
DiagramFlyer: A Search Engine for Data-Driven Diagrams

Zhe Chen
University of Michigan

Ann Arbor, MI 48109-2121
chenzhe@umich.edu

Michael Cafarella
University of Michigan

Ann Arbor, MI 48109-2121
michjc@umich.edu

Eytan Adar
University of Michigan

Ann Arbor, MI 48109-2121
eadar@umich.edu

ABSTRACT
A large amount of data is available only through data-driven
diagrams such as bar charts and scatterplots. These dia-
grams are stylized mixtures of graphics and text and are
the result of complicated data-centric production pipelines.
Unfortunately, neither text nor image search engines ex-
ploit these diagram-specific properties, making it difficult
for users to find relevant diagrams in a large corpus. In
response, we propose DiagramFlyer, a search engine for
finding data-driven diagrams on the web. By recovering the
semantic roles of diagram components (e.g., axes, labels,
etc.), we provide faceted indexing and retrieval for various
statistical diagrams. A unique feature of DiagramFlyer is
that it is able to “expand” queries to include not only ex-
actly matching diagrams, but also diagrams that are likely
to be related in terms of their production pipelines. We
demonstrate the resulting search system by indexing over
300k images pulled from over 150k PDF documents.

Categories and Subject Descriptors
H.4.0 [Information Systems]: Information systems appli-
cations—General

Keywords
Web search; diagrams; information extraction

1. INTRODUCTION
Data-driven diagrams (or statistical graphics) are an im-

portant method for communicating complex information.
Diagrams, a stylized mixture of graphics and text, offer
succinct quantitative summaries of data that motivate the
overall document’s content. Indeed, for many technical doc-
uments, the diagrams may be readers’ only access to the raw
data underlying the documents’ conclusions. Especially for
quantitative disciplines such as finance, public policy, and
the sciences, certain diagrams could be even more valuable
than the surrounding text.

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015 Companion, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3473-0/15/05.
http://dx.doi.org/10.1145/2740908.2742831.

Consider a chemist who wants to find all published ex-
periments about a class of compounds called metal-organic
frameworks [10]. Such materials are promising candidates
for a range of applications, including carbon dioxide absorp-
tion and hydrogen storage. A common experiment for these
materials is to examine the relationship between tempera-
ture and, say, H2 uptake. Unfortunately there is no reli-
able shared database of experimental results on this topic:
the most authoritative source of data on this topic is the
set of relevant diagrams published in scientific papers. The
chemist may be uninterested in the scientific paper text: the
compelling information is embedded in the diagram alone. It
is easy to imagine similar diagram-driven information needs
for demographers, public health experts, and other quanti-
tative professionals. It would thus be useful to be able to
search for diagrams per se, not just relevant documents.

Beyond domain experts, the ability to find similar (or al-
ternative) diagrams may even be highly useful for average
citizens. There is an increasing amount of information given
to the public through visualizations. In some situations, this
presentation can be highly misleading. For example, the
original “Obamacare Enrollment” diagram from Fox News
displayed a “false baseline” (see Figure 1(a)). Here, we may
be interested in identifying corrected versions of the diagram
(Figure 1(b)) or alternative representations (Figure 1(c)).
Finding these diagrams automatically can correct miscon-
ceptions and stimulate balanced discussions.

Of course, we could build such a diagram search engine
on top of existing tools. Standard text-based search may be
able to retrieve the diagrams’ enclosing documents. Image-
based search engines, which generally work by examining
textual content that surrounds images rather than the vi-
sual qualities of the images themselves, may retrieve some
diagrams [2, 4]. More recently, some commercial search sys-
tems such as Zanran [14] and others [7, 8, 9] can also be
used to query data-driven diagrams.

However, searching systems to date have ignored one dis-
tinct quality of data-driven diagrams: a diagram is the fi-
nal product of a multistep generation pipeline. First, the
diagram author must choose a dataset to visualize, which
is often just a small fraction of the total available data.
Second, the author defines a “specification” of what they
want displayed either programmatically (perhaps using a
set of known rules, such as the grammar of graphics [13])
or through direct manipulation. Finally, a program takes
the data and specification and renders a graphical display.
These steps are potentially lossy: the visualized dataset is
likely smaller than the total available database and both

1

a)
 O

rig
in

al
 Im

ag
e

b)
 C

or
re

ct
io

n

c)
 A

lte
rn

at
iv

e

d)

Figure 1: Example diagrams with false baselines (a), a similar “corrected” diagram (b), and an alternative
representation (c). On the right is a a screenshot of the DiagramFlyer search system (d).

the author and rendering system may make decisions about
what marks to display (e.g., as when only the largest cate-
gories are drawn cleanly in a stacked bar chart).

Unfortunately, this latent pipeline information is likely
useful to those searching for data-centric diagrams. Consider
the materials scientist who wants to find diagrams about
metal-organic frameworks under a given certain temperature
range; it would ideally work even when the visualization tool
does not include a label for each diagram axis. Consider also
a demographer who has chosen to generate a small handful
of diagrams and likely used a large database that contains
more data than any of the distinct diagrams might imply;
it could be useful for the searcher to find diagrams that
are derived from the same dataset. (Figure 1(d) shows the
unemployment statistics in only three states, but this image
was likely generated from a much larger dataset.)

In response, we present DiagramFlyer, a web-based sear-
ch engine for data-driven diagrams. It has two main compo-
nents. First, for each data-centric diagram discoverable in
a large corpus of documents, the DiagramFlyer extractor
recovers as much of the underlying diagram production pro-
cess as possible (e.g., y-axis label, etc.). Second, Diagram-
Flyer gives searchers the ability to search this recovered
information, via query tools, ranking methods, and snippet
generators. One distinctive feature of DiagramFlyer is its
ability to expand queries with a lexicon generator to find a
broader range of diagrams with similar semantics; for exam-
ple, if a diagram’s x-axis contains a few US States as labels,
the lexicon generator could be used to infer the other possi-
ble x-axis labels (e.g., other U.S. states) for diagrams that
are generated from the same underlying database.

We demonstrate that DiagramFlyer is a working search
engine that provides search services for a corpus of 319k di-
agrams extracted from 153K web-crawled PDFs. First, we
have implemented the software architecture and set of algo-
rithms for implementing DiagramFlyer’s diagram pipeline
extractor, as well as query tools that perform diagram rele-
vance ranking, similar item finding via lexicons, and snippet
generation. Second, we demonstrate that the system is able
to perform many interesting applications, including search-
ing diagrams via keywords, advanced faceted queries to allow
highly targeted searches, and searching for similar diagrams.

In the rest of the paper, we will introduce the system inter-
face and query language (Section 2), give an overview of the
system architecture (Section 3), describe how the end-user

can interact with DiagramFlyer during the demonstration
with an available online video (Section 4), and conclude with
a brief summary of the technical problem the system ad-
dresses (Section 5).

2. QUERY INTERFACE AND LANGUAGE
Prior to any search engine activity, the web’s population

of users produces diagrams. Diagram generation is a unique
process. First, an underlying database has to be collected
ahead of time, then a customized graphical specification has
to be designed (either through a specification or direct ma-
nipulation), then finally the specification is “compiled” to
render the diagram images. The graphical specification de-
scribes how to visualize the contained elements that define
the structure of the diagram. For example, as mentioned
in [13], given a database, a user must specify the data vari-
ables for both x- and y- axis, the transformation of the vari-
ables, the scale of axes (log or linear), and other character-
istics, in order to generate a two-dimensional scatterplot.

DiagramFlyer attempts to extract all the necessary ele-
ments of the graph generation specification for the diagrams.
We call this specification a diagram template or diagram
metadata. To be more specific, we try to find all textual
and visual elements that are necessary to render the final
images. In our prototype we focus on 8 key fields that can
be used to generate a unique diagram image: x-label, x-
scale, y-label, y-scale, title, legend, caption, scale

and type. (Type identifies what kind of two-dimensional
chart it is: bar, line, scatter or other.) For example, Fig-
ure 2 shows two sample data-driven diagrams and the dia-
gram metadata that DiagramFlyer found in each. These
diagrams, plus the accompanying diagram metadata, form
the corpus our search engine will index.

2.1 Query Interface
DiagramFlyer’s interface is similar in appearance to tra-

ditional web search engines, accepting input into a search
box (or boxes in the faceted “advanced” mode) and pre-
senting the results using a top-10-style Search Engine Re-
sults Page (SERP). Figure 1(d) shows the current Diagram-
Flyer prototype SERP, with a query for unemployment and
one visible hit. A score for each retrieved image is calculated
by combining the similarity of each individual fields (e.g.,
how well do the x-labels match? how much does the x-scale

2

y-scale

x-scale

titley-scale

caption

legend legend title

x-label

y-label

x-label

y-label

Figure 2: A diagram contains several characteristic
regions of text: the title, x-label, y-label, legend,
and so on.

overlap?, and so on). We will discuss the scoring mechanism
in detail in Section 3.

2.2 Query Language
DiagramFlyer’s query language supports complex, face-

ted queries which allows end-users to create highly targeted
searches. Thus, DiagramFlyer is able to support query-
ing on features that are part of the descriptive pipeline that
generated the diagram. DiagramFlyer’s query language
is composed of the 8 field operators (based on the fields de-
scribed above) and a fuzzy expansion function. Field oper-
ators operate against a faceted index of the diagrams (each
field is stored separately). For example,

Example 1. If a user wants to get diagrams about popula-
tion statistics over the year 1990 to 2014, she can formulate
the query as follows:

x-label: year AND

x-scale: from: 1990 to: 2014 AND

y-label: population

DiagramFlyer’s query language also supports a variety
of diagram search applications including “similar diagram”
search. DiagramFlyer supports fuzzy matching. When
processing a search query, a unique component of Diagram-
Flyer is its query expander, which is able to expand the
query by generating semantically similar terms. The goal of
lexicon expansion is to retrieve diagrams using information
that may have been removed as a side effect (either inten-
tionally or not) in the diagram production process. For ex-
ample, given a term “Michigan”, the query expander could
recognize that terms such as “California” and “Wisconsin”
are highly relevant terms belonging to the same category.
This lexicon was built by analyzing hundreds of millions of
web pages, which we will discuss in detail in Section 3.

Example 2. After finding a relevant diagram d q, a user
may want to retrieve all the relevant diagrams that could
potentially be generated from the same underlying dataset.
The query can be formulated as:

x-label:expand(d_q.x-label) AND

y-label:expand(d_q.y-label) AND

title: d_q.title AND

caption: d_q.caption

3. SOFTWARE ARCHITECTURE
The DiagramFlyer system proceeds in two stages. In

an initial offline stage, it processes a corpus of diagrams

Offline

Online

IndexWeb Diagram
Extractor

PDF
Crawler

Index
Builder

Search
Ranker

Snippet
Generator

Query
Expander

Figure 3: DiagramFlyer’s data processing pipeline.

and prepares them for search. In the subsequent online
stage, DiagramFlyer offers three distinct methods for giv-
ing users access to the diagrams.

The system architecture is seen in Figure 3. It employs
a pipeline of offline corpus-processing steps that produce
output then used by an online search query system. The
offline pipeline has three components.

First, the PDF crawler , which is based on the Nutch
open-source crawler [3], downloads a large number of PDFs
from public web pages on academic Internet domains. In our
current testbed we concentrate on diagrams extracted from
web-hosted scientific PDFs (found by targeting .edu web-
sites). We found 153K documents. We focus on PDFs that
contain diagrams with explicit text. Thus, we avoid the use
of optical character recognition (OCR) software. Although
the quality of many OCR systems is reasonably high for ba-
sic document types such as book pages and business cards,
the significant modification they require to function on dia-
grams is beyond the scope of this paper.

These PDFs are then fed to the diagram extractor . This
extractor identifies all the diagrams in the corpus and ex-
tracts their metadata at the same time. The system ex-
tracted 319K diagrams (i.e., slightly more than 2 diagrams
per paper). For the testbed system we target two-dimensional
data-driven plots (including scatter, time series, and bar
plots) as these have been found to represent a large por-
tion of data-driven diagrams (e.g., 70% of diagrams found
in news magazines [12] are time-series). More detail about
the diagram extractor can be found in [5].

Finally, the index builder uses Lucene [1] to construct
an inverted search index over the extracted and annotated
diagrams. The index tracks each extracted field separately
so that keyword matches on individual parts of the diagram
can be identified.

All three parts of the online query system are imple-
mented in Java running as a web application, using Lucene
for query processing during inverted index retrieval. They
are the search ranker, query expander, and snippet generator.

Search Ranker — Given a keyword query, the search ranker
computes a relevance score for each diagram and presents a
ranked list of diagrams as the results. We implemented the
scoring mechanism, weight-rank, for assessing a diagram’s
relevance to a user’s query using Lucene [1]. The weight-

3

rank mechanism looks for matches in each distinct metadata
field of a searching diagram, then computes the standard
TF-IDF relevance score of each metadata field. It allows
each of the eight fields to have a different weight when com-
puting the total diagram relevance score. We obtained the
weights by using a Support Vector Machine to find the op-
timal weight assignment based on a supervised training set
of more than 430 human-annotated (query, diagram, rel-
evance) triples. By separately finding search hits among
fields that are distinctive and meaningful, a ranking system
has greater ability to assign useful (and different) weights to
each field. The ranker then sorts diagrams according to their
relevance scores and presents the top results to the user.

Query Expander — The query expander extends the query
to retrieve a broader range of relevant diagrams. We aim to
recover diagrams that are related to a target diagram but
have a connection obscured by the lossy production pipeline.

The main component of the query expander is a lexi-
con generator built on 14 million HTML lists crawled from
ClueWeb09 [6]. We used the lexicon generation algorithm
proposed in [11]. Given a term, a lexicon generator pro-
duces a ranked list of terms belonging to the same category.
For example, the lexicon generator might take “Michigan”
as input and emit many other states in the US. The web list
dataset is not domain specific, and thus we believe our lexi-
con generator can cover a large number of different topics.

The query expander chooses a single expansion for each
user query term (to avoid the resulting search query to
strongly favor one term over another). The lexicon entry
we choose for the expansion of query term ts will be the
lexicon term that maximizes the lexicon similarity score the
lexicon similarity score SLex(t, ts). Given a query term ts,
let L = Lex(ts) be its generated lexicon and t be a term in a
searching document d. A direct way to measure the seman-
tic similarity between ts and t is to measure the probability
of how often ts and t co-occur in the same list, as Sco(ts, t).
But web lists are noisy, so directly using Sco(ts, t) to repre-
sent how close the two terms are can be misleading. Thus
we compute t’s lexicon similarity to ts based on two parts:
similarity of the document term to the query term and to
the query term’s overall generated lexicon:

Slex(t, ts) = Sco(t, ts) +
1

|L|
∑
t′∈L

Sco(t, t′) (1)

Snippet Generator — Finally, the snippet generator gen-
erates a brief visual summary of each search hit in the SERP,
as shown in Figure 1. Textual snippets in traditional web
search are a query-relevant compact document representa-
tion that help users scan the result list quickly and find high-
quality matches. To achieve these goals in DiagramFlyer,
we annotate a thumbnail image (i.e., a scaled image of the
diagram) with diagram metadata. We found the annotation
to be useful as the text in a scaled-down thumbnail image
is often too difficult to read. By overlaying text in a larger
font on top of the diagram thumbnail we allow the end-user
to quickly identify good matches in the SERP list.

4. DEMONSTRATION
The online demo video is available on YouTube1. We

demonstrate the working data-driven diagram search sys-
tem DiagramFlyer via the following three functions.

1
http://youtu.be/B7I1_o23N38

Keyword Search — First, DiagramFlyer supports key-
words queries. For example, when a user types the search
query ”birth rate” in the search box, she is able to browse
a ranked list of diagram objects. The snippet (as shown in
Figure 1) presents all the extracted elements of a diagram
specification for fast browsing. In addition, the user can
reach back to the original document by clicking its URL.

Advanced Facet Search — The DiagramFlyer also sup-
ports querying by the diagram generating process. By click-
ing the “Adv Search” button on the search interface (as
shown in Figure 1), a user can query by the diagram tem-
plate language (as shown in Example 1 & 2). For example, a
user can easily obtain diagrams with “year” to be the x-axis
from 1990 to 2000 and with “population” to be the y-axis
using the “Adv Search” interface.

Find Similar Diagrams — The query language of Dia-
gramFlyer makes it possible to support many interesting
application, including finding similar diagrams. For exam-
ple, when a user gets the initial results of querying for “birth
rate” related diagram, she can click a resulting diagram’s x-
label to find all the diagrams with a similar x-label. The user
can also click “Find similar diagrams” on the top of each re-
sulting diagram snippet (as shown in Figure 1) to obtain a
list of similar diagrams.

5. CONCLUSIONS
DiagramFlyer is a working search engine that searches

319k diagrams extracted from thousands of PDFs in the
web. We have implemented the software architecture and al-
gorithms for implementing DiagramFlyer’s diagram pipeli-
ne extractor, as well as query tools that perform diagram rel-
evance ranking, similar item finding via lexicons, and snip-
pet generation. In addition, we have demonstrated that the
system is able to perform many interesting applications, in-
cluding traditional keywords search, advanced facet search,
and searching for similar diagrams.

6. REFERENCES
[1] Apache Lucene,

http://lucene.apache.org/java/docs/index.html.
[2] S. Bhatia, P. Mitra, and C. L. Giles. Finding algorithms in

scientific articles. In WWW, 2010.
[3] M. Cafarella and D. Cutting. Building nutch: Open source

search. ACM Queue, 2, 2004.
[4] S. Carberry, S. Elzer, and S. Demir. Information graphics:

An untapped resource for digital libraries. In SIGIR, 2006.
[5] S. Z. Chen, M. Cafareela, and E. Adar. Searching for

statistical diagrams. In Frontiers of Engineering, National
Academy of Engineering, pages 69–78, 2011.

[6] ClueWeb09, http://lemurproject.org/clueweb09.php/.
[7] 2011. D8taplex, http://d8taplex.com/.

[8] 2011. DataMarket, http://datamarket.com/.

[9] 2011. EidoSearch, http://www.eidosearch.com/.
[10] J. Goldsmith, A. Wong-Foy, M. Cafarella, and D. Siegel.

Theoretical limits of hydrogen storage in metal-organic
frameworks. Chemistry of Materials, 2013.

[11] Y. He and D. Xin. Seisa: Set expansion by iterative
similarity aggregation. In WWW, pages 427–436, 2011.

[12] E. R. Tufte. The Visual Display of Quantitative
Information. Graphics Press, 2001.

[13] L. Wilkinson. The grammar of graphics. Wiley
Interdisciplinary Reviews: Computational Statistics, 2005.

[14] 2011. Zanran, http://www.zanran.com/q/.

4

