
Structured Queries Over Web Text

Michael J. Cafarella, Oren Etzioni, Dan Suciu
University of Washington
Seattle, WA 98195

{mjc, etzioni, suciu}@cs.washington.edu

Abstract

The Web contains a vast amount of text that can only be queried using simple keywords-in, documents-
out search queries. But Web text often contains structured elements, such as hotel location and price
pairs embedded in a set of hotel reviews. Queries that process these structural text elements would
be much more powerful than our current document-centric queries. Of course, text does not contain
metadata or a schema, making it unclear what a structured text query means precisely. In this paper
we describe three possible models for structured queries over text, each of which implies different query
semantics and user interaction.

1 Introduction

The Web contains a vast amount of data, most of it in the form of unstructured text. Search engines are the
standard tools for querying this text, and generally perform just one type of query. In response to a few keywords,
a search engine will return a relevance-ranked list of documents. Unfortunately, treating Web text as nothing
but a collection of standalone documents ignores a substantial amount of embedded structure that is obvious to
every human reader, even if current search engines are blind to it. Web text often has a rich, though implicit,
structure that deserves a correspondingly-rich set of query tools.

For example, consider a website that contains hotel reviews. Although each review is a self-contained
text that is authored by a single person, the set of all such reviews shows remarkable regularity in the type of
information that is contained. Most reviews will contain standard values such as the hotel’s price and general
quality. Reviews of urban hotels might discuss how central the hotel’s location is, and reviews of resorts will
mention the quality of the beach and pool. In other words, the hotel reviews have a messy and implicit “schema”
that is not designed by any database administrator but is nonetheless present.

If a query system made this structure explicit, users could navigate the hotel reviews using, say, a fragment
of SQL. A user could easily list all hotels that are both very quiet and in central Manhattan, even though doing
so would be impossible with a standard search engine.

Note that we are not suggesting that the hotel site publish any sort of structural metadata. We do not ask
Web publishers to add any additional information about their text. Our proposed query systems preserve the
near-universal applicability of search engines, using only structural elements that are already present in the text

Copyright 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1

...our
hotel

room was
cold but
nice...

...our
hotel

room was
cold but
nice...

...and
Alfred

Hitchcock
directed...

Frenzy: Hitchcock [directed], 116 [length], ...
Gaslight: great [movie-quality, acting-quality], ...
...
Hamlet: difficult [acting-skill], 242 [length], ...

InfoExtraction SchemaExtraction

Input Text Unstructured Tuples Output Schema

r0 Frenzy 1972

Title Year

116

Length

color

Filmtype

r1 Gaslight 1944 114 bw

r9 Hamlet 1990 242 color

...

r1 great hard

Movie-quality Acting-Skill

r9 okay very difficult

Figure 1: In the Schema Extraction Model, the query system receives some Input Text and runs it through
an information extraction system. The result is a set of Unstructured Tuples, consisting of a set of unique
keys plus affiliated values and possible attribute labels. We then use these tuples to choose an Output Schema,
and thus create a domain-appropriate structured database. The InfoExtraction stage is provided by an external
system, but the SchemaExtraction stage is novel.

or in a user’s query. Of course, some text (e.g., poetry) might not contain any reasonable structure, but this text
is also unlikely to be the subject of a structured query.

This paper discusses an ongoing research program at the University of Washington to explore structured
queries over the Web text corpus. Combining techniques from databases, information retrieval, and artificial
intelligence, we are investigating three different models for processing structured text queries. They are quite
different, but all involve some amount of information extraction and a novel query language. The models differ
in how much structure they attempt to extract from the text, and how much they gather from the query.

Although we believe some of our query models present use scenarios that are quite compelling, it is still too
early to determine a single best method for querying Web text. Indeed, it may be that different applications will
require different query models.

2 The Schema Extraction Model

The Schema Extraction Model is the one described in our example in the introduction. The goal is to examine
the corpus of Web text and create a “structured overlay” that describes data contained in the text. This struc-
tured overlay is essentially a relational database consisting of values found using an information extraction (IE)
system. Users can then query this structured overlay using a fragment of SQL.

Figure 1 shows the execution pipeline. We start with a series of input texts; in the example here, some movie
reviews. We then run an IE system, such as TextRunner, KnowItAll, or Snowball, over the text to obtain a series
of fact-like assertions [2, 7, 1]. For a given identified object (e.g., Frenzy) we have a series of extracted values,
each of which has at least one accompanying attribute name (for Frenzy, perhaps values 1972 and Alfred
Hitchcock, with attributes year and director). We call the extracted sets of values for one object an
unstructured tuple.

These IE systems have shown to be quite effective at extracting small pieces of information embedded in
text. For example, the KnowItAll system used the Web to compile a list of US states with precision 1.0 at recall
0.98 (that is, it made no incorrect guesses and missed only one of 50) and a list of countries with precision 0.79
at recall 0.87 [6].

We would like to assemble these unstructured tuples into a relational database that will form the structured

2

overlay. However, the unstructured tuples do not have a uniform set of attributes, so the correct schema is
unclear. Although most pages in a domain will contain similar information (here, title, year, etc), many
will have missing values or off-topic extraneous ones. These missing and spurious values may be due to variance
in the original text, or due to the inevitably-flawed IE mechanism. Some attributes will appear in nearly every
unstructured tuple, whereas others will appear very rarely. The set of unstructured tuples may even describe a
subset relationship (e.g., horror movies may share only some attributes with action movies).

How can we generate a high-quality schema for these tuples? One approach is to create a relational table
for each unique attribute signature in the unstructured tuples. If the unstructured tuples had no variance in their
attributes (i.e., they are “perfect”), this naı̈ve algorithm would work well. However, in practice the result is
a baroque and unusable schema, containing many similar but non-identical tables. In a small experiment, we
mutated 20% of the cells in a set of perfect unstructured tuples. The result was a single-row table for every input
tuple. Clearly, such a schema would be unsatisfactory to any query-writer.

For real-world data, especially data derived from many distinct texts without any explicit structure require-
ments, there will be no single indisputably “best” schema. Even if all the input data had been generated with
a single schema in mind, some fields will be absent and some eccentric ones will appear. We must be willing
to accept a “lossy” database that drops some extraneous extracted values found in the Unstructured Tuples. We
must also accept NULLs where the appropriate value simply could not be recovered.

Of course, there is no genuine data loss here, since the original Web text still survives. But the lost data is not
present in the structured overlay, so it will be unavailable to structured queries. An imperfect structured overlay
is regrettable, but the only alternative is a “lossless” one that is so complicated as to be useless for querying.
Choosing the lossy output that is least offensive for query-writers is a major challenge of this approach.

The Schema Extraction Model places the entire structural burden on the Web text itself. All of its technical
challenges arise from the automated schema design. The structured query language itself is no more interesting
than SQL.

Of course, if we can somehow find an extremely large corpus of schemas, then a slight variant of the Schema
Extraction Model is possible. Instead of computing a schema directly from the extracted values, we can use these
extractions to rank all schemas in the corpus, and then choose the best one. This schema corpus would have to
be much larger than any corpus we have seen; it might be possible to compile it by crawling structured HTML
tables, deep web services, etc.

3 The Text Query Model

For the Text Query Model, consider a slightly different scenario. Imagine a student who wants to know when
a favorite band will be playing nearby. The band’s itinerary is available on its website. In a single query, the
user would like to a) extract the city/date tuples from the band’s website, b) indicate the city where she lives, c)
compute the dates when the band’s city and her own city are within 100 miles of each other. Of course, the user
only wants to know about appearances in the future, even if old data is still on the website.

We might write that query as follows:

SELECT bandCity, bandDate
FROM ("http://thebandilike.com/**",

["to appear in <string> on <date>", bandCity, bandDate])
WHERE
bandDate > 2006 AND
geographicdist(bandCity, "Seattle") =< 100

In the Text Query Model, the user must indicate every relevant part of the query’s structure. The FROM
clause indicates a relevant set of web pages, an extraction expression that can be applied to the text to generate

3

Like Gore,
Mr. Vallee

lived at
Silvertip, high

in the
Hollywood

Hills.

Orson had
become so
fat he had

trouble
getting out of
cars. Connie
Chung was...

... with a new
drummer.
They will
appear in
Seattle on

October 3...

Input Text

Indexing

Original Text

Indexed Text Query System

Inverted Index

Neighbor Index

Multigram Index

Figure 2: In the Text Query Model, we do not do any information extraction ahead of time. Instead, we exten-
sively index the Web text so that we can efficiently run users’ extraction-driven queries.

a table with two columns, and labels for those columns. The WHERE clause tests the date to see if it is valid,
declares the user’s current city, and uses a built-in function to measure the distance between two cities. The user
is completely explicit about which structural elements are useful for answering the query.

A naı̈ve execution model requires downloading pages at all possible URLs that match the FROM clause,
parsing them using the extraction phrase in the second part of the FROM clause, and finally testing the selection
predicates on the resulting set of tuples. Previous Web query systems, such as Squeal, WebSQL, and W3QL,
have not followed this algorithm exactly, but have fetched remote pages in response to a user’s query (rather
than, say, using preindexed and prefetched pages) [12, 10, 8]. The result is that this simple query would take an
extremely long time to run over the entire Web, in stark contrast to search engine queries that routinely execute
in under a second.

The standard indexing tools used by search engines and traditional relational databases cannot help us much.
Consider a search engine’s inverted index, which efficiently maps words to documents. We could start to exe-
cute the above query by using the inverted index to find documents that contain strings to appear in and
on within the thebandilike.com domain. This inverted-lookup step, the basic component of all search
engine queries, is very efficient. However, we still need to run selection predicates on the strings that match
the <string> and <date> variables. These strings can only be found by examining and parsing the original
document text. The inverted-lookup step gave us the document IDs, but fetching each such document from the
disk will require a disk seek.

The resulting inverted-index query plan requires a very large number of disk seeks. Even if the selection
predicates are so aggressive that they disqualify every possible result from being returned, the query needs to
examine each document in the relevant domain. Query time will scale directly with the size of the document
set being considered. The resulting query time should be much faster than the naı̈ve approach, but still seems
needlessly slow.

It is not as clear how to model this problem using a relational query engine, but it is still possible. One
approach is to automatically create a relational table of extracted values using the FROM clause, and then execute
the selection clauses against the resulting database. Even with a technique to efficiently find documents in the
indicated domain, this technique is very expensive, requiring that we parse and process all the relevant text
before we even begin running selection predicates. If our workload features repeated common FROM clauses, it
might be profitable to index the extracted table, but such a workload seems unlikely.

We believe that a system that is built to process these mixed extractive and structural queries can do substan-
tially better than any of the approaches listed above. For example, we could construct a neighbor index, which
folds small amounts of the document text into an inverted index [3]. In the above example, such an index allows
us to extract values for <string> and <date> immediately from the index itself, without loading the original

4

Pred1

Web Data Model

Like Gore,
Mr. Vallee

lived at
Silvertip, high

in the
Hollywood

Hills.

Orson had
become so
fat he had

trouble
getting out of
cars. Connie
Chung was...

... was
surprising. In
1877, Edison
invented the
phonograph.
Although he...

Applications &
Query processing

RDBMS

Query
middleware

invented(Edison ?e, ?i)

Edison
Morgan

light bulb
1837

invented
born-in

Obj1 Obj2Pred

Data:

0.97
0.85

p

Einstein
Boston

scientist
city

InstanceType

0.99
0.92

p

Types:

Constraints:

Pred2

did-invent
create

invented
discover

p

0.85
0.72

C-type

Input Text

syn
syn

InfoExtraction DBConstruction

Figure 3: In the Extraction Database Model, we use the output of several IE systems to create a series of
tables for the Web Data Model. These tables describe very primitive data relationships, such as facts, is-a
relationships, synonym constraints, and others. Each tuple retains a probability of being true. We place the
tuples into a probabilistic database and run user queries over that database.

documents and incurring disk seek costs. We can push selection predicates down into the inverted index lookup,
saving time when the predicates eliminate possible results.

The neighbor index is not appropriate for all queries, as it can only efficiently handle queries that return
strings up to a fixed length. For example, we could pose a query whose execution requires a neighbor index much
larger than the original document set, losing the efficiency of an inverted index. However, the neighbor index
is an example of the kind of novel optimization technique we believe the Text Query Model both demands and
makes possible. (Another possibility is the multigram index, which enables fast regular expression processing
over a large corpus [4].) This is an active area for our research into structured query techniques for text.

4 The Extraction Database Model

The Extraction Database Model takes a middle approach. As with the Schema Extraction Model, we use
information extraction techniques to discern useful tuples from Web text. However, we do not attempt to assem-
ble these extractions into a full and coherent schema. Rather, we store the tuples until query time. The user’s
query contains additional structural information that describes the desired output schema. Unlike the previous
two models, we obtain structural hints from both the text and the user’s query.

Figure 3 shows the series of steps needed to create an Extraction Database query system. Note that our
model of IE output is somewhat different. We assume that extractions come in one of a handful of forms. Most
come in the form of fact triples, which consist of two objects and a linking predicate, and are similar to the
unstructured tuples of the Schema Extraction Model. We also obtain types, which describe an is-a relationship
between two objects. Also, we extract constraints, which describe various relationships between predicates.
There are well-known mechanisms to generate each of these extraction types, such as TextRunner for trinary
facts, KnowItAll for is-a relationships, and DIRT for synonyms [2, 7, 9]. Together, we call these extracted values
the Web Data Model.

Finally, we also retain probabilities for all extractions. Because we can only determine a tuple’s importance
in light of a relevant query, we cannot threshold away low-likelihood extractions (as we could in the Schema
Extraction case). We place all of these tuples into a probabilistic database, such as the MYSTIQ system [5, 11].

Users pose queries against the stored tuples using a SQL-like notation. It is easy to translate queries in

5

the Extraction Database query language into a probabilistic SQL query over the Web Data Model tables. For
example, in order to search for all scientists born before 1880:

SELECT s FROM scientist
WHERE
born-in(s, y) AND
y IN year AND
y < 1880 AND

This query returns just the value bound to variable s, which is constrained to be of type scientist, to
appear as the first object in a fact with predicate born-in. The second object in that fact must be of type year.
We also require that the value bound to variable y be less than 1880. All Extraction Database queries elicit
probabilistic tuples, which will be returned in descending order of probability.

Note that unlike the Schema Extraction Model, we do not try to discern before query-time whether, say,
born-in is a salient attribute of an instance of scientist. The probabilistic store contains good and spu-
rious extractions alike. We rely on the user’s query to tell us that the born-in attribute is actually a good
one to test. However, unlike the Text Query Model, the query does not do all the hard work; for example, the
query-writer does not have to know about the actual text layout of real web pages. The Extraction Database
Model tries to strike a balance between the two, by extracting facts that might be useful in the future, but not
making firm decisions about the schema until the user’s query provides more information.

Efficient probabilistic query processing is a difficult problem, described elsewhere at length [5, 11]. We
exacerbate it here by the sheer scale of our extracted tables. A single high-quality page of text could generate
several extractions for each sentence, depending on the actual IE systems and parameters being used. Query
processing poses a substantial problem with the Schema Extraction Model, and is an area of current research.

5 Conclusions

Web text contains huge volumes of useful data, most of it now out of reach. Current keyword-driven search
engines give access to single Web pages, ignoring the implicit structure in Web text that is apparent to every
user. By recognizing this structure and making it available to query-writers, we can offer a query system that is
hugely more powerful than current systems, all without asking publishers for any additional effort.

We have described three possible structured query models for Web text: Schema Extraction, Text Query, and
Extraction Database. These systems offer different advantages regarding the information extraction technology
required and the expressiveness of the queries. Each promises, in a different way, to take better advantage of the
vast amounts of text available to us.

References

[1] E. Agichtein and L. Gravano. Snowball: Extracting relations from large plain-text collections. In Procs. of
the Fifth ACM International Conference on Digital Libraries, 2000.

[2] M. Banko, M. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni. Open information extraction from
the web. In Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007),
2007.

[3] M. Cafarella and O. Etzioni. A Search Engine for Natural Language Applications. In Procs. of the 14th
International World Wide Web Conference (WWW 2005), Tokyo, Japan, 2005.

6

[4] J. Cho and S. Rajagopalan. A fast regular expression indexing engine. In Proceedings of the 18th Interna-
tional Conference on Data Engineering, 2002.

[5] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In Thirtieth International
Conference on Very Large Data Bases(VLDB), 2004.

[6] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked, S. Soderland, D. Weld, and A. Yates.
Web-Scale Information Extraction in KnowItAll. In WWW, pages 100–110, New York City, New York,
2004.

[7] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked, S. Soderland, D. Weld, and A. Yates.
Unsupervised named-entity extraction from the web: An experimental study. Artificial Intelligence,
165(1):91–134, 2005.

[8] D. Konopnicki and O. Shmueli. W3QS - A System for WWWQuerying. In 13th International Conference
on Data Engineering (ICDE’97), 1997.

[9] D. Lin and P. Pantel. Discovery of inference rules from text. In Proceedings of the Seventh International
Conference on Knowledge Discovery and Data Mining, pages 323–328, 2001.

[10] A. O. Mendelzon, G. A. Mihalia, and T. Milo. Querying the World Wide Web. International Journal on
Digital Libraries, 1996.

[11] C. Re, N. Dalvi, and D. Suciu. Efficient top-k query evaluation on probabilistic data. In ICDE, 2007. to
appear.

[12] E. Spertus and L. A. Stein. Squeal: A Structured Query Language for the Web. In WWW, pages 95–103,
2000.

7

