assertTrue(set.equals(set));

}

The architecture of FailureDoc

A Failed

Test

A Failed Test with

Documentation

Property

Generalization

Mutant

Generation

Execution

Observation

Filter for

Root Causes

x = -1;

assert x > 0;

x = 0;

assert x>0;

x = 5;

assert x>0;

x = 2;

assert x>0;

x = 0;

assert x>0;

x = 5;

assert x>0;

x = 2;

assert x>0;

x = 5

x = 2

x > 0 //Test passes if x > 0

x = -1;

assert x > 0;

Property generalization

• Generalize properties for failure-correcting objects

– Use a Daikon-like technique

– E.g., property of the object set: {100, “hi!”, (byte)1} is:

all values are comparable.

• Rephrase properties into readable documentation

– Employ a small set of templates:

x instanceof Comparable ⇒ x implements Comparable

x.add(y) replaced by false ⇒ y is not added to x

25

Outline

• Overview

• The FailureDoc technique

• Implementation & Evaluation

• Related work

• Conclusion

26

Research questions

• RQ1: can FailureDoc infer explanatory documentation

for failed tests?

• RQ2: is the documentation useful for programmers to

understand the test and fix the bug?

27

Evaluation procedure

• An experiment to explain 12 failed tests from 5 subjects

– All tests were automatically generated by Randoop [Pacheco’07]

– Each test reveals a distinct real bug

• A user study to investigate the documentation’s usefulness

– 16 CS graduate students

– Compare the time cost in test understanding and bug fixing :

1. Original tests (undocumented) vs. FailureDoc

2. Delta debugging vs. FailureDoc

28

Subjects used in explaining failed tests

• Average test size: 41 statements

• Almost all failed tests involve complex interactions

between multiple classes

• Hard to tell why they fail by simply looking at the test code

29

Subject Lines of Code # Failed Tests Test size

Time and Money 2,372 2 81

Commons Primitives 9,368 2 150

Commons Math 14,469 3 144

Commons Collections 55,400 3 83

java.util 48,026 2 27

Results for explaining failed tests

• FailureDoc infers meaningful documentation for 10 out of

12 failed tests
– Time cost is acceptable: 189 seconds per test

– Documentation is concise: 1 comment per 17 lines of test code

– Documentation is accurate: each comment indicates a different way

to make the test pass, and is never in conflict with each other

• FailureDoc fails to infer documentation for 2 tests:

– no way to use value replacement to correct them

30

Feedback from developers

• We sent all documented tests to subject developers, and

got positive feedback

• Feedback from a Commons Math developer:

• Documented tests and communications with developers are available

at: http://www.cs.washington.edu/homes/szhang/failuredoc/bugreports/

31

I think these comments are helpful. They give a hint

about what to look at. … the comment showed me

exactly the variable to look at.

User study: how useful is the documentation?

• Participants: 16 graduate students majoring in CS

– Java experience: max = 7, min = 1, avg = 4.1 years

– JUnit experience: max = 4, min = 0.1, avg = 1.9 years

• 3 experimental treatments:

– Original tests (undocumented)

– Delta-debugging-annotated tests

– FailureDoc-documented tests

• Measure:

– time to understand why a test fails

– time to fix the bug

– 30-min time limit per test

32

Results of comparing undocumented tests

with FailureDoc

33

Goal Success Rate Average Time Used (min)

JUnit FailureDoc JUnit FailureDoc

Understand Failure 75% 75% 22.6 19.9

Understand Failure + Fix Bug 35% 35% 27.5 26.9

JUnit: Undocumented Tests

FailureDoc: Tests with FailureDoc-inferred documentation

Conclusion:

• FailureDoc helps participants understand a failed test 2.7 mins (or

14%) faster

• FailureDoc slightly speeds up the bug fixing time (0.6 min faster)

Results of comparing Delta debugging

with FailureDoc

34

Goal Success Rate Average Time Used (min)

DD FailureDoc DD FailureDoc

Understand Failure 75% 75% 21.7 20.0

Understand Failure + Fix Bug 40% 45% 26.1 26.5

DD: Tests annotated with Delta-Debugging-isolated faulty statements

FailureDoc: Tests with FailureDoc-inferred documentation

Conclusion:

• FailureDoc helps participants fix more bugs

• FailureDoc helps participants to understand a failed test faster

(1.7 mins or 8.5%)

• Participants spent slightly more time (0.4 min) in fixing a bug on

average with FailureDoc, though more bugs were fixed

Delta debugging can only isolate faulty statements in 3 tests

Feedback from Participants

• Overall feedback

– FailureDoc is useful

– FailureDoc is more useful than Delta Debugging

• Positive feedback

• Negative feedback

35

The comment at line 68 did provide information very close to the bug!

The comments are useful, because they indicate which variables are

suspicious, and help me narrow the search space.

The comments, though [they] give useful information, can easily be

misunderstood, when I am not familiar with the [program].

Experiment discussion & conclusion

• Threats to validity

– Have not used human-written tests yet.

– Limited user study, small tasks, a small sample of people, and

unfamiliar code (is 30 min per test enough?)

• Experiment conclusion

– FailureDoc can infer concise and meaningful documentation

– The inferred documentation is useful in understanding a failed test

36

Outline

• Overview

• The FailureDoc technique

• Implementation & Evaluation

• Related work

• Conclusion

37

Related work

• Automated test generation

Random [Pacheco’07], Exhaustive [Marinov’03], Systematic [Sen’05] E

Generate new tests instead of explaining the existing tests

• Fault localization

Testing-based [Jones’04], delta debugging [Zeller’99], statistical [Liblit’05] E

Localize the bug in the tested code, but doesn’t explain why a test fails

• Documentation inference

Method summarization [Sridhara’10], Java exception [Buse’08],

software changes [Kim’09, Buse’10], API cross reference [Long’09]

Not applicable to tests (e.g., different granularity and techniques)

38

Outline

• Overview

• The FailureDoc technique

• Implementation & Evaluation

• Related work

• Conclusion

39

Future Work

• FailureDoc proposes a different abstraction to help

programmers understand a failed test, and fix a bug.

Is there a better way?

• Which information is more useful for programmers?

– Fault localization: pinpointing the buggy program entities

– Simplifying a failing test

– Inferring explanatory documentation

– T.

Need more experiments and studies

40

Contributions

• FailureDoc: an automated technique to explain failed tests

– Mutant Generation

– Execution Observation

– Statistical Failure Correlation

– Property Generalization

• An open-source tool implementation, available at:

http://failuredoc.googlecode.com/

• An experiment and a user study to show its usefulness

– Also compared with Delta debugging

41

[Backup slides]

42

Comparison with Delta debugging

• Delta debugging:

– Inputs: A passing and a failing version of a program

– Output: failure-inducing edits

– Methodology: systematically explore the change space

• FailureDoc:

– Inputs: a single failing test

– Outputs: high-level description to explain the test failure

– Methodology: create a set of slightly-different tests, and

generalize the failure-correcting edits

43

Comparison with the CBI algorithm

• The CBI algorithm:

– Goal: identify likely buggy predicates in the tested code

– Input: a large number of executions

– Method: use the boolean value of an instrumented predicate

as the feature vector

• Statistical failure correlation in FailureDoc

– Goal: identify failure-relevant statements in a test

– Input: a single failed execution

– Method:

• use multiple observed values to isolate suspicious

statements.

• associate each suspicious statement with a set of failure-

correcting objects
44

