
Beaver: Towards a Declarative Schema Mapping
Zhongjun Jin Christopher Baik Michael Cafarella H. V. Jagadish

University of Michigan, Ann Arbor
{markjin,cjbaik,michjc,jag}@umich.edu

ABSTRACT
Schema mapping is used to transform data to a desired schema from
data sources with different schemas. Manually writing complete
schema mapping specifications requires a deep understanding of
the source and target schemas, which can be burdensome for the
user. Programming By Example (PBE) schema mapping methods
allow the user to describe the schema mapping using data records.
However, real data records are still harder to specify compared to
other useful insights about the desired schema mapping the user
might have. In this project, we develop a new schema mapping tech-
nique, Beaver, that enables an interaction model that gives the user
more flexibility in describing the desired schema mapping. The end
user is not limited to providing exact and complete target schema
data examples but may also provide incomplete or ambiguous ex-
amples. Moreover, the user can provide other types of descriptions,
like data type or value range, about the target schema. We design an
explore-and-verify search-based algorithm to efficiently discover
all satisfying schema mapping specifications. We implemented a
prototype of our schema mapping technique and experimentally
evaluated the efficiency of the system in handling traditional PBE
schema mapping test cases, as well as our newly-proposed declara-
tive schema mapping test cases. The experiment results show that
the declarative queries, which we believe are easier for non-expert
user to input, often cost around zero to five seconds more than the
traditional PBE queries. This suggests we retain a system efficiency
comparable to traditional PBE schema mapping systems.

ACM Reference Format:
Zhongjun Jin Christopher Baik Michael Cafarella H. V. Jagadish. 2018.
Beaver: Towards a Declarative Schema Mapping. In HILDA’18: Workshop on
Human-In-the-Loop Data Analytics, June 10, 2018, Houston, TX, USA. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3209900.3209902

1 INTRODUCTION
Schema mapping is used to transform data to a desired schema from
data sources with different schemas. Manually writing schema map-
ping specifications requires a deep understanding of the source and
target schema. Programming By Example (PBE) has been adopted
as a human-in-the-loop interaction model to reduce the require-
ment for the user expertise in schema mapping [2, 7–10]. The user
only has to provide example data records in the target schema and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HILDA’18, June 10, 2018, Houston, TX, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5827-9/18/06. . . $15.00
https://doi.org/10.1145/3209900.3209902

does not need familiarity with the source schema. Yet, the user can
still be stumped for the following two reasons:

(1) Assumption of database content knowledge. The user is re-
quired to provide complete records with exact values in the
target schema. Providing exact values can be challenging for
a user unfamiliar with the database content.

(2) Limited expressiveness of user constraints. The user often has
insight on the desired database schema other than target
schema examples. Existing methods have insufficient mech-
anism for capturing these descriptions.

Our Approach— In this paper, we present a new schema mapping
method to address the above limitations of PBE schema mapping.

We propose a novel interaction model to increase the scope of
descriptions the end user can provide to discover schema mapping
specifications. The model is empowered by a declarative language
enriched to support 1) sample-based constraints with ambiguous
or missing values, 2) declarative constraints, like data type, value
range or even user-defined functions, on individual data columns.

Given a user’s declarative query, we synthesize the desired
schema mapping specifications matching the query. The main tech-
nical challenge is to ensure the program search process is efficient
enough for user interaction. The search space of all schema map-
pings is inherently massive; it is exponential to the complexity
of the desired schema mapping and the source database schema.
Moreover, the number of satisfying solutions can be relatively large
because the type of constraints we support are more relaxed than
traditional PBE constraints. Given this, performing a fast search for
a complete solution set in our case is difficult.
Organization — In this project, we present a declarative schema
mapping interaction model (Section 2). We provide a formal descrip-
tion of the declarative schemamapping problem, alongwith the user
query (Section 3) and an efficient algorithm inferring the schema
mapping specifications matching the user description (Section 4).
We built a prototype system, called Beaver, and experimentally
evaluated it using the Mondial dataset.(Section 5).

2 MOTIVATING EXAMPLE
Mondial is a relational geography dataset integrated from a num-
ber of data sources. A freshman student Ashley wants to list all
lakes, their area and the states they belong to as Table 1 from the
Mondial database.

A generic PBE schema mapping system, such as MWeaver [8],
takes complete target schema data samples from the user and syn-
thesizes schema mapping specifications in the form of SPJ SQL
queries. To Ashley, such a system is unusable because she finds it
hard to specify complete data records in the desired schema, the
area in particular, as it is her first time using the dataset.

In contrast, to use Beaver, instead of a complete data record,
Ashley provides a partial data record for this desired schema with

https://doi.org/10.1145/3209900.3209902
https://doi.org/10.1145/3209900.3209902

HILDA’18, June 10, 2018, Houston, TX, USA Zhongjun Jin Christopher Baik Michael Cafarella H. V. Jagadish

State Lake Name Area (km2)
California Lake Tahoe 497
Oregon Crater Lake 53.2
Florida Fort Peck Lake 981

. . .
Table 1: Desired target schema

Column Id 1 2 3

Sample California OR Nevada Lake Tahoe
. . .

Metadata {decimal} AND >‘0’
Table 2: A declarative schema mapping query example.

a lake name “Lake Tahoe” in column 2. Ashley vaguely remembers
“Lake Tahoe” is close to California and Nevada, but she is not sure
which state it actual belongs to, she specifies a disjunction of “Cali-
fornia” and “Nevada” in column 1. Ashley does not know the exact
lake area of Lake Tahoe, but she at least knows that every lake area
value in column 3 must be numeric and positive. To contribute this
knowledge, Ashley creates a metadata constraint “{decimal} AND
‘> 0”’ for column 3.

In a few seconds after Ashley inputs all these hints, Beaver
synthesizes the exact schema mapping specification (as a SQL script
in Figure 1) that yields a relation containing state name and total
lake area in each state.

1 SELECT geo_lake.Province ,

2 Lake.Name , Lake.Area

3 FROM Lake , geo_lake

4 WHERE Lake.Name = geo_lake.Lake;

Figure 1: Desired full schema mapping specification

3 OVERVIEW
Programming By Example (PBE) as a human-in-the-loop interaction
model is frequently applied in domains [1–5, 7–10] where the user is
required to have high domain expertise. Previous research works [2,
7–10] have proposed PBE-based techniques for schema mapping.
These systems usually ask the user for complete data records in the
desired schema, which can still be hard to specify if the user is not
familiar with the database content.

In practice, while the user might not have accurate knowledge
about the database content, it is reasonable to assume that the user
intuitively knows some characteristics of the target schema or the
relevant information to generate the target schema. To allow users
to comfortably express their intuitions, we propose a Declarative
Schema Mapping Query Q (or “declarative query” for short),
composed of two kinds of constraints the users can specify: sample
constraints andmetadata constraints. We also let the user add logical
operators “AND” and “OR” between constraint values.

Sample Constraint, Csample. Like other PBE schema mapping
systems [8, 9], we support sample constraints: the end user can
provide one or more example data records from the target schema
or the temporary schema.

The difference in our project is that we allow some level of
“ambiguities” in the samples. The user can suggest several possible
values (connected by the logic operator “OR”), or value range, if
she has vague knowledge about certain cells in a sample constraint
(e.g., column 1 in the sample constraint in Table 2), or simply NULL

values if she knows nothing about some values in this sample record
(e.g., column 3 in the sample constraint in Table 2).

Metadata Constraint, Cmetadata. A metadata constraint de-
notes the factual knowledge about individual columns in the source
database. Currently, the kinds of metadata we support in Beaver
are data type (including decimal, int, text, date, time), maximum text
length, and value range. For instance, in Table 2, the user provides
a constraint suggesting that the values in column 3 are positive
decimals. In the future, we plan to support more metadata con-
straints, and even user-defined functions. Similarly, the metadata
constraints are allowed to be “ambiguous” too: the user could spec-
ify multiple metadata constraints for one column as a conjunction
or disjunction (e.g., the metadata constraint in column 3 of Table 2).
Problem Definition — We now formalize our problem definition.

Declarative SchemaMapping Problem. Given the declarative
query Q = (Csample,Cmetadata) and a database D, synthesize the
schema mapping specification,M, such thatM and the resulting
target schemaM(D) satisfy all the constraints in Q.
SchemaMapping Specifications—To focus on the problemwith-
out loss of generality, we restrict the space of synthesized schema
mapping specifications to support Select-Project-Join (SPJ) queries.

4 SCHEMA MAPPING ALGORITHMS
Inspired by [8, 9], we propose an explore-and-verify algorithm to
efficiently discover all satisfying schema mapping specifications.
Find Related Columns —We first identify columns in the data-
base potentially used in the schema mapping described by the user
query and prune the ones violating the user’s metadata and sample
constraints. The space of possible schema mapping specifications
is significantly reduced using this small set of related columns.

To evaluate if a column matches a metadata constraint, we query
the database using a SQL query translated from the metadata con-
straint. For example, when the user provides a metadata constraint
“column 3 must be positive numbers”, we check the database for the
minimum value of column 3 to see if it is greater than 0. Sample
constraints describe the data in the target schema. Yet, they also
imply that the relevant columns must contain certain keywords
(i.e., in the motivating example, the sample constraint suggests
that column 3 must contain the keywords “Lake” and “Tahoe”). We
use such implicit “keyword constraints” derived from the sample
constraints to identify the related columns as well.
ExploreCandidate SchemaMapping Specifications—The above
step discovers the potential columns in the database being projected
in the desired target schema. But these columns usually reside in
different relations in the database. Discovering how to join these re-
lations (i.e., the join path) is the only uncertainty left to be resolved.
Algorithm 1 shows the algorithm finding all complete join paths (a
complete join path is a join path that yields all columns in the target
schema). We first discover all pairwise join paths (line 2-4)–join
paths covering two columns in the target schema–and use them to
discover complete join paths (line 6-12).

To find all pairwise join paths, we enumerate all combinations
of related columns in the database, and check if there is a pairwise
join path between them. Discovering pairwise join paths between

Beaver: Towards a Declarative Schema Mapping HILDA’18, June 10, 2018, Houston, TX, USA

Algorithm 1: Discover complete join paths
Data: Number of columns in the target schemam, set of

related columns R [i] for each target schema column
i ∈ {1, . . . ,m}

Result: Set of complete paths C
1 P,C ← {};
2 for (i, j) ∈ N2 : 1 ≤ i < j ≤ m do
3 for (ci , c j) : ci ∈ R[i], c j ∈ R[j] do
4 P ← P ∪ pairwise join paths between ci and c j ;

5 Q ← P;
6 while |Q| > 0 do
7 p ← pop Q;
8 if p is a complete join path then
9 C ← C ∪ p;

10 else
11 for p′ ∈ P do
12 Q ← Q ∪ join p with p′ if possible;

two columns in the database (line 4) is a pathfinding problem in the
database schema graph, and a BFS algorithm can simply do the job.

With all pairwise join paths discovered, we propose an algorithm
finding complete join paths—join paths that cover all columns in
the target schema—inspired by path weaving in [8]: repeatedly
combining pairwise join paths (p′) with existing incomplete join
paths p (line 12) until we find complete join paths (line 9).

Each of the discovered complete join paths is essentially a candi-
date schema mapping specification.
Verification — So far, the discovered candidate schema mapping
specifications are guaranteed to satisfy all metadata constraints
and “keyword constraints” derived from the sample constraints
but not necessarily the sample constraints themselves. We must
prune those that fail to produce any sample constraint in the user
query. A naïve approach is to sequentially check each candidate
specification against all sample constraints. However, as checking a
schema mapping specification is essentially running the entire join
query on the database, this naïve approach can be very expensive.

As most of the candidate schema mapping specifications are
essentially incorrect, quickly pruning incorrect ones is vital to
achieving a decent system efficiency. We use filters described in
[9] to prune unqualified specifications with fewer and cheaper
verifications. Given any complete join path and sample constraints
Csample, a filter is a partial join path along with a partial sample
from Csample covered by the path. Each filter is translated into a SQL
query based on the sample constraints we define and sent to the
database for verification. For example, to check if a filter composed
of a join path joining “geo_lake” and “Lake” on “Lake.Name =
geo_lake.Lake” can yield a data record “California OR Nevada; Lake
Tahoe”, we create the query in Figure 2.

Verifying a filter is cheaper than validating the entire entire
candidate schema mapping specification. More importantly, if the
verification of a filter fails, the entire candidate schema mapping
specification fails. This gives us an opportunity to quickly prune
invalidate candidate schema mapping specifications. For now, we

1 SELECT geo_lake.Province , Lake.Name

2 FROM Lake , geo_lake

3 WHERE Lake.Name = geo_lake.Lake AND

4 MATCH (Lake.Name) AGAINST ('"Lake␣Tahoe"'

5 IN BOOLEAN MODE) AND

6 MATCH (geo_lake.Province) AGAINST ('"California"

7 ␣␣␣␣"Nevada"' IN BOOLEAN MODE) LIMIT 1;

Figure 2: The actual SQL query for verifying a filter

1 2 3

103

104

Join length

Ex
ec
ut
io
n
tim

e
(m

s) PBE Disjunctive Incomplete Metadata

Figure 3: Efficiency experiment results (Dataset: Mondial)

follow a practice of filter selection and evaluation similar to [9].
Improving this practice is in our future work.

5 EARLY EXPERIMENTS
We implemented our proposed schemamappingmethod in a system
called Beaver and performed experiments on a 16-core Intel Xeon
server with 128 GB RAM. We first introduce the experimental setup
in Section 5.1, and then evaluate Beaver on traditional PBE queries
(Section 5.2) and declarative queries (Section 5.3).

5.1 Experiment Setup
Data Set — We examined Beaver on a complex real-world dataset
Mondial [6] with 33 relations, 137 columns, and 48 foreign key
constraints.
BenchmarkTestsGeneration— In our experiment, we simulated
an end user who provided queries we synthesized using the fol-
lowing method. We created random schema mapping SQL queries
of various join lengths (i.e., number of joins) using the database
schema of the Mondial database. We used the sampled query re-
sults of the above queries as the standard PBE user queries provided
by the simulated user in our experiment. We also synthesized the
declarative schema mapping queries using these PBE queries.

5.2 Traditional PBE Queries
Beaver is designed for declarative schemamapping, but it is able to
handle traditional sample-based (i.e. PBE) schema mapping queries.
In this experiment, we demonstrate the efficiency of Beaver in
answering PBE queries.
Overview—We randomly created three sets of synthesized schema
mapping specifications of join length one to three, each containing
8 specifications. We sent each specification to the database and
obtained top five random records in the query result and repeat
this process twice. We took each query result set as the sample
constraints for the “simulated” test query of PBE test cases. Hence,
for each specification, we have three simulated PBE test cases (user
queries) of 5 sample constraints each. We measured the execution
time of these test cases on Beaver, and calculated the mean execu-
tion time for each specification.

HILDA’18, June 10, 2018, Houston, TX, USA Zhongjun Jin Christopher Baik Michael Cafarella H. V. Jagadish

Results — During the experiments, we compared the returned
schema mapping specifications against the ground truth, which
is the synthesized schema mapping queries used to generate the
user queries. The results show that in all test cases, the correct
schema mapping specification is among the returned results, which
demonstrates the correctness of our schema mapping technique.
The execution time results are shown in Figure 3. The x-axis is the
join length of the schema mapping specifications, and the y-axis is
the average execution time of all test cases for all schema mapping
specifications with the same join length. In this section, we only
focus on the red bar (labeled “PBE”), which denotes the execution
time of PBE test cases.

We observe that, when testing Mondial, when the join length is
one or three, Beaver is able to complete within 1 second on average.
The results suggest that Beaver is efficient in interacting with the
end user for traditional PBE schema mapping workloads.

5.3 Declarative Queries
Declarative queries are likely to be more computationally challeng-
ing than PBE queries, but should require less work from the user.
In this experiment, we want to check whether Beaver is able to
execute the more-difficult declarative queries with a runtime that
is comparable to the easier PBE queries.

We found that in most cases, Beaver was able to find declarative
solutions for most test cases with only a modest runtime premium
over PBE queries.
Overview — We synthesized the declarative query test cases us-
ing the PBE test cases in Section 5.2. For each PBE test case, we
randomly generate three different declarative query test cases in
each of the following query genres: 1) disjunctive, 2) incomplete,
3) metadata.

Disjunctive. Disjunctive queries contain sample constraints
with disjunctions in one or more columns. For example, the column
1 sample constraint in Table 2 is a disjunctive constraint. To generate
disjunctive queries using sample constraints, we picked a random
column in each sample constraint from a PBE test case, and replaced
the column value “x” with disjunctions in form of “x OR y”. The
value y in the new disjunctive constraints were randomly sampled
from data values in the sample column but different rows.

Incomplete. Incomplete queries contain sample constraints
with missing values in one or more columns. For example, in Ta-
ble 2, the sample constraint has no value for the first and fourth
column. Similarly, we randomly removed a column value in every
sample constraint from a PBE test case to synthesize incomplete
queries.

Metadata. Metadata queries are composed of both metadata
constraints and sample constraints. To create metadata queries, we
removed a random column value (either textual or numeric) from
each sample constraint of a PBE test case, and replaced it with a
metadata constraint of the corresponding column. If the chosen
column was a textual column, the metadata constraint was the
maximum data length. If the chosen column was a numeric column,
the metadata constraint was the value range of the column.

For each of the PBE test case, we randomly generated three
declarative queries in each of the above categories. We executed

the generated queries on Beaver and presented the mean of the
execution time results for each target schema.
Results — Similar to Section 5.2, we validated the correctness of
all test cases. We also measured the execution time of declarative
queries on Beaver. As all the declarative query test cases were
spawned from the PBE query test cases used by Section 5.2, it is
interesting to compare the execution time of the declarative queries
against their corresponding PBE queries.

The results are also shown in Figure 3. Compared to PBE test
cases, disjunctive, incomplete and metadata test cases on average
cost 0.07, 0.01, -0.13 seconds more time when the join length is one,
0.06, 0.08, -0.05 seconds more time when the join length is two, and
0.70, 4.93, 5.17 seconds more when the join length is three. This
suggests that the end user can provide declarative queries which
we believe is easier to input and retain a similar system efficiency
as they have for traditional PBE queries.

6 CONCLUSION AND FUTUREWORK
We introduced a declarative interaction model for schema mapping
and a search-based solution to discover the satisfying schema map-
ping specifications. In the declarative schema mapping setting, the
user is allowed to provide hints to the system in a more flexible way,
which might require less effort than the traditional PBE schema
mapping interaction model. The initial experimental study on the
real-world relational dataset Mondial has shown that our proposed
solution is able to find satisfying schema mapping specifications in
reasonably short amount of time.

In the future, we plan to extend the declarative language used
to describe the target schema. For example, we hope to allow the
user to suggest schema mapping components/operations such as
aggregations, joins or selection predicates. In that case, the system
is usable by people of all levels of familiarity with the database.

7 ACKNOWLEDGMENTS
This project is supported by National Science Foundation grants IIS-
1250880, IIS-1054913, NSF IGERT grant 0903629, a Sloan Research
Fellowship, and a CSE Dept. Fellowship.

REFERENCES
[1] Daniel W Barowy, Sumit Gulwani, Ted Hart, and Benjamin Zorn. 2015. FlashRe-

late: extracting relational data from semi-structured spreadsheets using examples.
In PLDI.

[2] Angela Bonifati, Ugo Comignani, Emmanuel Coquery, and Romuald Thion. 2017.
Interactive mapping specification with exemplar tuples. In SIGMOD.

[3] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. In POPL.

[4] Zhongjun Jin, Michael R Anderson, Michael Cafarella, and HV Jagadish. 2017.
Foofah: a programming-by-example system for synthesizing data transformation
programs. In SIGMOD.

[5] Zhongjun Jin, Michael R Anderson, Michael Cafarella, and HV Jagadish. 2017.
Foofah: Transforming data by example. In SIGMOD.

[6] Wolfgang May. 1999. Information extraction and integration: The Mondial case
study. Technical Report. Universität Freiburg, Institut für Informatik.

[7] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas. 2014.
Exemplar queries: Give me an example of what you need. In PVLDB.

[8] Li Qian, Michael J Cafarella, and HV Jagadish. 2012. Sample-driven schema
mapping. In SIGMOD.

[9] Yanyan Shen, Kaushik Chakrabarti, Surajit Chaudhuri, Bolin Ding, and Lev Novik.
2014. Discovering queries based on example tuples. In SIGMOD.

[10] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthesizing Highly
Expressive SQL Queries from Input-output Examples. In PLDI.

	Abstract
	1 Introduction
	2 Motivating Example
	3 Overview
	4 Schema Mapping Algorithms
	5 Early Experiments
	5.1 Experiment Setup
	5.2 Traditional PBE Queries
	5.3 Declarative Queries

	6 Conclusion and Future Work
	7 ACKNOWLEDGMENTS
	References

