
c©Copyright 2015

Aniruddh Nath



Learning and Exploiting Relational Structure for Efficient Inference

Aniruddh Nath

A dissertation
submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2015

Reading Committee:

Pedro Domingos, Chair

Luke Zettlemoyer

Michael Ernst

Program Authorized to Offer Degree:
Computer Science & Engineering



University of Washington

Abstract

Learning and Exploiting Relational Structure for Efficient Inference

Aniruddh Nath

Chair of the Supervisory Committee:
Professor Pedro Domingos

Computer Science & Engineering

One of the central challenges of statistical relational learning is the tradeoff between expressive-

ness and computational tractability. Representations such as Markov logic can capture rich joint

probabilistic models over a set of related objects. However, inference in Markov logic and simi-

lar languages is #P-complete. Most existing tractable statistical relational representations are very

limited in expressiveness.

This dissertation explores two strategies for dealing with intractability while preserving expres-

siveness. The first strategy is to exploit the approximate symmetries frequently found in relational

domains to perform approximate lifted inference. We provide error bounds for two approaches for

approximate lifted belief propagation. We also describe propositional and lifted inference algo-

rithms for repeated inference in statistical relational models. We describe a general approach for

expected utility maximization in relational domains, making use of these algorithms.

The second strategy we explore is learning rich relational representations directly from data.

First, we propose a method for learning multiple hierarchical relational clusterings, unifying sev-

eral previous approaches to relational clustering. Second, we describe a tractable high-treewidth

statistical relational representation based on Sum-Product Networks, and propose a learning algo-

rithm for this language. Finally, we apply state-of-the-art tractable learning methods to the problem

of software fault localization.
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Chapter 1

INTRODUCTION

Probabilistic graphical models are at the heart of many state-of-the-art algorithms in computer

vision, natural language processing, computational biology, and many other fields. Their popular-

ity is due to their ability to compactly represent a rich joint probability distribution over a set of

random variables. However, this expressiveness comes at the cost of computational tractability;

inference in arbitrary graphical models is #P-complete [120]. This intractability is compounded in

statistical relational languages such as Markov Logic Networks (MLNs) [118, 40], which model

a set of instances jointly. To cope with this intractability, practitioners usually either (a) resort to

approximate inference algorithms, or (b) restrict the modeling language to a subset that permits

tractable inference (at great cost to expressiveness).

This dissertation explores two strategies for dealing with intractability in statistical relational

models, without excessively restricting the expressiveness of the modeling language. The first strat-

egy is to exploit the known relational structure of the domain to perform lifted inference, reasoning

over sets of indistinguishable variables, instead of individual random variables. Lifting is possible

for a variety of inference tasks, including marginal inference, MAP inference, and expected utility

maximization. Chapter 3 formalizes the expected utility maximization problem in the statistical

relational setting. Utility maximization is an instance of the more general problem of repeated

inference, which also arises in Marginal MAP, weight and structure learning, etc. Since small

changes to the evidence typically only affect a small region of the network, repeatedly performing

inference from scratch can be massively redundant. We propose Expanding Frontier Belief Prop-

agation (EFBP), an efficient propositional algorithm for probabilistic inference with incremental

changes to the evidence. EFBP is an extension of loopy belief propagation (BP) where each run

of inference reuses results from the previous ones, instead of starting from scratch with the new
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evidence; messages are only propagated in regions of the network affected by the changes. We

provide theoretical guarantees bounding the difference in beliefs generated by EFBP and standard

BP, and apply EFBP to the problem of expected utility maximization in relational models. Experi-

ments on viral marketing and combinatorial auction problems show that EFBP can converge much

faster than BP without significantly affecting the quality of the solutions.

One of the limitations of lifted inference is that constructing the lifted network (i.e. identifying

symmetries) can itself be quite costly. In addition, the exact lifted network is often very close

in size to the fully propositionalized model. Approximate lifted inference algorithms overcome

these problems by grouping together similar but distinguishable objects and, treating them as if

they were identical. Early stopping terminates the execution of the lifted network construction

at an early stage, resulting in a coarser network. Noise-tolerant hypercubes allow for marginal

errors in the representation of the lifted network itself. Both algorithms can significantly speed

up the process of lifted network construction as well as result in much smaller models. Chapter 4

provides a theoretical analysis of both algorithms, allowing the user to adjust coarseness of the

approximation depending on the accuracy required, and bound the resulting error.

Chapter 5 unifies the research directions explored in the previous two chapters, proposing an

approximate lifted inference algorithm for repeated inference in relational domains. In the repeated

inference setting, constructing even an approximate lifted network from scratch for each new infer-

ence can be extremely wasteful, because the evidence typically changes little from one inference to

the next. We propose an efficient algorithm for updating the structure of an existing lifted network

with incremental changes to the evidence. This allows us to construct the lifted network once for

the initial inference problem, and amortize the cost over the subsequent problems. Experiments on

video segmentation and viral marketing problems show that the algorithm greatly reduces the cost

of inference without affecting the quality of the solutions.

The second strategy for dealing with intractability in statistical relational models is to learn rich

relational representations that support efficient inference and learning algorithms. This dissertation

proposes two such approaches. Chapter 6 describes a method for learning Multiple Hierarchical

Relational Clusterings (MHRC) from a relational database. While this model can be used to pre-
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dict missing data, the clustering cannot be learned on one database and applied to another, over a

different set of objects. To address this limitation, chapter 7 proposes Relational Sum-Product Net-

works (RSPNs), a new tractable first-order probabilistic architecture. RSPNs build on Sum-Product

Networks (SPNs [113]), a recently-proposed deep architecture that guarantees tractable inference,

even on certain high-treewidth models. SPNs are a propositional architecture, treating the instances

as independent and identically distributed. RSPNs generalize SPNs by modeling a set of instances

jointly, allowing them to influence each other’s probability distributions, as well as modeling prob-

abilities of relations between objects. We also present LearnRSPN, the first algorithm for learning

high-treewidth tractable statistical relational models. LearnRSPN is a recursive top-down structure

learning algorithm for RSPNs, based on Gens and Domingos’ LearnSPN algorithm for proposi-

tional SPN learning. We evaluate the algorithm on three datasets; the RSPN learning algorithm

outperforms Markov Logic Networks in both running time and predictive accuracy.

Chapter 8 describes an application of an RSPN-like model (Tractable Fault Localization Mod-

els, TFLMs) to the problem of software fault localization. While most previous statistical debug-

ging methods generalize over many executions of a single program, TFLMs are trained on a corpus

of previously seen buggy programs, and learn to identify recurring patterns of bugs. Widely-used

fault localization techniques such as TARANTULA [68] evaluate the suspiciousness of each line in

isolation; in contrast, a TFLM defines a joint probability distribution over buggy indicator vari-

ables for each line. Further, TFLMs can incorporate additional sources of information, including

coverage-based features such as TARANTULA. We evaluate the fault localization performance of

TFLMs that include TARANTULA scores as features in the probabilistic model. Our study shows

that the learned TFLMs isolate bugs more effectively than previous statistical methods or using

TARANTULA directly, and does so at near-interactive speeds.

Each of these two strategies for dealing with intractability has certain advantages over the other.

Traditional statistical relational languages such as Markov logic allow probability to be combined

with logical rules in an extremely intuitive manner. Human experts can create rules based on their

knowledge of the domain, without additionally needing expertise in probabilistic models. The

weights can be learned from data, and the rules can optionally be supplemented or refined using
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structure learning algorithms. This approach can yield rich, intuitive probabilistic models of com-

plex relational domains. However, the key limitation is the intractability of probabilistic inference,

which is a subroutine of both structure and weight learning in MLNs and similar languages. In-

ference is also used to answer queries using the learned models. Therefore, the design of more

efficient inference algorithms is essential for making these highly expressive statistical relational

languages usable in this manner. This is the underlying motivation behind the first part of this

dissertation (chapters 3, 4, 5).

In contrast, the learned models considered in the second half of the dissertation (chapters 6,

7, 8) are less amenable to being specified by hand by a domain expert. Instead, they are learned

directly from data. The lack of a human-provided starting model gives us greater freedom to

design representations and learning algorithms that best model the data, with less consideration

to the ease of manually specifying or understanding the model (though these are still desirable

qualities in the language). In addition, computational tractability can be encoded into the design

of the language. MLNs and similar systems suffer from the drawback that a domain expert can

unintentionally create a simple, intuitive model that is well beyond the reach of even state-of-the-

art approximate inference algorithms. However, this cannot happen with RSPNs (chapter 7) and

TFLMs (chapter 8), both of which build tractability into the language.

One drawback to the approach we consider in the second half of the dissertation is that MHRC

and RSPNs both rely on structure learning algorithms, which require a relatively large amount of

training data, compared to starting with a hand-specified structure and simply learning the weights.

For the smaller datasets required for our debugging application (chapter 8), we instead use a hand-

specified structure for an RSPN-like language. Specifying an RSPN structure by hand requires

knowledge of the problem domain and as well as an understanding of the computational issues

that might arise from a candidate structure; this makes representations like MHRC and RSPNs a

less suitable choice than MLNs for domain experts who have a small amount of available training

data.
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Chapter 2

BACKGROUND

2.1 Probabilistic Graphical Models

Probabilistic graphical models (PGMs) [106, 81] compactly represent the joint distribution of a

set of variables X = (X1, . . . , Xn) ∈ X as a product of factors [106]:

P (X=x) =
1

Z

∏
k

fk(xk)

where each factor fk is a non-negative function of a subset of the variables xk, and Z is a normal-

ization constant. Under appropriate restrictions, the model is a Bayesian network and Z = 1. A

Markov network or Markov random field can have arbitrary factors. Graphical models can also be

represented in log-linear form:

P (X=x) =
1

Z
exp

(∑
i

wigi(x)

)

where the features gi(x) are arbitrary functions of the state. A factor graph [82] is a bipartite

undirected graph with a node for each variable and factor in the model. Variables are connected to

the factors they appear in.

PGMs are extremely flexible, and can represent complex probabilistic models in an intuitive

way. By making certain conditional independence assumptions, they can capture joint probability

distributions over a large number of variables without suffering from an explosion in the number of

parameters. These qualities have made this approach quite popular, and PGMs are at the heart of

many state-of-the-art algorithms in computer vision, natural language processing, computational

biology, social network modeling, and many other fields.

A key inference task in graphical models is computing the marginal probabilities of some vari-

ables (the query) given the values of some others (the evidence). Unfortunately, this is a #P-
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complete problem [120]; even (bounded) approximate inference is intractable for general PGMs.

Therefore, in practice, users of graphical models must usually resort to one of the following:

1. use approximate inference algorithms based on sampling, belief propagation, etc; or

2. restrict the model to a subset of graphical models on which inference is tractable.

A popular approximate inference approach is loopy belief propagation, which works by passing

messages from variable nodes to factor nodes and vice versa. The message from a variable to a

factor is:

µxf (a) =
∏

h∈nb(x)\{f}

µhx(a)

where nb(x) is the set of factors it appears in. (Evidence variables send 1 for the evidence value,

and 0 for others.) The message from a factor to a variable is:

µfx(a) =
∑
xa

f(xa)
∏

y∈nb(f)\{x}

µyf (yxa)


where nb(f) are the arguments of f ; xa is an assignment of values to the variables in nb(f), with

x set to a; yxa is the value of y in xa. The (unnormalized) marginal of variable x is given by:

Mx(a) =
∏

h∈nb(x)

µhx(a)

Many message-passing schedules are possible; the most widely used one is flooding, where all

nodes send messages at each step. In this case, the messages and marginals in iteration i+ 1 are as

follows:

µxf,i+1(a) =
∏

h∈nb(x)\{f}

µhx,i(a)

µfx,i(a) =
∑
xa

f(xa)
∏

y∈nb(f)\{x}

µyf,i(yxa)


Mx,i(a) =

∏
h∈nb(x)

µhx,i(a)
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In general, belief propagation is not guaranteed to converge, and it may converge to an incorrect

result, but in practice it often approximates the true probabilities well.

A related task is to infer the most probable values of all variables. The max-product algorithm

does this by replacing summation with maximization in the factor-to-variable messages.

Belief propagation can equivalently be formulated as a message-passing algorithm directly on

the graph of variables (as opposed to the factor graph). For a pairwise graphical model, the message

from node t to node s is:

µts(xs) =
∑
xt

fts(xt, xs)ft(xt)
∏

u∈nb(t)\{s}

µut(xt)

where nb(t) is the set of neighbors of t. The (unnormalized) belief at node t is given by:

Mx(xt) = ft(xt)
∏

u∈nb(t)

µut(xt)

2.2 Tractable Models

There is a large body of research on approximate inference algorithms for graphical models. How-

ever, this approach poses several problems. The approximation quality is often hard to judge, since

these algorithms typically do not have approximation bounds. Further, these algorithms often have

many parameters and options to tune; successfully applying approximate inference algorithms to

a new problem often requires deep understanding of both the problem domain and the inference

algorithm. Unreliable, inaccurate inference algorithms negate some of the advantage gained from

the expressiveness of PGMs.

Tractable probabilistic models sacrifice some of the expressiveness of general PGMs in return

for the ability to perform exact inference in polynomial time. Although early tractable probabilistic

models were quite restrictive, recent work in this field has revealed that tractable models can be

more expressive than previously believed. Current tractable models often outperform traditional

graphical models due to the ease of exact inference [113, 50, 51]; in practice, the improvement

due to accurate inference often outweighs the reduction in expressiveness. Inference in tractable

models is push-button, with no parameters to tune; the only human expertise is in specifying or
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learning the model. This section discusses some recent developments in tractable probabilistic

models.

2.2.1 Low Treewidth Graphical Models

For PGMs with tree structure, exact probabilistic inference is possible in polynomial time using dy-

namic programming algorithms (belief propagation [106] or special cases). Arguably the simplest

class of useful graphical models are Naı̈ve Bayes Mixture Models (NBMM) [88]. A Naı̈ve Bayes

model has a single, latent class variable, and the remaining variables in the distribution are inde-

pendent conditioned on the class. NBMMs with exact inference were shown to be more accurate

than intractable Bayesian networks using then state-of-the-art learning and inference algorithms.

Hidden Markov Models (HMMs) are an extremely popular special case of tree-structured

graphical models, and have been successfully applied to problems in speech recognition, com-

putational biology, natural language processing etc.

When the structure of the graphical model contains loops, belief propagation is no longer exact.

Exact inference can be performed by constructing a junction tree (a tree of clusters of variables),

and performing message passing on it. The width of a junction tree is one less than the size of its

largest cluster. The treewidth of a graph is the width of the thinnest (lowest width) junction tree

that can be constructed from the graph. Inference on a PGM using the junction tree algorithm is

exponential in the PGM’s treewidth (in both time and space). Therefore, probabilistic inference is

tractable for low-treewidth PGMs. Motivated by this insight, several methods have been proposed

for learning low-treewidth PGMs, known as thin junction trees [9, 20].

2.2.2 Tractable High Treewidth Models

The junction tree algorithm and other exact inference algorithms for PGMs run in time exponential

in the treewidth of the graph. Therefore, conventional wisdom in the probabilistic inference com-

munity was that low-treewidth models were tractable, and high-treewidth models were intractable.

However, not all high-treewidth probabilistic models require exponential inference time. Certain
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representations and inference algorithms that take advantage of context-specific independence can

support polynomial-time exact inference, even if inference on the equivalent PGM is exponential.

Much of the recent progress on this class of models builds on the field of knowledge compilation

[26]. Knowledge compilation is an inference strategy for PGMs that works by compiling the

graphical model into an intermediate representation, such as Arithmetic Circuits (ACs) [25] or

AND/OR graphs [32]. These circuits are typically directed acyclic graphs that represent probability

computations on the given PGM.

Inference on these intermediate structures is linear in the size of the circuit. Naı̈vely compiling

a PGM into an AC yields a circuit whose size is exponential in the treewidth of the PGM; infer-

ence through knowledge compilation techniques is therefore in general no more efficient than the

classic junction tree algorithm. The advantage of the knowledge compilation strategy is that the

compilation cost can be amortized over many queries, since the structure of the compiled circuit

is independent of the choice of query and evidence variables. A PGM only needs to undergo the

expensive knowledge compilation process once; if the resulting circuit is compact, the model can

answer a large number of queries in a fast, predictable manner.

Interestingly, the intermediate representations used by knowledge compilation methods can

represent some context-specific independence assumptions that cannot be captured by the tradi-

tional PGM graph representation. This allows certain probability distributions to be represented

compactly in the intermediate distributions, even though the corresponding PGM is high treewidth.

This insight has motivated a line of research that views ACs and related representations as a prob-

abilistic representation in their own right, rather than merely a compilation structure for PGM

inference. This class of algorithms learns compact ACs (or similar structures) directly from data,

without regard for the treewidth of the corresponding PGM. This line of work includes multi-linear

representations [121], LEARNAC [89], ACMN [90] and Sum-Product Networks (SPNs) [113].

Most recent approaches to learning high-treewidth probabilistic models have been described in

terms of SPNs [50, 51, 108, 119], which we describe in more detail in the following section.

The emerging line of research by Niepert et al. [101, 102] investigates another class of tractable

probabilistic models, built on assumptions of exchangeability, instead of conditional independence.
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Figure 2.1: Example SPN over the variables x1, x2 and x3. All leaves are Bernoulli distributions,

with the given parameters. The weights of the sum node are indicated next to the corresponding

edges.

Sum-Product Networks

A sum-product network (SPN) [113] is a rooted directed acyclic graph with univariate distributions

at the leaves; the internal nodes are (weighted) sums and (unweighted) products. In this work, we

use the simplified definition of Gens and Domingos [51]:

Definition 1. A sum-product network (SPN) is defined as follows.

1. A tractable univariate distribution is an SPN.

2. A product of SPNs with disjoint scopes1 is an SPN.

3. A weighted sum of SPNs with the same scope is an SPN, provided all weights are positive.

4. Nothing else is an SPN.

1The scope of an SPN is the set of variables that appear in it.
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A univariate distribution is tractable iff its partition function and mode can be computed in

O(1) time. Intuitively, an SPN S can be thought of as an alternating set of mixtures (sums) and

decompositions (products) of the leaf variables (Fig. 2.1). If the values at the leaf nodes are set to

the partition functions of the corresponding univariate distributions, then the value at the root is the

partition function (i.e. the sum of the unnormalized probabilities of all possible assignments to the

leaf variables). This allows the partition function to be computed in time linear in the size of the

SPN. We denote the partition function of S by S(∗).

Similarly, if some of the leaves are known, setting their values to their probabilities (accord-

ing to the corresponding univariates) yields the unnormalized probability of the evidence (de-

noted S(e)). This can be divided by the partition function to obtain the normalized probability

(S(e)/S(∗)). MPE inference is also linear in the size of the SPN, replacing sum nodes by max

nodes, which corresponds to viewing these nodes as hidden variables that we also maximize over.

The first learning algorithms for sum-product networks used a fixed network structure, and only

optimized the weights [113, 4, 50]. The network structure is domain-dependent; applying SPNs to

a new problem required manually designing a suitable network structure.

More recently, several algorithms have been proposed that learn both the weights and the net-

work structure, allowing SPNs to be applied out-of-the-box to new domains. Dennis and Ventura

[37] suggested an algorithm that builds an SPN based on a hierarchical clustering of variables.

Gens and Domingos [51] construct SPNs top-down, recursively partitioning instances and vari-

ables. Peharz et al. [108] construct SPNs bottom-up, greedily merging SPNs into models of larger

scope. These algorithms have been shown to perform well on a variety of domains, making more

accurate predictions than conventional graphical models, while guaranteeing tractable inference.

2.3 Statistical Relational Learning

Intelligent agents must be able to handle the complexity and uncertainty of the real world. First-

order logic is useful for the first, and probabilistic graphical models for the second. Combining

the two has been the focus of much recent research in the emerging field of Statistical Relational

Learning (SRL) [52]. A variety of languages have been proposed that combine the desirable fea-
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tures of both these representations. The first inference algorithms for these languages worked by

propositionalizing all atoms and clauses, and then running standard probabilistic inference algo-

rithms on the ground model.

More recently, several algorithms have been proposed for lifted inference, which deals with

groups of indistinguishable variables, rather than individual ground atoms. Approaches for iden-

tifying sets of indistinguishable variables include lifted network construction (LNC) [131], shat-

tering [29], and finding lifting partitions using graph automorphism [19]. Since the first-order

representation is often much smaller than the fully ground model, lifted inference is potentially

much more efficient than propositionalized inference. The first lifted probabilistic inference algo-

rithm was first-order variable elimination (FOVE), proposed by Poole [111], and extended by de

Salvo Braz, Amir and Roth [29] and Milch et al. [94]. Singla and Domingos [131] proposed the

first lifted approximate inference algorithm, a first-order version of loopy belief propagation (BP)

[149]. Interest in lifted inference has grown rapidly in recent years [71, 74, 75, 57, 15, 135, 71, 22,

93, 72, 53, 139, 137, 54, 141, 19].

Markov logic [118] is a probabilistic extension of first-order logic. Formulas in first-order

logic are constructed from logical connectives, predicates, constants, variables and functions. A

grounding of a predicate (or ground atom) is a replacement of all its arguments by constants (or,

more generally, ground terms). A grounding of a formula is a replacement of all its variables

by constants. A possible world is an assignment of truth values to all possible groundings of

predicates.

A Markov logic network (MLN) is a set of weighted first-order formulas. Together with a set of

constants, it defines a Markov network with one node per ground atom and one feature per ground

formula. The weight of a feature is the weight of the first-order formula that originated it. The

probability distribution over possible worlds x specified by the MLN and constants is thus

P (x) =
1

Z
exp

(∑
i

wini(x)

)
where wi is the weight of the ith formula and ni(x) its number of true groundings in x.

Inference in an MLN can be carried out by creating the corresponding ground Markov network
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and applying standard BP to it. A more efficient alternative is lifted belief propagation, which

avoids grounding the network as much as possible [131]. Lifted BP (LBP) constructs a lifted

network composed of supernodes and superfeatures, and and applies BP to it (LBP = LNC + BP).

It is guaranteed to give the exact same results as running BP on the ground network. A supernode

is a set of atoms that send and receive exactly the same messages throughout BP, and a superfeature

is a set of ground clauses that send and receive the same messages. A supernode and a superfeature

are connected iff some atom in the supernode occurs in some ground clause in the superfeature.

The lifted network is constructed by starting with an extremely coarse network, and then refin-

ing it essentially by simulating BP and keeping track of which nodes send the same messages

(Algorithm 1). The count n(s, F ) is the number of identical messages atom s would receive

in message passing from the features in F . Belief propagation must be altered slightly to take

these counts into account. Since all the atoms in a supernode have the same counts, we can set

n(X,F ) = n(s, F ), where s is an arbitrary atom in X . The message from F to X remains the

same as before:

µFX(a) =
∑
Xa

f(Xa)
∏

Y ∈nb(F )\{X}

µY F,i(yXa)


The message from X to F becomes

µXF (a) = µFX,i(a)n(X,F )−1
∏

H∈nb(X)\{F}

µHX,i(a)n(X,H)

The marginal becomes

MX(a) =
∏

H∈nb(X)

µHX,i(x)n(X,H)

An important question remains: how to represent supernodes and superfeatures. Although this

does not affect the space or time cost of inference on the lifted network, it can greatly affect the

cost of constructing the lifted network. The choice of particular representation can also pave the

way for an approximate construction of the lifted network (thereby saving computational cost). In

general, finding the most compact representation for supernodes and superfeatures is an intractable

problem.
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Singla and Domingos [131] considered two representations. The simplest option is to rep-

resent each supernode or superfeature extensionally as a set of tuples (i.e., a relation), in which

case joins and projections reduce to standard database operations. However, in this case the cost

of constructing the lifted network is similar to the cost of constructing the full ground network,

and can easily become the bottleneck. Another option is to use a more compact resolution-like

representation, as done by Poole [111] and de Salvo Braz et al. [29, 30]. This representation al-

lows for equality/inequality constraints to be represented explicitly. Taghipour et al. [134] propose

a framework for representing arbitrary constraints in lifted variable elimination. They propose

a constraint language similar to Singla, Nath and Domingos’ [132] hypercube representation for

lifted BP (section 4.5).

2.3.1 Tractable Models for SRL

Even with the benefit of lifted inference, MLNs and most other statistical relational models are

intractable. Like propositional graphical models, statistical relational models can be trivially re-

stricted to the low-treewidth case, but this comes at great cost to the representational power of the

model.

Tractable Markov Logic (TML) [42, 143] is a subset of Markov Logic that guarantees poly-

nomial-time inference, even in certain cases where the ground propositional model would be high-

treewidth. TML is expressive enough to capture several cases of interest, including junction trees,

non-recursive PCFGs and hierarchical mixture models. A TML knowledge base is a generative

model that decomposes the domain into parts, with each part drawn probabilistically from a class

hierarchy. Each part is further probabilistically decomposed into subparts (according to its class).

The key limitation of TML is that the knowledge base fully specifies the set of possible objects in

the domain, and their class and part structure. A TML knowledge base cannot generalize across

mega-examples of varying size or structure.
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Algorithm 1 LNC(MLN M, constants C, evidence E)
for all predicates P do

for all truth values v do

Form a supernode with all groundings of P

with truth value v

end for

end for

repeat

for all clauses C involving P1, . . . , Pk do

for all tuples of supernodes (X1, . . . , Xk),

where Xi is a Pi supernode do

Form a superfeature by joining X1, . . . , Xk

end for

end for

for all supernodes X of predicate P do

for all superfeatures F it is connected to do

for all tuples s in X do

n(s, F )← num of F ’s tuples that project to s

end for

end for

Form a new supernode from each set of tuples in X with

same n(s, F ) counts for all F

end for

until convergence

return Lifted network L, containing all current supernodes

and superfeatures
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Chapter 3

RELATIONAL DECISION THEORY

3.1 Introduction

As discussed in section 2.3, Markov logic and other SRL languages combine the strengths of

probabilistic and logical representations. However, there is little work to date on extending these

languages to the decision-theoretic setting, which is needed to allow agents to intelligently choose

actions. The one major exception is relational reinforcement learning and first-order Markov de-

cision processes (e.g., [43, 140, 125]). However, the representations and algorithms in these ap-

proaches are geared to the problem of sequential decision-making, and many decision-theoretic

problems are not sequential. In particular, relational domains often lead to very large and complex

decision problems for which no effective general solution is currently available (e.g., influence

maximization in social networks, combinatorial auctions with uncertain supplies, etc.).

The goal of this chapter is thus to provide a general decision-theoretic extension of first-order

probabilistic representations and their inference algorithms. We extend Markov logic networks to

represent decision-theoretic problems. The task of maximizing expected utility in this formulation

can be cast as a repeated inference problem in probabilistic graphical models. We describe an ef-

ficient approximate algorithm for repeated inference, based on lifted belief propagation [131]. We

provide theoretical guarantees for our algorithm. Experiments in viral marketing and combinato-

rial auction domains show that (a) these decision-making problems can be elegantly formulated in

our language, and (b) our inference algorithm is much more efficient than a direct application of

belief propagation.
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3.2 Background

An influence diagram or decision network is a graphical representation of a decision problem [63].

It consists of a Bayesian network augmented with two types of nodes: decision or action nodes

and utility nodes. The action nodes represent the agent’s choices; factors involving these nodes

and state nodes in the Bayesian network represent the (probabilistic) effect of the actions on the

world. Utility nodes represent the agent’s utility function, and are connected to the state nodes that

directly influence utility. We can also define a Markov decision network as a decision network with

a Markov network instead of a Bayesian network.

The fundamental inference problem in decision networks is finding the assignment of values

to the action nodes that maximizes the agent’s expected utility, possibly conditioned on some ev-

idence. If a is a choice of actions, e is the evidence, x is a state, and U(x|a, e) is the utility of x

given a and e, then the MEU problem is to compute

argmaxaE[U(x|a, e)] = argmaxa

∑
x

P (x|a, e)U(x|a, e)

3.3 Markov Logic Decision Networks

Decision theory can be incorporated into Markov logic simply by allowing formulas to have utili-

ties as well as weights. This puts the expressiveness of first-order logic at our disposal for defining

utility functions, at the cost of very little additional complexity in the language. Let an action

predicate be a predicate whose groundings correspond to possible actions (choices, decisions) by

the agent, and a state predicate be any predicate in a standard MLN. Formally:

Definition 2. A Markov logic decision network (MLDN) L is a set of triples (Fi, wi, ui), where

Fi is a formula in first-order logic and wi and ui are real numbers. Together with a finite set of

constants C = {c1, c2, . . . , c|C|}, it defines a Markov decision network ML,C as follows:

1. ML,C contains one binary node for each possible grounding of each state and action predicate

appearing in L. The value of the node is 1 if the ground atom is true, and 0 otherwise.



18

2. ML,C contains one feature for each possible grounding of each formula Fi in L for which

wi 6= 0. The value of this feature is 1 if the ground formula is true, and 0 otherwise. The

weight of the feature is the wi associated with Fi in L.

3. ML,C contains one utility node for each possible grounding of each formula Fi in L for which

ui 6= 0. The value of the node is the utility ui associated with Fi in L if Fi is true, and 0

otherwise.

We refer to groundings of action predicates as action atoms, and groundings of state predicates

as state atoms. An assignment of truth values to all action atoms is an action choice. An assignment

of truth values to all state atoms is a state of the world or possible world. The utility of world x

given action choice a and evidence e is U(x|a, e) =
∑

i uini(x, a, e), where ni is the number of

true groundings of Fi. The expected utility of action choice a given evidence e is:

E[U(x|a, e)] =
∑
x

P (x|a, e)
∑
i

uini(x, a, e)

=
∑
i

uiE[ni]

The MEU problem in MLDNs is finding the action choice that maximizes expected utility, and

is obviously intractable. The following sections present an efficient approximate algorithm for

solving it.

A wide range of decision problems can be elegantly formulated as MLDNs, including both

classical planning and Markov decision processes (MDPs). To represent an MDP as an MLDN,

we can define a constant for each state, action and time step, and the predicates State(s!, t)

and Action(a!, t), with the obvious meaning. (The ! notation indicates that, for each t, ex-

actly one grounding of State(s, t) is true.) The transition function is then represented by the

formula State(+s, t) ∧ Action(+a, t) ⇒ State(+s′, t + 1), with a separate weight for each

(s, a, s′) triple. (Formulas with + signs before certain variables represent sets of identical for-

mulas with separate weights, one for each combination of groundings of the variables with +

signs.) The reward function is defined by the unit clause State(∗s, t), with a utility for each
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state (using ∗ to represent per-grounding utilities). Policies can be represented by formulas of

the form State(+s, t) ⇒ Action(+a, t). Infinite-horizon MDPs can be represented using in-

finite MLNs [130]. Partially-observable MDPs are represented by adding the observation model:

State(+s, t)⇒ Observation(+o, t).

Since classical planning languages are variants of first-order logic, translating problems for-

mulated in these languages into MLDNs is straightforward. For simplicity, suppose the problem

has been expressed in satisfiability form [69]. It suffices then to translate the (first-order) CNF into

a deterministic MLN by assigning infinite weight to all clauses, and to assign a positive utility to

the formula defining the goal states. MLDNs now offer a path to extend classical planning with

uncertain actions, complex utilities, etc., by assigning finite weights and utilities to formulas. (For

example, an action with uncertain effects can be represented by assigning a finite weight to the

axiom that defines them.) This can be used to represent first-order MDPs in a manner analogous to

Boutilier et al. [14].

3.4 Repeated Inference

Most work on approximate inference in probabilistic graphical models focuses on computing the

marginal probabilities of a set of variables, or determining their most probable state, given some

fixed evidence and a fixed model. However, many interesting problems require repeated inference,

with changing evidence or a changing model:

• Utility maximization (discussed above).

• Maximum a posteriori (MAP) inference [105], i.e., computing the most likely state of a

set of query variables Q given partial evidence e of the variables in the complement of Q.

We can treat the variables in Q as changing evidence, and compute the likelihood for each

assignment of values to Q.

• Online inference, where the values of evidence variables are repeatedly updated (possibly

in real time).
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• Interactive inference, where the choice of evidence variables, their values, and the choice

of query can change arbitrarily as dictated by the user.

• Parameter and structure learning [60, 35] involve repeatedly modifying the model and

recomputing the likelihood.

• Dynamic inference [96] involves sequential problems, where the query at one time step

depends on evidence and hidden variables at that step and previous ones.

The obvious way to solve these problems is simply to repeatedly perform inference from scratch

each time the evidence (or model) changes. However, if the problem remains largely unchanged

between two successive search iterations, it may be the case that most of the beliefs are not signif-

icantly altered by the changes. In these situations, it would be beneficial to reuse as much of the

computation as possible between successive runs of inference.

Delcher et al. [34] presented an exact online inference algorithm for tree-structured Bayesian

networks. Acar et al. [2] refer to the problem of repeated inference on variations of a model as

adaptive inference. They described an exact algorithm that updates marginals as the dependencies

in the model are updated. However, we are not aware of any general-purpose approximate infer-

ence algorithms that avoid redundant computation as the evidence changes. In this chapter, we

propose expanding frontier belief propagation (EFBP), an approximate inference algorithm that

only updates the beliefs of variables significantly affected by the changed evidence. EFBP can be

straightforwardly extended to handle changes to the model. We provide guarantees on the perfor-

mance of EFBP relative to BP. These are based on the fact that, if the potentials in a model are

bounded, the difference in marginal probabilities calculated by EFBP and traditional loopy BP can

be bounded as well.

We apply EFBP to the problem of expected utility maximization in MLDNs. Utility maxi-

mization can be cast as repeated calculation of the marginals in a graphical model with changing

evidence. Under certain conditions, it can be shown that the same actions are chosen whether BP

or EFBP is used to calculate the marginals. As seen in our experiments, EFBP can be orders of
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magnitude faster than BP, without significantly affecting the quality of the solutions.

3.5 Expanding Frontier Belief Propagation

Let G be a graphical model on the variables in X. E ⊆ X is the evidence set. We are given a

sequence ~e = (e1, . . . , e|~e|), each element of which is an assignment of values to the variables in

E. For each element ek of ~e, we wish to infer the marginal probabilities of the variables in X\E,

given that E = ek.

Changing the values of a small number of evidence nodes is unlikely to significantly change

the probabilities of most state nodes in a large network. EFBP takes advantage of this by only

updating regions of the network affected by the new evidence. The algorithm starts by computing

the marginal probabilities of non-evidence nodes given the initial evidence values using standard

BP (e.g., by flooding). Then, each time the evidence is changed, it maintains a set ∆ of nodes

affected by the changed evidence variables, initialized to contain only those changed nodes. In

each iteration of BP, only the nodes in ∆ send messages. Neighbors of nodes in ∆ are added to ∆

if the messages they receive differ by more than a threshold γ from the final messages they received

when they last participated in BP. (The neighbors of a node are the nodes that appear in some factor

with it, i.e., its Markov blanket.) In the worst case, the whole network may be added to ∆, and we

revert to BP. In most domains, however, the effect of a change usually dies down quickly, and only

influences a small region of the network. In such situations, EFBP can converge much faster than

BP.

Pseudocode for EFBP is shown in Algorithm 2. µ̂k,its is the message from node t to node s in

iteration i of inference run k. µ̂k,ckts is the final message sent from t to s in inference run k. (If s

was not in ∆ in inference run k, then µ̂k,ckts = µ̂
k−1,ck−1

ts .) To handle changes to the model from one

iteration to the next, we simply add to ∆ variables directly affected by that change (e.g., the child

variable of a new edge when learning a Bayesian network).

EFBP is based on a similar principle to residual belief propagation (RBP) [44]: focus effort

on the regions of the graph that are furthest from convergence. However, while RBP is used to

schedule message updates in a single run of belief propagation, the purpose of EFBP is to minimize
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Algorithm 2 EFBP(variables X, graphical model G, evidence ~e, threshold γ)

for all t, s: µ̂1,1
ts ← 1

Perform standard BP on X and G with evidence e1.

for k ← 2 to |~e| do

for all t, s: µ̂k,1ts ← µ̂
k−1,ck−1

ts

∆← set of evidence nodes that change

between ek and ek−1

converged← False

i← 1

while converged = False do

Send messages from all nodes in ∆,

given evidence ek

converged← True

for all nodes s that receive messages do

if |µ̂k,its − µ̂k−1,ck−1

ts | > γ for any t ∈ nb(s) then

Insert s into ∆

end if

if s ∈ ∆ and |µ̂k,its − µ̂k,i−1
ts | > γ

for any t ∈ nb(s) then

converged← False

end if

end for

i← i+ 1

end while

end for
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redundant computation when repeatedly running BP on the same network, with varying settings

of some of the variables. One could run EFBP using RBP to schedule messages, to speed up

convergence.

If the potentials are bounded, EFBP’s marginal probability estimates provide bounds on BP’s.

We can show this by viewing the difference between the beliefs generated by EFBP and those

generated by BP as multiplicative error in the messages passed by EFBP:

µ̂k,its (xs) = µ̃k,its (xs)ẽ
i
ts(xs)

where µ̂k,its (xs) is the message sent by EFBP in iteration i of inference run k (i.e., nodes not in

∆ effectively resend the same messages as in i − 1); µ̃k,its (xs) is the message sent if all nodes

recalculate their messages in iteration i, as in BP; and ẽits(xs) is the multiplicative error introduced

in iteration i of EFBP.

This allows us to bound the difference in marginal probabilities calculated by BP and EFBP.

For simplicitly, we prove this for the special case of binary nodes. The proof uses a measure called

the dynamic range of a function, defined as follows [64]:

d(f) = sup
x,y

√
f(x)/f(y)

Theorem 1. For binary node xt, the probability estimated by BP at convergence (pt) can be

bounded as follows in terms of the probability estimated by EFBP (p̂t) after n iterations:

pt ≥
1

(ζnt )2[(1/p̂t)− 1] + 1
= lb(pt)

pt ≤
1

(1/ζnt )2[(1/p̂t)− 1] + 1
= ub(pt)

where log ζnt =
∑

u∈nb(t) log νnut, ν
1
ts = δ(ẽ1

ts)d(fts)
2, and νiut is given by:

log νi+1
ts = log

d(fts)
2εits + 1

d(fts)2 + εits
+ log δ(ẽits)

log εits =
∑

u∈nb(t)\s

log νiut
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δ(ẽits) = sup
xs,ys

√√√√√1 + γ/
(
µ̃k,its (xs)

)
1− γ/

(
µ̃k,its (ys)

)
Proof.

Since EFBP recalculates messages when |µ̂k,its − µ̃k,its | > γ,

µ̃k,its (xs)− γ ≤ µ̃k,its (xs)ẽ
i
ts(xs) ≤ µ̃k,its (xs) + γ

1− γ/µ̃k,its (xs) ≤ ẽits(xs) ≤ 1 + γ/µ̃k,its (xs)

This allows us to bound the dynamic range of ẽits:

d(ẽits) ≤ sup
xs,ys

√√√√√1 + γ/
(
µ̃k,its (xs)

)
1− γ/

(
µ̃k,its (ys)

) = δ(ẽits)

Theorem 15 of Ihler et al. [64] implies that, for any fixed point beliefs {Mt} found by belief

propagation, after n ≥ 1 iterations of EFBP resulting in beliefs {M̂n
t } we have

log d(Mt/M̂
n
t ) ≤

∑
u∈nb(t)

log νnut = log ζnt

It follows that d(Mt/M̂
n
t ) ≤ ζnt , and therefore Mt(1)/M̂n

t (1)

Mt(0)/M̂n
t (0)
≤ (ζnt )2 and (1−p̂t)/p̂t ≤ (ζnt )2(1−

pt)/pt, where pt and p̂t are obtained by normalizing Mt and M̂t. The upper bound follows, and the

lower bound can be obtained similarly.

Intuitively, νiut can be thought of as a measure of the accumulated error in the incoming message

from u to t in iteration i. It can be computed iteratively using a message-passing algorithm similar

to BP.

3.6 Maximizing Expected Utility

The MEU problem in influence diagrams and Markov decision networks can be cast as a series of

marginal probability computations with changing evidence. If ui(xi) and pi(xi|a, e) are respec-

tively the utility and marginal probability of utility node i’s parents Xi taking values xi, then the
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expected utility of an action choice is:

E[U(a|e)] =
∑
x

P (x|a, e)U(x|a, e)

=
∑
x

P (x|a, e)
∑
i

∑
xi

1{Xi = xi}ui(xi)

=
∑
i

∑
xi

ui(xi)
∑
x

1{Xi = xi}P (x|a, e)

=
∑
i

∑
xi

ui(xi)pi(xi|a, e)

Given a choice of actions, we can treat action nodes as evidence. To calculate the expected

utility, we simply need to calculate the marginal probabilities of all values of all utility nodes.

Different action choices can be thought of as different evidence.

In principle, the MEU action choice can be found by searching exhaustively over all action

choices, computing the expected utility of each using any inference method. However, this will

be infeasible in all but the smallest domains. An obvious alternative, particularly in very large

domains, is greedy search: starting from a random action choice, consider flipping each action in

turn, do so if it increases expected utility, and stop when a complete cycle produces no improve-

ments. This is guaranteed to converge to a local optimum of the expected utility, and is the method

we use in our experiments.

Lemma 1. The expected utility Ebp[U ] of an action choice estimated by BP can be bounded as

follows:

Ebp[U ] ≥
∑
i

∑
xi

ui(xi)
[
1{ui(xi) > 0}lb(pi(xi|a, e))

+ 1{ui(xi) < 0}ub(pi(xi|a, e))
]

Ebp[U ] ≤
∑
i

∑
xi

ui(xi)
[
1{ui(xi) > 0}ub(pi(xi|a, e))

+ 1{ui(xi) < 0}lb(pi(xi|a, e))
]

Proof. The lemma follows immediately from Theorem 1 and the definition of expected utility.
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Based on this lemma, we can design a variant of EFBP that is guaranteed to produce the same

action choice as BP when used with greedy search. Let Ai denote the set of action choices con-

sidered in the ith step of greedy search. If EFBP picks action choice a ∈ Ai, BP is guaranteed to

make the same choice if the following condition holds:

lb(E[U(a)]) > max
a′∈Ai

ub(E[U(a′)]) (3.1)

When the condition does not hold, we revert the messages of all nodes to their values after the

initial BP run, insert all changed actions into ∆, and rerun EFBP. If condition 3.1 still does not

hold, we halve γ and repeat. (If γ becomes smaller than the BP convergence threshold, we run

standard BP.) We call this algorithm EFBP∗.
Note that using the above bound for search requires a slight modification to the calculation

of ν1
ts, since EFBP and BP result in different message initializations for the first BP iteration at

every search step. If BP initializes all messages to 1 before every search step, the error function

ẽ1
ts(xs) = µ̂k,1ts (xs). If BP initializes its messages with their values from end of the previous search

iteration, then ν1
ts can also be similarly initialized. The calculations of νits for i 6= 1 are not altered.

Let Greedy(I) denote greedy search using inference algorithm I to compute expected utilities.

Theorem 2. Greedy(EFBP∗) outputs the same action choice as Greedy(BP).

Proof. Condition 3.1 guarantees that EFBP makes the same action choice as BP. Since EFBP∗
guarantees that the condition holds in every iteration of the final run of EFBP, it guarantees that the

action choice produced is the same.

In practice, EFBP∗ is unlikely to provide large speedups over BP, since the bound in Theorem 1

must be repeatedly recalculated even for nodes outside ∆. Empirically, running EFBP with a fixed

threshold not much higher than BP’s convergence threshold seems to yield an action choice of very

similar utility to BP’s in a fraction of the time.
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3.7 Experiments

Our experiments had two goals: to find out how well MLDNs can model a variety of decision

problems in relational, uncertain domains, and to evaluate the performance of EFBP. We used

two domains: viral marketing and combinatorial auctions. We implemented MLDNs and EFBP

as extensions of the Alchemy system [80]. The experiments were run on a cluster of 8-processor

machines with 2GB of RAM per processor, running at 2.33 GHz. We used a convergence threshold

of 10−4 for flooding, including the initial BP run for EFBP, and a threshold of γ = 10−3 for the

remaining iterations of EFBP. We evaluated the utility of the actions chosen by EFBP using a

second run of full BP, with a threshold of 10−4. As is usually done, both algorithms were run for a

few (10) iterations after the convergence criterion was met.

3.7.1 Viral Marketing

Viral marketing is based on the premise that members of a social network influence each other’s

purchasing decisions. The goal is then to select the best set of people to market to, such that the

overall profit is maximized by propagation of influence through the network. Originally formalized

by Domingos and Richardson [41], this problem has since received much attention, including both

empirical and theoretical results.

A standard dataset in this area is the Epinions web of trust [117]. Epinions.com is a knowledge-

sharing Web site that allows users to post and read reviews of products. The “web of trust” is

formed by allowing users to maintain a list of peers whose opinions they trust. We used this

network, containing 75,888 users and over 500,000 directed edges, in our experiments. With over

75,000 action nodes, this is a very large decision problem, and no general-purpose MEU algorithms

have previously been applied to it (only domain-specific implementations).

We defined an MLDN very similar to Domingos and Richardson’s [41] model using the state

predicates Buys(x) and Trusts(x1, x2), and the action predicate MarketTo(x). The utility function

is represented by the unit clauses Buys(x) (with positive utility, representing profits from sales) and

MarketTo(x) (with negative utility, representing the cost of marketing). The topology of the social
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network is specified by an evidence database of Trusts(x1, x2) atoms. Information about who has

already bought the product can also be incorporated, in the form of Buys(x) evidence atoms.

The core of the model consists of two formulas:

Buys(+x1) ∧ Trusts(+x2, x1)⇒ Buys(x2) (3.2)

MarketTo(+x)⇒ Buys(x) (3.3)

In addition, the model includes the unit clause Buys(x) with a negative weight, representing the

fact that most users do not buy most products. The weight of Formula 3.2 for user pair (x1, x2)

represents how strongly x1 influences x2, and the weight of Formula 3.3 represents how strongly

users are influenced by marketing. These parameters can be estimated from data, as in [41]. For our

experiments, however, we varied the weights of the formulas, to see how this affected the behavior

of the algorithms.

We ran greedy search with BP and EFBP directly on this model. All results are averages of five

runs. We compared BP and EFBP, without lifting. We set the cost of marketing to each user to−1,

and the profit from each purchase to 20. The weight of the Buys(x) formula was −2. The initial

action choice was to market to no one. All results are averages of six runs. Fixing the weight of

formula 3.3 at 0.8 for all users, inference times varied as shown in Figure 3.1a as we varied the

weight of Formula 3.2. Running utility maximization with BP until convergence was not feasible;

instead, we extrapolated from the number of actions considered during the first 24 hours, assuming

that search with BP would consider the same number of actions as search with EFBP. Figure 3.1b

plots the result of a similar experiment, with influence weight fixed at 0.6 and varying the weight

of Formula 3.3. In both cases, EFBP was consistently orders of magnitude faster than BP.

We can also compare the utility obtained by BP and EFBP given a fixed running time of 24

hours. EFBP consistently achieves about 40% higher utility than BP when varying the influence

weight, with higher advantage for lower weights. For a marketing weight of 1.0, EFBP achieves

about 30% higher utility than BP; this advantage decreases gradually to zero as the weight is

reduced (reflecting the fact that fewer and fewer customers buy).

Richardson and Domingos [117] tested various specially designed algorithms on the same net-
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Figure 3.1: Convergence times for viral marketing.

work. They estimated that inference using the model and algorithm of Domingos and Richardson

[41], which are the most directly comparable to ours, would have taken hundreds of hours to

converge (100 per pass). (This was reduced to 10-15 minutes using additional problem-specific

approximations, and a much simpler linear model that did not require search was even faster.)

Although these convergence times cannot be directly compared with our own (due to the different

hardware, parameters, etc. used), it is noteworthy that EFBP converges faster than the most general

of their methods.

Unlike previous hand-coded models, our MLDN can be easily extended to incorporate cus-

tomer and product attributes, purchase history information, multiple types of relationships, prod-

ucts, actors in the network, marketing actions, etc. Doing so is a direction for future work.

3.7.2 Probabilistic Combinatorial Auctions

Combinatorial auctions can be used to solve a wide variety of resource allocation problems [24].

An auction consists of a set of bids, each of which is a set of requested products and an offered

reward. The seller determines which bids to assign each product to. When all requested products

are assigned to a bid, the bid is said to be satisfied, and the seller collects the reward. The seller’s

goal is to choose an assignment of products to bids that maximizes the sum of the rewards of
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satisfied bids; this is an NP-hard problem. While there has been much research on combinatorial

auctions, it generally assumes that the world is deterministic (with a few exceptions, e.g. Golovin

[56]). In practice, however, both the supply and demand for products are subject to many sources

of uncertainty. For example, supply of one product may make supply of another less likely because

they compete for resources.

We model uncertainty in combinatorial auctions by allowing product assignments to fail, re-

sulting in the loss of reward from the corresponding bids. The following MLDN describes our

formulation of the problem.

∀ product : InBid(product, ∗bid)⇒ Assign(product, bid) ∧ Succeed(product) (3.4)

Competes(+product1,+product2)⇒ (¬Succeed(product1) ∨ ¬Succeed(product2))

(3.5)

InBid(product, bid) and Competes(product, product) are evidence predicates.

Assign(product, bid) is an action predicate. Formula 3.4 is a utility formula; each grounding

represents a single bid. Formula 3.5 represents the supply uncertainty. It models competition

between two products; the success of one increases the failure probability of the other. This formula

creates a network of dependencies among product failures.

We generated bids according to the decay distribution described by Sandholm [124], with

α = 0.75, and randomly generated 1000 true Competes() atoms from a uniform distribution over

product pairs. Figure 3.2 plots the inference time for a 1000-product, 1000-bid auction, varying

the weight of Formula 3.5. The results are averages of ten runs. As in the viral marketing exper-

iment, EFBP converges much faster than BP. Since in this case both algorithms can be run until

convergence, the expected utilities of the chosen product assignments are extremely similar.

Our MLDN can be easily extended to incorporate more interesting bidding languages and more

complex probabilistic dependencies. For instance, each bid could be an arbitrary logical formula,

rather than a conjunction. Or it could be a probability distribution depending on several products,

representing a form of demand uncertainty. MLDNs could also be used to introduce other kinds of

supply and demand uncertainty to combinatorial auction problems.
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Figure 3.2: Convergence time for combinatorial auctions.

3.8 Conclusions & Future Work

In this chapter, we presented Markov logic decision networks, a language that represents first-order

probabilistic decision-theoretic problems by adding utility weights to Markov logic formulas. We

then developed EFBP, an efficient algorithm for inference in MLDNs (and other repeated inference

tasks), and provided theoretical guarantees for it. Applications to viral marketing and combinato-

rial auctions provided evidence of the flexibility of MLDNs and the efficiency of EFBP.

Directions for future work include: applying MLDNs to other domains, including planning

ones; combining EFBP with algorithms for inference in first-order MDPs, and with domain-

specific algorithms (e.g., local search algorithms for solving combinatorial auctions); extending

BP and EFBP to better handle hard constraints; developing further algorithms for MEU inference

in MLDNs; using MLDNs for utility-guided learning, including relational reinforcement learning;

applying EFBP to other problems besides utility maximization (e.g. online inference, learning,

etc.).
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Chapter 4

ERROR BOUNDS FOR
APPROXIMATE LIFTED BELIEF PROPAGATION

4.1 Introduction

Lifted inference algorithms (section 2.3) can greatly reduce the cost of inference in statistical rela-

tional models. These approaches work by identifying sets of indistinguishable variables, resulting

in a lifted network that is potentially much smaller than the full ground network. The cost of

inference for these algorithms depends on the size of the lifted representation.

However, lifted network construction (LNC) can itself be quite expensive. The cost of LNC is

highly sensitive to the representation of the lifted network. Another problem with standard lifted

inference algorithms is that they often yield a lifted network very close in size to the fully proposi-

tionalized network. In these situations, the expensive process of lifted network construction yields

little or no speedup. Both these problems can be averted through approximate lifted inference,

which groups together variables that behave similarly, but are not completely identical. Approxi-

mate lifting can yield a much smaller model, and therefore a greater speedup. Approximate lifting

can also reduce the cost of lifted network construction.

In this chapter, we describe two methods for approximate lifting, originally developed by Singla

et al. [129, 132]. First, we discuss early stopping, which runs LNC only up to a fixed number of

iterations, leading to the construction of a coarser network. Second, we describe a compact hyper-

cube representation for the lifted network. This forms the basis for approximate lifting by allow-

ing for a threshold noise in hypercubes while constructing the lifted network. We describe a new

bound on the error for a given level of approximation, based on an extension of Ihler et al.’s [64]

error bounds for loopy belief propagation in pairwise graphical models. Like Singla and Domingos

[131], we use Markov logic as the representation language, but our methods are applicable to many
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other first-order probabilistic representations.

4.2 Related Work

De Salvo Braz et al. [31] proposed a form of approximate lifting that combines lifted belief propa-

gation with box propagation [95]. To our knowledge, this algorithm has not been implemented and

evaluated, and a detailed description has not yet been published. Sen et al. [127] proposed a lifting

algorithm based on the notion of bisimulation, and an approximate variant of it using mini-buckets

[33]. Their technique is very effective on some domains, but it is not clear how scalable it is on

more general domains, such as those considered by Singla, Nath and Domingos [132] (including

Cora entity resolution task where it fails to provide a speed-up).

Kersting et al. [72] proposed an algorithm called informed lifted belief propagation (iLBP),

which interleaves the LNC steps and the BP steps and avoids creating the exact lifted network

when BP converges in fewer iterations than LNC. iLBP can be further sped up by combining it

with the approximation schemes and compact representations presented in this chapter; this is a

direction for future work.

Gogate and Domingos [53] introduce a sampling version of their lifted weighted model count-

ing approach which does approximate inference, but only over exact lifted models. Van den Broeck

et al. [137] present a technique for approximate lifting by first relaxing some of the constraints and

then compensating for the relaxations. The set of relaxed constraints determines the quality of the

approximation. Their approach provides a spectrum of solutions with lifted BP (fastest) on one

extreme and lifted exact inference (most accurate) on the other. They report experiments over rel-

atively small-sized domains, and it is not clear how well their approach would scale. On the other

hand, our lifted approximations further relax the lifted network constructed by BP to make lifting

scalable to much larger real world domains of practical interest.

Van den Broeck and Darwiche [138] explore the possibility of lifted inference by approxi-

mating evidence using a low rank Boolean matrix factorization. The experimental evaluation is

presented over a limited set of domains. Our noisy hypercube approximation can be seen as an

instance of over-symmetric evidence approximation [138] which we show works well in practice
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for a variety of real world domains.

Ahmadi et al. [3] present an approach for breaking the network into tree-structured pieces

over which (lifted) inference can be performed independently and results combined later. Our

early stopping can be viewed as a form of piecewise decomposition up to depth d, although this

decomposition may not in general result in a tree. Further, in our case, the decomposition is only

used for lifting (inference still retains all the connections) unlike the piecewise inference of Ahmadi

et al. [3] where certain connections might be lost leading to larger deviations from the original

network. Exploring the exact connection between the two approaches and making an empirical

comparison is an item for future work.

4.3 Message Errors on Factor Graphs

Ihler et al. [64] derived a bound on the effects of message errors on loopy belief propagation. In

this chapter, we make use of Ihler et al.’s methods to analyze approximate lifted belief propagation,

providing a bound on the error introduced by the approximation. However, Ihler et al.’s result only

applies to pairwise Markov networks, i.e. graphical models in which each factor is connected to at

most two nodes. While any graphical model can be converted into an equivalent pairwise model,

doing so can increase the state dimension of the nodes, and introduce deterministic dependencies,

both of which are known to make belief propagation perform poorly [112]. In this section, we

extend Ihler et al.’s bound to arbitrary factor graphs, without changing the state dimension or

introducing any new dependencies.

In section 2.1, we defined µxf and µfx, the BP messages, and Mx, the marginal of a variable.

We define a similar quantity for factors:

Mfx,i(x) =
∏

y∈nb(f)\{x}

µyf,i(yx)

Let µ̂xf , µ̂fx, M̂x and M̂fx be our approximations of these quantities. These approximations
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can be viewed as multiplicative errors on the ‘true’ quantities at some fixed point of BP:

µ̂xf,i(x) = µxf,i(x)exf,i(x)

µ̂fx,i(x) = µfx,i(x)efx,i(x)

M̂x,i(x) = Mx,i(x)Ex,i(x)

M̂fx,i(x) = Mfx,i(x)Efx,i(x)

(Here, e and E are the multiplicative error functions.)

If the potentials are finite, we can bound the growth of the dynamic range of the error with

respect to the operations of BP, using logic very similar to [64].

Theorem 3.

log d(exf,i+1) ≤
∑

h∈nb(x)\{f}

log d(ehx,i)

log d(Ex,i+1) ≤
∑

h∈nb(x)

log d(ehx,i)

Proof. Both equations can be proved by the same argument as Theorem 6 of [64].

Theorem 4.

d(efx,i+1) ≤ d(f)2d(Efx,i) + 1

d(f)2 + d(Exf,i)

Proof.

d(efx,i+1) = d(µ̂fx/µfx)

= max
a,b

∑
xa
f(xa)Mfx(xa)Efx(xa)∑
xa
f(xa)Mfx(xa)

.

∑
xb
f(xb)Mfx(xb)∑

xb
f(xb)Mfx(xb)Efx(xb)

The result follows from the same argument as Appendix A of Ihler et al. [64].
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4.4 Early Stopping

The LNC algorithm described in section 2.3 is guaranteed to create the minimal lifted network

[131]. Running BP on this network is equivalent to BP on the fully propositionalized network, but

potentially much faster. However, the minimal exact lifted network is often very close in size to

the propositionalized network. Running LNC to convergence may also be prohibitively expensive.

Both of these problems can be alleviated with approximate lifting. The simplest way to make LNC

approximate is to terminate LNC after some fixed number of iterations k, thus creating k lifted

networks at increasing levels of fineness [99]. No new supernodes are created in the final iteration.

Instead, we simply average the superfeature counts n(X,F ) for supernode X over all atoms s in

X .

Each resulting supernode contains nodes that send and receive the same messages during the

first k steps of BP. By stopping LNC after k iterations, we are in effect pretending that nodes

with identical behavior up to this point will continue to behave identically. This is a reasonable

approximation, since for two nodes to be placed in the same supernode, all evidence and network

topology within a distance of k−1 links must be identical. If the nodes would have been separated

in exact LNC, this would have been a result of some difference at a distance greater than k − 1. In

BP, the effects of evidence typically die down within a short distance. Therefore, two nodes with

similar neighborhoods would be expected to behave similarly for the duration of BP.

4.4.1 Error Bound for Early Stopping

The error induced by stopping after k iterations can be bounded by calculating the additional error

introduced at each BP step as a result of the approximation. To do this, we perform one additional

iteration of LNC (for a total of k+1), and compute the difference between the messages calculated

at the level k and level k+1 at each BP step (after initializing the messages at level k+1 from those

at level k). To see why this captures the new error in step i of BP, consider a fully ground network

initialized with the messages at level k of the lifted network. Run one step of BP on the ground

network, passing messages from variables to factors and vice versa. The resulting messages on
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the ground network are identical to those yielded by initializing the messages at level k + 1 the

same way, and running a single step of BP. In other words, computations on level k + 1 tell us

what the correct messages in the next step should be, assuming the current messages are correct.

(In general, the current messages are actually incorrect, but the errors have already been accounted

for.) This allows us to compute the error introduced in the current iteration, and incorporate it into

the bound.

Let snk(x) and sfk(f) respectively be the supernode containing x and the superfactor con-

taining f at level k. We view the difference between the messages at level k and level k + 1 as

additional multiplicative error introduced in each BP step in the variable-factor messages at level

k:

µ̂xf,i(xs) = µ̃xf,i(xs)ẽxf,i(xs)

where µ̂xf,i(xs) is the message from snk(x) to sfk(f) in BP step i; µ̃xf,i(xs) is the message from

snk+1(x) to sfk+1(f) in step i, after initializing snk+1(x) from snk(x) in step i− 1; and ẽxf,i(xs)

is the multiplicative error introduced in the message from x to f at level k in step i.

This allows us to bound the difference in marginal probabilities calculated by ground BP and

lifted BP at level k.

Theorem 5. If ground BP converges, then for node x, the probability estimated by ground BP at

convergence (px) can be bounded as follows in terms of the probability estimated by level k lifted

BP (p̂x) after n BP steps:

px ≥
1

(ζx,n)2[(1/p̂x)− 1] + 1
= lb(px)

px ≤
1

(1/ζx,n)2[(1/p̂x)− 1] + 1
= ub(px)



38

where log ζx,n =
∑

f∈nb(x)

log νfx,n

νfx,1 = d(f)2

log νxf,i+1 =
∑

h∈nb(x)\{f}

log νhx,i + log δxf,i+1

log νfx,i = log
d(f)2εfx,i + 1

d(f)2 + εfx,i

log εfx,i =
∑

y∈nb(f)\{x}

log νyf,i

δxf,i = sup
xs,ys

√
µ̂xf,i(xs)

µ̃xf,i(xs)

µ̃xf,i(ys)

µ̂xf,i(ys)

d(f) = sup
x,y

√
f(x)/f(y)

Proof. d(f) is the dynamic range of function f , as defined in Ihler et al. [64]. Since we can

calculate µ̂xf,i(xs) and µ̃xf,i(xs), the dynamic range of the error function can be calculated as

follows:

d(ẽxf,i) = sup
xs,ys

√
µ̂xf,i(xs)

µ̃xf,i(xs)

µ̃xf,i(ys)

µ̂xf,i(ys)
= δxf,i

Using the same logic as Theorem 15 of Ihler et al. [64], for any fixed point beliefs {Mx} found by

ground BP, after n ≥ 1 steps of BP at level k resulting in beliefs {M̂x,n}

log d(Mx/M̂x,n) ≤
∑

f∈nb(x)

log νfx,n = log ζx,n

It follows that d(Mt/M̂x,n) ≤ ζx,n, and therefore:

Mx(1)/M̂x,n(1)

Mx(0)/M̂x,n(0)
≤ (ζx,n)2

and (1− p̂x)/p̂x ≤ (ζx,n)2(1− px)/px

where px and p̂x are obtained by normalizing Mx and M̂x,n. The upper bound follows, and the

lower bound can be obtained similarly.

Intuitively, νut,i can be thought of as a measure of the accumulated error in the message from u

to t in BP step i. It can be computed iteratively using a message-passing algorithm similar to lifted

BP on the level k + 1 graph.
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4.5 Noise-Tolerant Hypercubes

Another approach to approximate lifting is to allow for marginal error in the representation of each

supernode (superfeature) in the lifted network. We use a hypercube based representation for the

lifted network. This forms the basis for approximate lifting by giving a framework for representing

noise during the lifted network construction phase.

Hypercube Representation

A hypercube is a vector of sets of literals, [S1, S2, . . . , Sk]; the corresponding set of tuples is the

Cartesian product S1 × S2 × . . .× Sk. A supernode or superfeature can be represented by a union

of disjoint hypercubes. Hypercube representation can be exponentially more compact than both

the extensional and resolution-like representations. Hypercube (or similar) representation can also

be used effectively in lifted exact inference algorithms such as FOVE [134]. In general, there can

be more than one minimal decomposition, and finding the best one is an NP-hard problem. (In two

dimensions, it is equivalent to the minimum biclique partition problem, Amilhastre et al. [5].) In the

construction of hypercubes, first, a bounding hypercube is constructed, i.e., one which includes all

the tuples in the set. This is a crude approximation to the set of tuples which need to be represented.

The hypercube is then recursively sub-divided so as to split apart tuples from non-tuples, using a

heuristic splitting criterion (see Algorithm 3). Other criteria such as information gain can also

be used, as is commonly done in decision trees. The process is continued recursively until each

hypercube either contains all valid tuples or none (in which case it is discarded). This process does

not guarantee a minimal splitting, since hypercubes from two different branches could potentially

be merged. Therefore, once the final set of hypercubes is obtained, we recursively merge the

resulting hypercubes in a bottom-up manner to get a minimal set. (Running the bottom approach

directly on individual set of tuples can be inefficient.)

Hypercube Join: When joining two supernodes, we join each possible hypercube pair (each

element of the pair coming from the respective supernode). Joining a pair of hypercubes simply

corresponds to taking an intersection of the common variables and keeping the remaining ones as
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Algorithm 3 FormHypercubes(Tuple set T)
Form bounding hypercube Cbound from T

H← {Cbound}
while H contains some impure hypercube C do

Calculate rC , the fraction of true tuples ∈ C
for all variables v in C do

Decompose C into C = (C1, . . . , Ck) byvalue of v (one hypercube per value)

Calculate (rC1 , . . . , rCk)

C+ ← merge all Ci ∈ C with rCi > rC

C− ← merge all Ci ∈ C with rCi ≤ rC

Calculate rC+

end for

Split C into (C+, C−) with highest rC+

Remove C from H; insert C+ and C−

end while

while H contains some mergeable pair (C1, C2) do

Replace C1 and C2 with merged hypercube Cnew

end while
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is. Instead of joining each possible pair of hypercubes, an index can be maintained which tells

which pairs will have a non-zero intersection.

Hypercube Project: The project operation now projects superfeature hypercubes onto the ar-

guments the superfeature shares with each of its predicates. Each supernode hypercube maintains

a separate set of counts. This presents a problem because different superfeatures may now project

onto hypercubes which are neither disjoint nor identical. Therefore, the hypercubes resulting from

the project operation have to be split into finer hypercubes such that each pair of resulting hyper-

cubes is either identical with each other or disjoint. This can be done by choosing each intersecting

(non-disjoint) pair of hypercubes in turn and splitting them into the intersection and the remaining

components. The process continues until each pair of hypercubes is disjoint.

Noise Tolerance

During the top-down construction of hypercubes, instead of refining the hypercubes until the end,

we stop the process on the way allowing for at most a certain maximum amount of noise in each

hypercube. The goal is to obtain the largest possible hypercubes while staying within the noise

tolerance threshold. Different measures of noise tolerance can be used. One such measure which

is simple to use and does well in practice is the number of tuples not sharing the majority truth

value in the hypercube. Depending on the application, other measures can be used.

This scheme allows for a more compact representation of supernodes and superfeatures, po-

tentially saving both memory and time. This approximation also allows the construction of larger

supernodes, by virtue of grouping together certain ground predicates which were earlier in differ-

ent supernodes. These gains come at the cost of some loss in accuracy due to the approximations

introduced by noise tolerance. However, in experiments on a variety of domains, it has been shown

that the loss in accuracy is offset by the gains in both time and memory [132].
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4.5.1 Error Bound for Noisy Hypercubes

The methods of [64] can be extended to bound the error introduced by noise-tolerant hypercube

formation, using logic similar to Theorem 5 (the error bound for early stopping).

Note that the noisy hypercube approximation is equivalent to flipping the values of certain

nodes: true evidence nodes may become false or unknown, or vice versa. For the flipped nodes,

the bound is vacuous: the error in the probability may be at most 1. However, we can bound

the change in probability on the remaining nodes in the network, by bounding the change in the

outgoing messages from the factors.

We can place an upper bound on the errors by assuming that the flipped nodes will maximally

alter the outgoing messages from the factors adjacent to them. Since each factor f corresponds

to some MLN formula with weight wf , f(x) for all states is between 1 and ewf . As a result, the

normalized outgoing messages µfx(a) to node x are between 1 and ewf for all a, both before and

after the introduction of noise. The dynamic range of the error function can be bounded as follows:

d(efx) ≤ max
(√

e2wf ,
√
e−2wf

)
Thus, Theorem 5 can be modified as follows for the noisy hypercube case:

Theorem 6. If ground BP converges, then for node x, the probability estimated by ground BP at

convergence (px) can be bounded as follows in terms of the probability p̂x estimated by lifted BP

after n BP steps with some set Xflipped of the nodes flipped to a different evidence value.

px ≥
1

(ζx,n)2[(1/p̂x)− 1] + 1
= lb(px)

px ≤
1

(1/ζx,n)2[(1/p̂x)− 1] + 1
= ub(px)

where log ζx,n =
∑

f∈nb(x) log νfx,n,

log νxf,i+1 =
∑

h∈nb(x)\{f}

log νhx,i
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For factors f adjacent to some node x ∈ Xflipped,

νfx,i = max
(√

e2wf ,
√
e−2wf

)
For all other factors f ,

log νfx,i = log
d(f)2εfx,i + 1

d(f)2 + εfx,i
and νfx,1 = d(f)2

log εfx,i =
∑

y∈nb(f)\{x}

log νyf,i

d(f) = sup
x,y

√
f(x)/f(y)

Note that (unlike the early stopping bound), calculating the error bound for noise-tolerant hy-

percube formation requires running a message-passing algorithm similar to BP on the exact lifted

network.

4.6 Conclusions

This chapter extended Ihler et al.’s [64] BP error bounds to arbitrary factor graphs, and used this

result to bound the effects of approximation on two lifted inference approaches. Singla et al. [132]

have previously shown that these approximate lifted BP approaches work well empirically; our

analysis provides them with a theoretical foundation as well.
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Chapter 5

EFFICIENT LIFTING FOR ONLINE PROBABILISTIC INFERENCE

5.1 Introduction

As discussed in section 2.3, lifted inference algorithms perform probabilistic inference more effi-

ciently by reasoning on a lifted model, i.e. a representation where sets of indistinguishable variables

are grouped together. Since the lifted representation can much smaller than the fully ground model,

lifted inference is potentially much more efficient than propositionalized inference. However, con-

structing the lifted model can itself be quite costly; sometimes more so than the actual probabilistic

inference. This is particularly problematic in online applications, where the lifted network must be

constructed for each new set of observations. This can be extremely wasteful, since the evidence

typically changes little from one set of observations to the next. The same is true in many other

problems that require repeated inference, such as utility maximization, MAP inference (finding the

most probable state of a subset of the variables while summing out others), interactive inference,

parameter and structure learning, etc.

In this chapter, we propose ∆LNC, an efficient algorithm for updating the structure of an exist-

ing lifted network with incremental changes to the evidence. This allows us to construct the lifted

network once for the initial inference problem, and amortize the cost over the subsequent prob-

lems. ∆LNC can also be used to efficiently update an approximate lifted network. Experiments

on video segmentation and viral marketing problems show that approximate ∆LNC provides great

speedups over both ground belief propagation and standard LNC, without significantly affecting

the quality of the solutions.
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5.2 Lifted Online Inference

Even with the benefit of the approximation methods described in the previous chapter, LNC can

be expensive. This is particularly problematic in applications involving several queries on a single

network, with different values for evidence variables. We refer to this setting as online inference.

Various algorithms exist for online inference and related problems on graphical models (e.g. [2,

34]), but to our knowledge, no algorithms exist for lifted online probabilistic inference.

In the online setting, it can be extremely wasteful to construct the lifted network from scratch

for each new set of observations. Particularly if the changes are small, the structure of the minimal

network may not change much from one set of observations to the next. To take advantage of this,

we propose an algorithm called ∆LNC. ∆LNC efficiently updates an existing lifted network, given

a set of changes to the values of evidence variables.

Given a set ∆ of changed atoms, ∆LNC works by retracing the steps these nodes would have

taken over the course of LNC. As the network is updated, we must also keep track of which other

atoms were indirectly affected by the changes, and retrace their paths as well. At the start of

∆LNC, each changed node x is placed in the initial supernode corresponding to its new value

(true, false, unknown), and removed from its previous starting supernode. The next step is to

update the superfeatures connected to the starting supernodes. The tuples containing x must be

removed from the superfeatures connected to x’s original starting supernode. These tuples are

then added to matching superfeatures connected to the newly assigned supernode, creating a new

superfeature if no match is found.

At the next step, we must also consider the nodes that would have received messages from the

factors that changed in the first iteration of BP. These nodes are added to ∆. Now, for each node

x ∈ ∆, we start by removing it from its level two supernode, and then locate a new supernode

to insert it into. This is done by calculating the number of tuple projections to x from each of

the superfeatures connected to its level one supernode. If the projection counts match any of the

children of x’s initial supernode, x is added to that child. If not, a new child supernode is created

for x.
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Figure 5.1: The first iteration of ∆LNC on an MLN with binary predicates S(x) and F (x), and

formula F (x, y) => (S(x) <=> S(y)). Trivially false superfeatures are omitted. In the above

example, all S(x) atoms are unknown, and two F (x, y) atoms are changing from false to true.

∆LNC thus closely mirrors standard LNC, alternately refining the supernodes and the super-

features. The only difference is that the finer supernodes and superfeatures do not need to be

constructed from scratch; only the changed tuples need to be moved. Let snk(x) be the supernode

containing node x at level k. Pseudocode for ∆LNC is given in Algorithm 4. (Like Algorithm 1,

this pseudocode assumes for clarity that each predicate occurs at most once in each clause.) See

Figure 5.1 for an example.

Note that the lifted network produced by running k iterations of ∆LNC is identical to that

produced by running standard LNC. The error bounds described in the previous chapter apply

to approximate ∆LNC as well. ∆LNC can also be run to convergence to update an exact lifted

network.

5.3 Experiments

We evaluated the performance of ∆LNC on two problems: video segmentation and viral marketing.

The experiments were run on 2.33 GHz processors with 2 GB of RAM. The purpose of the exper-

iment was to compare the speed and accuracy of ∆LNC to those of standard beliefpropagation.
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5.3.1 Video Segmentation

BP is commonly used to solve a variety of vision problems on still images, but it can be very

expensive to run BP on videos (e.g. [142]). ∆LNC can be used to make BP on videos much more

scalable. We illustrate this by running ∆LNC on a simple binary video segmentation problem.

Starting from a complete segmentation of the first frame into background and foreground, we wish

to segment the remaining frames. For each frame, pixels whose colors change by less than some

threshold keep their segmentation labels from the previous frame as biases for their new labels. We

then infer new segmentation labels for all pixels.

The model is defined by an MLN with predicates KnownLabel(x, l), where l ∈ {Background,
Foreground, Unknown}; PredictedLabel(x, l); Color-Difference(x, y, d). The formulas are:

KnownLabel(x, l) => PredictedLabel(x, l) (5.1)

ColorDifference(x, y, d) => (PredictedLabel(y, l) <=> PredictedLabel(x, l))

(5.2)

We also introduced deterministic constraints that KnownLabel(x, l) and PredictedLabel(x, l)

can only be true for a single l, and PredictedLabel(x, Unknown) must be false. In our experi-

ments, ColorDifference was calculated as the RGB Euclidean distance, and discretized into six

levels. KnownLabel(x, Unknown) was set to true if the difference from one frame to the next was

over 30.0. The weight of Formula 5.1 was 1.0, and the weight of Formula 5.2 varied inversely with

d, up to 2.0 for the smallest difference level.

We ran ∆LNC with four refinement levels (LBP-4), and compared it to ground belief propa-

gation (BP). 1000 steps of max-product BP were performed, to infer the globally most probable

labels. We predicted labels for 10 frames of two videos: a space shuttle takeoff [97], and a cricket

demonstration [48]. The first frames were segmented by hand. The results are in Table 5.1. Fig-

ure 5.2 shows the segmentations produced in the last frames. In both experiments, ∆LNC provided

dramatic speedups over full ground BP, and produced a similar (but not identical) segmentation.

On average, ∆LNC was about 28X faster than the initial LNC on the shuttle video, and 48X faster

on the cricket video.
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Table 5.1: Results of video stream experiments.

Shuttle takeoff BP LBP-4

Initial number of nodes 76800 2992

Initial number of factors 306080 13564

Initial LNC time (s) - 200.46

Average ∆LNC time (s) - 6.95

Average BP time (s) 394.46 30.91

Total time (s) 3900.92 558.3

Cricket BP LBP-4

Initial number of nodes 76800 4520

Initial number of factors 306080 19965

Initial LNC time (s) - 870.69

Average ∆LNC time (s) - 18.29

Average BP time (s) 398.55 78.99

Total time (s) 3976.40 1619.07

5.3.2 Viral Marketing

We also evaluated ∆LNC on the viral marketing MLDN described in section 3.7.1. We used a

greedy search strategy, changing the value of one action at a time and recalculating the marginals

using belief propagation. If the change does not prove to be beneficial, it is reversed.

On a lifted network, greedy search involves finding the optimal number of atoms to flip within

each MarketTo(x) supernode. In an exact lifted network, all atoms within each supernode would

be identical, and the choice of which specific atoms we flip is not relevant. This is not precisely

true for approximate lifted networks, but it is a useful approximation to make, since it reduces the

number of flips that need to be considered. To find the greedy optimum within a supernode, we

simply need to start with all its atoms set to true or all its atoms set to false, and flip one atom at
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(a) Last frame (b) BP labeling (c) LBP-4 labeling (d) Last frame (e) BP labeling (f) LBP-4 labeling

Figure 5.2: Output labelings for the final frames of both videos.

Table 5.2: Results of viral marketing experiment.

BP LBP-2 LBP-1

Initial number of nodes 75888 37380 891

Initial number of factors 508960 484895 201387

Initial LNC time (s) - 478.59 336.60

Average ∆LNC time (s) - 0.82 0.68

Average BP time (s) 20.79 20.09 13.41

Total flips 4038 4003 5863

Best utility found 102110 106965 137927

Improvement in utility 668 5523 36485

a time until we make a non-beneficial change (which we then reverse). The decision of whether to

start with all atoms set to true or false is also made greedily.

We compared three algorithms: fully ground belief propagation (BP), lifted BP with LNC

terminated after one refinement (LBP-1), and lifted BP with two refinements (LBP-2). Formula 3.2

had a weight of 0.6, and Formula 3.3 had a weight of 0.8. Buys(x) had a weight of −2 and a

utility of 20. MarketTo(x) had a utility of −1. BP was run for 25 iterations. The starting action

choice was to market to no one. The entire MEU inference was given 24 hours to complete, and

all algorithms reported the highest utility found within that time. The final solution quality was

evaluated with BP on the ground network, with 100 iterations.
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The results of the experiment are shown in Table 5.2. LBP-1 was the only one of the three

algorithms to converge to a local optimum within the time limit. ∆LNC achieved approximately

a 500X speedup over the initial LNC. ∆LNC also significantly lowers the BP running time, due

to the smaller factor graph. LBP yields a much higher utility improvement than ground BP in a

comparable number of flips, since each non-beneficial flip on a lifted network tells us that we need

not consider flipping other atoms in the same supernode. LBP-1 is competitive in performance

with the most directly comparable algorithm of Richardson and Domingos [117].

5.4 Conclusions & Future Work

In this chapter, we proposed ∆LNC, an algorithm for efficiently updating an exact or approximate

lifted network, given changes to the evidence. ∆LNC works by retracing the path the changed

atoms would have taken during LNC, modifying the network as necessary. Experiments on video

segmentation and viral marketing problems show that ∆LNC provides very large speedups over

standard LNC, making it applicable to a wider range of problems.

There are several directions for future work. ∆LNC can be applied to a variety of problems,

including learning and MAP inference. On video problems, it can be made even more scalable

by combining it with efficient BP algorithms designed specifically for vision (e.g. [46]). Using

BP for more complicated problems will also require more sophisticated models of inter-frame

dependencies (e.g. [65]). The ability to efficiently update a lifted network may also allow us to lift

other probabilistic inference algorithms besides BP.
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Algorithm 4 ∆LNC(changed nodes ∆, lifted networks (L1, . . . ,Lk))
for all nodes x ∈ ∆ do

Remove tuples containing x from sn1(x) and
superfeatures connected to it

Move x to Xnew ∈ L1 of appropriate value v

for all features t containing x do
if there exists superfeature F connected to Xnew

from the same clause as t, such that each atom in
t is in a supernode connected to F then
Insert t into F

else
Create new superfeature F , and insert t

end if
end for

end for
for all 2 ≤ i ≤ k do

Insert
⋃

x∈∆ nb(nb(x)) into ∆

for all nodes x ∈ ∆ do
Remove tuples containing x from superfeatures

connected to sni(x)

if sni−1(x) has child X in Li with projection counts
n(X,F ) = n(x, F ) for all F ∈ nb(X) then
Move x from the previous sni(x) to X

else
Move x to a newly created child of sni−1(x)

end if
for all features t containing x do

if there exists superfeature F connected to the new
sni(x) from the same clause as t, such that each
atom in t is in a supernode connected to F then
Insert t into F

else
Create new superfeature F , and insert t

end if
end for

end for
end for
return updated (L1, . . . ,Lk)
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Chapter 6

LEARNING MULTIPLE HIERARCHICAL CLUSTERINGS

6.1 Introduction

In recent years, relational clustering has been successfully used to learn simple models of complex

domains, both for human interpretability and to make predictions about unobserved relations. Most

existing approaches to relational clustering learn flat clusterings, grouping together similar objects

in a relational database. However, in complex relational domains, a flat clustering is often an

excessively simplistic model of the data. Different properties of the same objects may be best

explained by different partitions of the objects. Some attributes and relations may be best modeled

with a coarser or finer clustering than others. Multiple clustering and hierarchical clustering have

been previously studied in isolation, by Kok and Domingos [77] and Roy et al. [122] respectively.

In this chapter, we present the first unified model for multiple hierarchical relational clusterings.

Each atom in the database is predicted by the hierarchical clustering that best explains it. Within

each clustering, each prediction takes into account information at multiple levels of the hierarchy,

using shrinkage to learn more robust parameters.

This line of work was inspired by Kemp et al.’s [70] Infinite Relational Model (IRM), which

jointly clusters objects and predicates in a relational database. Given the cluster assignments, the

truth value of an atom can be predicted from the cluster combination the atom belongs to (i.e., the

vector of cluster assignments of the predicate and objects associated with the atom).

Building on this idea, Kok and Domingos’ [77] Multiple Relational Clustering (MRC) learned

several cross-cutting clusterings of a domain, rather than trying to explain a database from a single

clustering. The rationale is that different clusterings may be better for predicting different subsets

of the atoms; it may not be possible to learn a single clustering that satisfactorily explains the

entire database. Kok and Domingos empirically demonstrated that learning multiple clusterings
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can greatly improve prediction quality.

One limitation of IRM and MRC is that both models learn flat clusterings rather than hierarchi-

cal models. Hierarchical models can be useful both for human interpretability and for improving

predictive performance. Roy et al. [122] proposed a generative model for annotated hierarchies of

relational data, where objects are hierarchically clustered into a single tree, and each predicate is

associated with the tree-consistent partition of objects that best explains it. We refer to their system

as the Annotated Hierarchy Model (AHM). The motivation for this system was twofold: (i) to learn

compact, interpretable structures suitable for data analysis, and (ii) to provide a model of human

learning. However, its capabilities as a predictive model were not investigated.

The rest of this chapter is organized as follows. In section 6.2, we describe a unified model

for multiple hierarchical relational clustering. In section 6.3, we describe an efficient algorithm

for learning the weights and structure of the model. Section 6.4 describes a preliminary empirical

evaluation of the single-hierarchy version of the algorithm. Finally, section 6.5 lists directions for

future work.

6.2 Model

We start with a standard Naive Bayes mixture model, and then describe a series of extensions

capturing relational, hierarchical and multiple clustering models.

6.2.1 Naive Bayes Mixture Model

A Naive Bayes mixture model assumes that an object’s attributes (X1, . . . , Xa) are independent

given the object’s class, C. The joint probability is simply:

P (C,X1, . . . , Xa) = P (C)
a∏
i=1

P (Xi|C) (6.1)

6.2.2 Hierarchical Clustering Model

Hierachical models allow more robust predictions through the use of shrinkage [92], a statistical

technique that smoothes parameter estimates of data-sparse feature towards their more data-rich
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ancestors in the hierarchy.

We define (D(1), . . . ,D(h)), where D(i) is the set of cluster symbols {c(i)
1 , . . . , c

(i)
k } in the ith

level of the hierarchy. Each cluster c(i)
j with 1 ≤ i < h has a parent cluster ρ(c

(i)
j ) in layer D(i+1).

The model contains one cluster assignment variable C(i) for each level i in the hierarchy. D(i)

is the set of possible values for C(i). If C(i) = c, then C(i+1) = ρ(c); this ensures that the cluster

assignments are consistent with the hierarchy structure.

The cluster assignments are generated top-down; C(h) is generated from a multinomial distri-

bution over the symbols in D(h). For the finer layers, cluster memberships are generated from a

multinomial distribution over a set of siblings, i.e. clusters that share the same parent. P (c) is the

multinomial parameter corresponding to cluster c.

The attributes are generated conditioned on the vector of cluster assignments for the object. The

distribution for each attribute is a log-linear model, with one feature for each level in the hierarchy:

P (Xj|C(1), . . . , C(h)) =
1

1 + exp
(
−∑h

i=1 w
(j)

C(i)

)
The full joint probability distribution is:

P (C,X) =
h∏
i=1

P (C(i))

∏
Xj∈X+

1

1 + exp
(
−∑h

i=1w
(j)

C(i)

)
∏

Xj∈X−

1

1 + exp
(∑h

i=1w
(j)

C(i)

)
(6.2)

Where C = (C(1), . . . , C(h)); X = (X1, . . . , Xa); X+ and X− are respectively the sets of true and

false attributes in X.

6.2.3 Relational Clustering Model

Relational models such as the stochastic blockmodel [61, 104] jointly cluster a set of object and

predicate symbols {o1, . . . , on} based on their relations. The traditional blockmodel formulation
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draws the cluster memberships from a multinomial distribution with a fixed number of compo-

nents, k. Let {c1, . . . , ck} be the cluster symbols. Let C = (C1, . . . , Cn) be the vector of cluster

membership variables for the n object and predicate symbols (i.e., Ci = cj means that item oi is

assigned to cluster cj). The probability of cluster assignment C is:

P (C) =
n∏
i=1

P (Ci) =
k∏
j=1

P (ck)
|ck|

(Here, P (ck) is the probability of component ck in the multinomial, and |ck| is the number of items

assigned to component ck.)

Each atom is then generated conditioned on the vector of cluster assignments of the items in

the relation:

X = or(o1, . . . , op) ∼ Bernoulli(η(Cr, C1, . . . , Cp))

We refer to a vector of cluster assignments as a cluster combination. Let MX be the cluster combi-

nation that explains atomX as described above, and let ηMX
be the parameter of the corresponding

Bernoulli distribution. X is the set of atoms in the domain; X+ and X− are respectively the sets of

true and false atoms in X. The full joint probability distribution is:

P (C,X) =
k∏
j=1

P (ck)
|ck|

∏
X∈X+

ηMX

∏
X∈X−

(1− ηMX
) (6.3)

Note that the number of components need not be fixed in advance; IRM generates the clusters

using a Chinese Restaurant Process [110], allowing the data to dictate the number of components.

6.2.4 Hierarchical Relational Clustering Model

In this section, we describe a hierarchical relational clustering model that generalizes stochastic

blockmodels much like the model in section 6.2.2 extends Naive Bayes mixture models. The

hierarchical model contains a vector of cluster assignments for each level i in the hierarchy: C(i) =

(C
(i)
1 , . . . , C

(i)
n ). The full hierarchical clustering is defined by the matrix C = (C(1), . . . ,C(h)),

each row of which captures the cluster assignments in one level of the hierarchy.
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As in section 6.2.2, each cluster c(i)
j has a parent in the layer above, and each cluster member-

ship is generated from a multinomial distribution over a set of siblings.

As in section 6.2.3, the atoms are generated conditioned on the cluster memberships of their

predicate and object symbols. For each atom X = or(o1, . . . , op), let cluster combination M (i)
X =

(C
(i)
r , C

(i)
1 , . . . , C

(i)
p ) be the vector of cluster assignments of the symbols in X , in level i of the

hierarchy. X is generated from a log-linear model with one feature for each cluster combination

that explains it:

P (X|C) =
1

1 + exp
(
−∑h

i=1wM(i)
X

)
wM is the weight of the feature corresponding to cluster combination M . The model can be

straightforwardly extended to include cross-level features, but we assume in this work that all

clusters in a cluster combination come from the same level in the hierarchy.

The full joint probability distribution is:

P (C,X) =

 h∏
i=1

∏
ck∈D(i)

P (ck)
|ck|


∏

X∈X+

1

1 + exp
(
−∑h

i=1wM(i)
X

)
∏

X∈X−

1

1 + exp
(∑h

i=1wM(i)
X

)
(6.4)

There are several differences between our hierarchical model (HRC) and Roy et al.’s [122] AHM.

Their system does not incorporate any form of predicate clustering, which is important in domains

with a large number of predicates. AHM learns the single tree-consistent partition of objects that

best explains each predicate, while our model makes the prediction jointly over the entire hier-

archy. A form of shrinkage can be achieved within the AHM framework, by marginalizing over

tree-consistent partitions. However, HRC achieves shrinkage even when we just use the MAP

hypothesis, which is advantageous both for computational reasons and for human interpretability.

Another difference is that HRC allows a node to have an arbitrary number of children, allowing us

to represent more compact, interpretable trees (sometimes referred to as rose trees [13]).
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6.2.5 Multiple Hierarchical Relational Clustering Model

There are two alternative approaches to unifying hierarchical clustering with multiple clustering:

the model could consist of multiple hierarchical clusterings, or a hierarchy of multiple-clustering

models. The model we describe in this section takes the former approach.

A hierarchical clustering C(·,j) = (C(1,j), . . .C(hj ,j)) is a matrix of cluster assignment variables

(as in section 6.2.4). C(i,j) = (C
(i,j)
1 , . . . , C

(i,j)
n ) represents the cluster assignments of the n items

in level i of the jth hierarchical clustering. hj is the number of levels in the jth clustering. The

complete set of cluster assignments in the model is defined by the 3-dimensional tensor C =

{C(·,1), . . . ,C(·,m)}, which represents m hierarchical clusterings.

To allow different clusterings to model different subsets of the objects and predicates, the model

contains a matrix of indicator variables O; when O(·,j)
i = 1, we say that clustering j contains item

oi. For notational convenience, we also define N (·,j)
X ; this indicator variable has a value of 1 iff

O
(·,j)
i = 1 for all of X’s arguments oi. When this is the case, we say that clustering j contains atom

X .

The cluster memberships in hierarchical clusterings are generated from multinomials, as in

sections 6.2.2 and 6.2.4. As in the previous section, the atoms are generated conditioned on the

cluster assignments using a log-linear model with one feature per cluster combination. The only

difference is that we now need to include features from all of the hierarchical clusterings that

contain each atom:

P (C,X) =

 m∏
j=1

hj∏
i=1

∏
ck∈D(i,j)

P (ck)
|ck|


∏

X∈X+

1

1 + exp
(
−∑m

j=1N
(·,j)
X

∑hj
i=1 wM(i,j)

X

)
∏

X∈X−

1

1 + exp
(∑m

j=1N
(·,j)
X

∑hj
i=1 wM(i,j)

X

)
(6.5)

Here, D(i,j) is the set of cluster symbols in level i of clustering j. Cluster combination M (i,j)
X is the

vector of cluster assignments of the arguments of atom X in level i of clustering j.
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6.3 Learning

Given this model and an evidence database, the learning problem is to find the MAP (maximum a

posteriori) cluster assignment and the optimal parameter values. The resulting model can be used

directly to predict missing data, or it may be used as input for subsequent processing, for instance

using coarse-to-fine algorithms [73].

The MAP inference problem has two subtasks, each of which introduces some new challenges

in our setting: weight learning (learning optimal values of the parameters, given a candidate

structure) and structure search (finding the highest-scoring cluster assignment tensor, C). We

describe our approach to each of these problems below.

6.3.1 Weight Learning

Let us first assume that cluster assignments are known. The learning problem then reduces to

finding the optimal parameters for the model, i.e., the cluster weights (P (c)) and the weights of

the predictive features (w(i,j)
MX

). The P (c)’s are simply multinomial parameters, and can be trivially

computed in closed form.

Computing the atom prediction weights is more challenging. In other relational clustering

models such as IRM, MRC and AHM, each atom is predicted by a single cluster combination,

making the weight-learning problem trivial. For instance, in MRC (a special case of our model),

the weight of a cluster combination is simply the log-odds of a random atom being true. In our

setting, however, a single atom may be influenced by features at multiple levels in the hierarchy.

A further complication is that we regularize the predictive weights to prevent overfitting; we

use both `0 and `1 penalties. The `0 term is simply a penalty in log-space for each non-zero predic-

tive feature we introduce; this has the effect of discouraging unnecessarily fine-grained predictive

features. The `1 term penalizes the sum of the absolute values of the weights. Weight learning for

log-linear models with `1 regularization typically requires the use of iterative optimization algo-

rithms (e.g. [6]). Since the weights need to be relearned for each structure evaluated during the

search, these algorithms may be prohibitively expensive.
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Instead of running a full `1 optimizer at each step of the search, we learn the weights approx-

imately, in a coarse-to-fine manner that takes advantage of the hierarchical structure. This can be

done if each atom is explained by exactly one hierarchical clustering (as is the case for the search

algorithm discussed in the next section). Note that each cluster combinationM on level i is a subset

of some cluster combination M ′ = ρ(M) on level i+ 1; we refer to the latter as the parent cluster

combination. Notice that if M = (c1, . . . , cp), then ρ(M) = (ρ(c1), . . . , ρ(cp)). We compute the

weights one level at a time, starting at the coarsest level of the hierarchy. The model learned at

each level is a refinement of the level above, adding new, more specific features if the improvement

to likelihood outweighs the cost incurred by the `0 and `1 penalties.

Consider a cluster combination M , containing true atoms X+
M and false atoms X−M . When we

compute wM , we have already computed the weights of M ’s ancestors in the hierarchy (i.e., the

cluster combinations of which M is a subset). Let sM be the sum of the weights of M ’s ancestors.

At this point, all atoms in M occur in the same set of non-zero features (i.e., M and its ancestors);

this may change as we learn the weights of finer features in the lower levels of the tree. At this

stage of the computation, the likelihood of the atoms in M can be written as follows:

LM =

(
1

1 + e−(sM+wM )

)|X+
M |( 1

1 + e(sM+wM )

)|X−M |
sM is fixed, having been previously computed. The goal is to learn the optimal value of wM :

w∗M = arg max
wM

logLM − α01{wM 6= 0} − α1 |wM |

α0 and α1 are respectively the `0 and `1 penalty parameters. We also add smoothing parameters β+

and β− to the true and false atom counts; we omit them from the above equations for simplicity.

The above computation can be done in closed form, despite the discontinuity introduced by

the `1 term. The expression (sM + wM) can be interpreted as a ‘smoothed’ value for M ’s feature,

shrunk towards a coarser feature in the hierarchy. Note that without the regularization terms, the

optimal value of wM would simply be (log (t/f )− sM), effectively ignoring the coarser features

and learning a flat model. The higher we set the regularization terms, the less M changes the

predictions of its ancestors.
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6.3.2 Structure Search

The search for the optimal cluster assignments proceeds in two stages. First, we search for the best

flat multiple clustering. This initial clustering can be done with any multiple clustering algorithm;

MRC is a natural choice, since its model is a special case of ours. Like MRC, we require for

tractability that each atom occur in exactly one clustering (though objects may still occur in mul-

tiple clusterings). This partitions the database into several smaller databases, each of which poses

a separate hierarchical clustering problem. Algorithm 5 provides an overview of this procedure.

MULTICLUSTER(X,ml) may be any search algorithm that returns a set of non-overlapping flat

clusterings; we refer the reader to Kok and Domingos [77] for an example of how this can be done.

The novel part of the algorithm is HIERARCHICALCLUSTER(X,ml), which replaces each of the

flat clusterings with a hierarchical clustering. We devote the rest of this section to the discussion

of this subroutine.

We construct the hierarchy layer by layer, starting with each object and predicate in a singleton

cluster, and building progressively coarser clusters one level at a time. This allows us to treat the

hierarchical clustering problem as a series of flat clustering problems, where the individual items

being clustered at each layer are the clusters from the level below.

Algorithm 6 describes this procedure in more detail. FLATCLUSTER(C(i)) is a subroutine that

takes a set of clusters as input and partitions them, returning a coarser set of clusters. We can

use any clustering procedure that exactly or approximately optimizes the posterior probability. In

our experiments, we use a simple greedy search that individually moves each item to the best

cluster, iterating until convergence. Items can also be moved to newly created singleton clusters.

(The `0 penalty described in the previous section discourages the creation of new clusters.) It is

straightforward to incorporate other search operations, such as greedy merges and splits, random

moves, etc. We also restrict the algorithm to only merge predicate symbols with other predicates

of the same arity.

The coarse-to-fine weight learning scheme in section 6.3.1 runs in time linear in the number

of features. However, since we have one feature per cluster combination, this can still be too
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Algorithm 5 MHRC-LEARN(X, ml)
input: X, a relational database

ml, max number of levels in the hierarchy

output: C, a multiple hierarchical clustering

C← ∅
D←MULTICLUSTER(X)

for all flat clusterings D(·,j) ∈ D do

XDj ← atoms contained by D(·,j)

C(·,j) ←HIERARCHICALCLUSTER(D(1,j),ml)

end for

return C

expensive to run at each step of the search. The weight learning can be further sped up by only

updating the weights significantly affected by the change in structure. With the search procedure

described in Algorithm 6, the only features affected by a change are the descendents of the altered

top-level cluster combinations. Furthermore, we only update the immediate descendents of the

altered features. This is an approximation; in principle, the weights of the entire subtree could

be affected. In practice, however, the weights of non-immediate descendents are not significantly

affected by changes in the top-level structure.

For example, consider a top-level cluster combination M0, its child M1, and M1’s child M2. If

one of M0’s clusters is altered, then M0’s true and false atom counts may change, necessitating an

update for M0’s weight, w0. This changes s1, the sum of the weights of M1’s ancestors (s1 = w0).

We update w1 accordingly.

Now, note that s2 = w0 + w1 = s1 + w1. Recall that s1 + w1 is a smoothed version of M1’s

parameter. M1’s counts are not affected by the changes to M0; the feature explains the same set of

atoms before and after the change. Therefore, unless the regularization parameters are extremely

large, changes to M0 will not cause big changes to s2 = w1 + s1. Consequently, w2 is relatively

unaffected.
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Algorithm 6 HIERARCHICALCLUSTER(X, ml)
input: X, a relational database

ml, max number of levels in the hierarchy

output: C, a hierarchical clustering

for all object and predicate symbols ok in X do

Ck ← {ok}
end for

curLevel← (C1, . . . , Cn)

for i← 1 to ml do

topLevel ← FLATCLUSTER(curLevel)

if topLevel is identical to curLevel then

break

end if

C(i) ← topLevel

curLevel ← topLevel

end for

return (C(1), . . . ,C(h))

6.4 Experiments

Note that HIERARCHICALCLUSTERING(X,ml) can be run as a standalone algorithm on the full

database, optimizing the model in section 6.2.4. For our initial experiments, we implemented this

version of the algorithm, learning a single hierarchy. We compared two versions of the algorithm:

HRC1, which constructs a single level clustering (ml = 1); HRC10 learns a hierarchy with up to

10 levels (ml = 10). We evaluated these algorithms on the Animals (ANML), Nations (NATS),

Kinship (KINS) and UMLS datasets from Kemp et al. [70]. Table 6.1 describes the size and com-

position of these domains. We performed 10-fold cross validation, and evaluated the algorithms in

a transductive setting: the test atoms were set to ‘unknown’, and their values were predicted from
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AUC CLL AUC CLL AUC CLL AUC CLL

Anml 50 85 0 4250 1562 0.81 -0.46 0.80 -0.49 0.79 -0.43 0.80 -0.43

Nats 14 111 56 12,530 2565 0.68 -0.41 0.69 -0.43 0.75 -0.31 0.75 -0.31

Kins 104 0 26 281,216 10,686 0.74 -0.06 0.75 -0.06 0.68 -0.06 0.85 -0.05

Umls 135 0 46 838,350 6529 0.70 -0.014 0.70 -0.014 0.80 -0.011 0.97 -0.004

Table 6.1: Experiments.

the known atoms.

We used two evaluation criteria: AUC (area under the precision-recall curve of the query atoms)

and CLL (average conditional log-likelihood of query atoms).

We compared our algorithm to IRM and MRC. IRM and MRC’s results are taken directly from

Kok and Domingos [77]. For HRC, we use α0 = 0.01. α1 = 0.1 on ANIMALS, and 0.01 on the

other domains. We set β+ + β− = 0.1, with the ratio between them reflecting the ratio of true to

false evidence atoms for the corresponding predicate (this smoothing scheme is similar to the one

used by Kok and Domingos [78]).

Despite the simpler search strategy we use, even the flat version of HRC is generally compet-

itive with IRM’s more sophisticated search. Learning multiple levels does not prove to be useful

on the propositional ANML domain, but slightly improves AUC on the three relational domains (at

the cost of a slightly lower CLL on NATS). Although the improvements are small, the difference in

AUC and CLL is statistically significant on KINS and UMLS, the two largest domains (as measured

by a sign test with p = 0.05). We suspect that the hierarchy will provide greater benefit on larger,

more complex domains with more missing data. MRC proves to be the most successful system

overall, suggesting that the full multiple clustering version of the algorithm may perform better

than using a single hierarchy.



64

6.5 Conclusions & Future Work

In this chapter, we described a unified model for relational clustering, incorporating both hierar-

chies and multiple clustering, and we proposed an efficient learning algorithm for the model. The

empirical usefulness of multiple clusterings has been previously demonstrated by Kok and Domin-

gos [77]; in this work, we performed a preliminary evaluation of hierarchical relational clustering.

Our initial experiments show that our approach is competitive with other relational clustering al-

gorithms; however, more experiments are needed on larger, more complex domains.

The most immediate direction for future work is to evaluate the full version of the algorithm,

learning multiple hierarchical clusterings. A further direction is to apply hierarchical relational

clustering to learn the structure of Tractable Markov Logic Networks (TML) [42].

One key limitation of both MHRC and TML is their inability to generalize across different

mega-examples, involving different sets of objects. The following chapter describes a new repre-

sentation that retains much of the richness of MHRC, while allowing generalization over mega-

examples.
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Chapter 7

LEARNING RELATIONAL SUM-PRODUCT NETWORKS

7.1 Introduction

Graphical probabilistic models compactly represent a joint probability distribution among a set of

variables. Unfortunately, inference in graphical models is intractable. In practice, using graphical

models for most real-world applications requires either using approximate algorithms, or restricting

oneself to a subset of graphical models on which inference is tractable. A common restriction that

ensures tractability is to use models with low treewidth [9, 20]. However, as seen in section 2.2.2,

not all tractable models have low treewidth. Sum-Product Networks [113] and similar representa-

tions compactly capture some high-treewidth distributions, while still guaranteeing efficient exact

inference.

Besides intractability, one other key shortcoming of most widely used graphical models is

their reliance on the i.i.d. assumption. In many real-world applications, instances are not truly

independent, and can be better modeled if their interactions are taken into account. This is one

of the key insights of the Statistical Relational Learning (SRL) community [52]. SRL techniques

have been applied to a wide variety of tasks, including collective classification, link prediction,

natural language processing, etc. However, most SRL methods build on graphical models (e.g.

Markov logic [118]), and suffer from the same computational difficulties; these are compounded

by the additional problem of modeling interactions between instances.

In this chapter, our goal is to combine these two lines of research: tractable probabilistic models

and relational learning. One line of related work uses Naı̈ve Bayes models in structured domains

([47]; [83]; [28]). Although tractable, Naı̈ve Bayes models are quite limited in expressiveness.

PRISM is a probabilistic logic that supports efficient inference, but only under a very restrictive

set of assumptions [126]. PSL [17] supports efficient inference, but uses fuzzy logic-based seman-



66

tics instead of standard probabilistic semantics. TML [42] is a subset of Markov logic on which

efficient inference can be guaranteed. TML is surprisingly expressive, subsuming most previous

tractable models. However, a TML knowledge base determines the set of possible objects in the

domain, and the relational structure among them. This limits the applicability of TML to learning;

a TML knowledge base cannot be learned on one set of objects and applied to another mega-

example with different size or structure. The newer TPKB language [143] suffers from the same

limitation, as does the MHRC model described in chapter 6.

To address this, we propose Relational Sum-Product Networks (RSPNs), a new tractable rela-

tional probabilistic architecture. RSPNs generalize SPNs by modeling a set of instances jointly,

allowing them to influence each other’s probability distributions, as well as modeling the prob-

abilities of relations between objects. An RSPN can be trained on a set of mega-examples, and

applied to a previously unseen mega-example with different structure (given a part decomposition

as input). We also introduce LearnRSPN, the first algorithm for learning tractable statistical rela-

tional models. Intractable inference has historically been a major obstacle to the wider adoption of

statistical relational methods; the development of learning and inference algorithms for tractable

relational models could go a long way towards making SRL more widely applicable.

7.2 Relational Sum-Product Networks

7.2.1 Exchangeable Distribution Templates

Before we define RSPNs, we first define the notion of an Exchangeable Distribution Template

(EDT).

Definition 3. Consider a finite set of variables {X1, . . . , Xn} with joint probability distribution P .

Let S(n) be the set of all permutations on {1, . . . , n}. {X1, . . . , Xn} is a finite exchangeable set

with respect to P if and only if P (X1, . . . , Xn) = P (Xπ(1), . . . , Xπ(n)) for all π ∈ S(n). [38].

Note that finite exchangeability does not require independence: a set of variables can be exch-

angeable despite having strong dependencies. (For example, consider binary variablesX1, . . . , Xn,

with a uniform distribution over value assignments with an even number of non-zero variables.)
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Definition 4. An Exchangeable Distribution Template (EDT) is a function that takes a set of vari-

ables {X1, . . . , Xn} as input (n is unknown a priori), and returns a joint probability distribution P

with respect to which {X1, . . . , Xn} is exchangeable. We refer to the probability distribution P

returned by the EDT for a given set of variables as an instantiation of that EDT.

Example 1. The simplest family of EDTs simply returns a product of identical univariate distribu-

tions over each of X1, . . . , Xn. For example, if the variables are binary, then an EDT might model

them as a product of Bernoulli distributions with some probability p.

Example 2. Consider an EDT over a set of binary variablesX1, . . . , Xn (with n unknown a priori),

returning the following distribution: P (X1, . . . , Xn) ∝ λk

k!
e−λ, where k =

∑
Xi

1[Xi]. λ is a

parameter of the EDT. This is an EDT with a Poisson distribution over the number of variables in

the set with value 1. (The probabilities must be renormalized, since the set of variables is finite.)

Note that this EDT does not assume independence among variables.

Intuitively, EDTs can be thought of as probability distributions that depend only on aggregate

statistics, and not on the values of individual variables in the set.

Relational Sum-Product Networks (RSPNs) jointly model the attributes and relations among a

set of objects. RSPNs inherit TML’s notion of parts and classes. As in TML, each part of a class

also belongs to some class. Unlike TML, an RSPN class’s parts may be unique or exchangeable.

An object’s unique parts are those that play a special role, e.g. the commander of a platoon, the

queen of a bee colony, or the hub of a social network. The exchangeable parts are those that behave

interchangeably: soldiers in a platoon, worker bees in a colony, spokes in a network, and so on.

Definition 5. A definition for class C in an RSPN consists of:

• A set of attributes: unary predicates A applicable to individuals of C.

• A vector UC = (P1, . . . , Pn) specifying the classes of unique parts.

• A vector EC = (P1, . . . , Pn) of classes of exchangeable parts
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• A set of relations between parts: predicates of the form R1(P1, P2) or R2(C,P1), where P1

and P2 are either unique or exchangeable part classes of C. Predicates may be of any arity.

• A class SPN whose leaves fall into three categories:

– L
(C)
A is a univariate distribution over attribute A of C;

– L
(C)
R is an EDT over binary (or higher-order) predicate R involving C and/or its part

types (e.g. formulas of the form R1(P1, P2) or R2(C,P1), where P1 and P2 are part

classes of C);

– L
(C)
P is a sub-SPN for part class P (i.e. a valid class SPN for class P ).

All attributes, relations and parts of class C must be included in the class SPN. The class

SPNs can have arbitrary internal structure.

Each Pk in UC and EC is an RSPN class. In principle, a class may occur multiple times in each

part vector. In this case, each part may be uniquely identified by its index in the corresponding

vector. However, to simplify this discussion, we assume that each class occurs at most once in

(UC , EC).

Example 3. The following is a partial class specification for a simple political domain. A ‘Region’

consists of an arbitrary number of nations, and relationships between nations are modeled at this

level. A ‘Nation’ has a unique government and an arbitrary number of people. National properties

such as ‘High GDP’ are modeled here. The ‘Supports’ relation can capture a distribution over the

number of people in the nation who support the government.

c l a s s Region :

e x c h a n g e a b l e p a r t N a t i on

r e l a t i o n A d j a c e n t ( Nat ion , Na t i o n )

r e l a t i o n C o n f l i c t ( Nat ion , Na t i o n )

c l a s s N a t io n :
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Figure 7.1: Partial SPN for the ‘Nation’ class (example 3). The sum node at the root represents a

mixture model over two possible SPNs for ‘Nation’: one with high GDP (left), and the other with

low GDP (right; omitted). The ‘Supports’ predicate is modeled by an EDT of the form described

in example 1.
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un iq ue p a r t Government

e x c h a n g e a b l e p a r t P e r son

a t t r i b u t e HighGDP

r e l a t i o n S u p p o r t s ( Person , Government )

See fig. 7.1 for an example class SPN.

7.2.2 Grounding an RSPN

Like MLNs, RSPNs are templates for propositional models. To generate a ground SPN from an

RSPN, we take as input a part decomposition:

Definition 6. For RSPN class C, a C-rooted part decomposition consists of:

• An object O of class C (‘root’);

• Exactly one P -rooted part decomposition for each unique part class P in UC (‘unique child’);

• A (possibly empty) set of P -rooted decompositions for each exchangeable part P in EC

(‘exchangeable children’).

The decomposition must be acyclic, i.e. an object may not be its own child or descendant. (This

ensures that the ground SPN is acyclic even when the RSPN class structure contains cycles.)

To ground a class SPN is to instantiate the template for a specific set of objects. Given a class

C and a part decomposition D rooted at object O, grounding C’s SPN yields a propositional SPN

whose leaf distributions are over attributes and relations involving the objects in D. This is done

recursively as follows:

• For leaves of the form L
(C)
A : replace the univariate distribution over predicate A in the class

SPN with a univariate distribution over A(O) in the ground SPN.

• For leaves of the form L
(C)
R : replace the EDT over R(X, Y ) in the class SPN with an instan-

tiation of that EDT over the groundings of R.
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Figure 7.2: Example grounding of the ‘Nation’ class, with SPN from fig. 7.1.



72

• For leaves of the form L
(C)
P : recursively ground P ’s class SPN over each type-P child of

object O. Replace the leaf with a product over the resulting ground SPNs.

Note that each attribute/relation/part may correspond to more than one leaf in the SPN (in different

children of a sum node), potentially modeled by a different univariate distribution/EDT/class SPN.

See fig. 7.2 for an example ground SPN.

7.2.3 Representational Power

The main limitation of the RSPN representation is that individual relational atoms are not modeled

directly, but through aggregations. In this respect, it is similar to Probabilistic Relational Models

(PRMs; [49])—though RSPNs guarantee tractable inference, unlike PRMs. Aggregations are ex-

tremely useful for capturing relational dependencies [98]. For example, a person’s smoking habits

may depend on the number of friends she has who smoke, and not the smoking habits of each

individual friend. Nevertheless, aggregations are not well-suited to capturing relational patterns

that depend on specific paths of influence, such as Ising models.

It is important to note than RSPNs (and SPNs) are not simply tree-structured graphical models.

The graph of an RSPN is not a conditional dependency graph, but a graphical representation of

the computation of the partition function. A ground RSPN can be converted into an equivalent

graphical model, but the resulting model may be high-treewidth, and computationally intractable

as such.

In effect, RSPNs are a way to compactly represent context-specific independences in relational

domains: different children of a sum node may have different variable decompositions in their

product nodes. These context-specific independences are what give RSPNs more expressiveness

than low-treewidth tractable models.

7.3 Learning RSPNs

The learning task for RSPNs is to determine the structure and parameters of all the class SPNs in

the domain. In this work, we assume that the part relationships among classes are known, i.e. the
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user determines what types of unique and exchangeable parts are allowed for each class. The input

for the learning algorithm is a set of part decompositions, and an evidence database specifying the

values of the attributes and relations among the objects in those decompositions.

Our learning algorithm is based on the top-down LearnSPN algorithm [51]. LearnSPN(T, V )

is a propositional SPN learning algorithm, and takes as input a set of training instances T and

variables V . The algorithm attempts to decompose V into independent subsets V1, . . . , Vk (using

pairwise statistical independence tests); if such a decomposition exists, LearnSPN recurses over

each set (calling LearnSPN(T, V1),. . .,LearnSPN(T, Vk)), and returns a product node over the re-

cursively learned sub-SPNs. If V does not decompose, LearnSPN instead clusters the instances

T , recursively learns a sub-SPN over each subset T1, . . . , Tk, and returns a sum-node over the sub-

SPNs, weighted by the mixture proportions. Under certain assumptions, LearnSPN can be seen as

a greedy search maximizing the likelihood of the learned SPN.

Given an RSPN class C, LearnSPN could be used directly to learn an SPN over C’s attributes.

However, C’s exchangeable parts pose a problem for LearnSPN: the number of leaf variables in

the ground SPN can differ from one training instance to another, and between training instances

and test instances. To address this, we propose the LearnRSPN algorithm (Alg. 7), a relational

extension of LearnSPN. (For the purpose of this discussion, parts are assumed to be exchange-

able; attributes of unique parts can be handled the same way as attributes of the parent part, and

represented as separate leaves in the class SPN.)

LearnRSPN is a top-down algorithm similar to LearnSPN; it attempts to find independent sub-

sets from among the object’s set of attributes, relations and parts; if multiple subsets exist, the

algorithm learns a sub-SPN over each subset, and returns a product over the sub-SPNs. If inde-

pendent subsets cannot be found, LearnRSPN instead clusters the instances, returning a sum node

over the components, weighted by the mixture proportions.

LearnRSPN exploits the fact that predicates involving exchangeable parts are grounded into

finite sets of exchangeable variables. Instead of treating each ground atom as a separate leaf in the

SPN, LearnRSPN summarizes a set of exchangeable variables with an aggregate statistic (in our

experiments, we used the fraction of true variables in the set, though other statistics can be used).
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Algorithm 7 LearnRSPN(C, T , V )
input: C, a class

T , a set of instances of C

V , a set of attributes, relation aggregates, and parts

output: an RSPN for class C

if |V | = 1 then

if v ∈ V is an attribute then

return univariate estimated from v’s values in T

else if v is a relation aggregate then

return EDT estimated from v’s values in T

else

Cchild ← class of v //v is a part

Tchild ← parts of t ∈ T of type Cchild

Vchild ← attributes, relations and parts of Cchild

return LearnRSPN(Cchild, Tchild, Vchild)

end if

else

partition V into approximately independent subsets Vj

if success then

return
∏

j LearnRSPN(C, T, Vj)

else

partition T into sets of similar subsets Ti

return
∑

i
|Ti|
|T | .LearnRSPN(C, Ti, V )

end if

end if
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This summary statistic is treated as a single variable in the decomposition stage of RSPN. Thus,

attributes that are highly predictive of the statistics of the groundings of a relation will be grouped

with that relation. Parts are similarly summarized by the statistics of their attribute and relation

predicates.

The base case of LearnRSPN (when |V | = 1) varies depending on what v is. When v is an

attribute, the RSPN to be returned is simply a univariate distribution over the attribute, as in the

propositional version of LearnSPN. When v is a part of class Cchild, LearnRSPN returns an SPN

for class Cchild. Crucially, different SPNs are learned for Cchild in different children of a sum node

in parent class C (since the recursive call is made with a different set of instances). The final base

case is when v is an aggregate over an exchangeable relation. In this case, the RSPN to be returned

is an EDT over the relation.

Like LearnSPN, LearnRSPN can be seen as an algorithm schema rather than a single algorithm;

the user is free to choose a clustering algorithm for instances, a dependency test for variable split-

ting, an aggregate statistic, and a family of EDTs for exchangeable relations. Note that different

families of EDTs may require different aggregate statistics for parameter estimation. The fraction

of true groundings is sufficient for the two EDTs described in examples 1 and 2.

7.4 Experiments

7.4.1 Methodology

We compared a Python implementation of LearnRSPN to two MLN structure learning algorithms:

• MSL [76], as implemented in the widely-used ALCHEMY system [80];

• LSM [79], a state-of-the-art MLN learning method.

We also evaluated a simple baseline (BL) that simply predicts each atom according to the global

marginal probability of its predicate.

To cluster instances in LearnRSPN, we used the EM implementation in SCIKIT-LEARN [107],

with two clusters. To test independence, we fit a Gaussian distribution (for aggregate variables) or
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Table 7.1: UW-CSE results. |Q| is the number of query atoms.

Area |Q| Inference time (s) AUC-PR CMLL LL/|Q|
RSPN MSL LSM RSPN MSL LSM BL RSPN MSL LSM BL RSPN

AI 1,414 0.10 7.18 5.32 0.71 0.36 0.29 0.36 -0.10 -0.16 -0.17 -0.16 -0.09

Graphics 171 0.03 0.82 0.50 0.80 0.59 0.38 0.35 -0.13 -0.28 -0.31 -0.26 -0.13

PL 17 0.01 0.05 0.05 0.81 0.84 0.69 0.42 -0.46 -0.81 -0.84 -0.80 -0.45

Systems 1,120 0.01 8.81 4.33 0.75 0.76 0.25 0.28 -0.07 -0.08 -0.14 -0.14 -0.07

Theory 308 0.04 1.01 0.94 0.79 0.51 0.37 0.32 -0.11 -0.29 -0.21 -0.20 -0.10

Average 606 0.05 3.57 2.22 0.77 0.61 0.39 0.34 -0.17 -0.32 -0.33 -0.31 -0.17

Bernoulli distribution (for binary attributes), and computed the pairwise mutual information (MI)

between the variables. The test statistic used wasG = 2N×MI (N being the number of samples),

which in the discrete case is equivalent to the G-test used by Gens and Domingos [51]. We used a

threshold of 0.5 for the p-value. For EDTs, we used the independent Bernoulli form, as described

in example 1. All Bernoulli distributions were smoothed with a pseudocount of 0.1.

For MLN inference, we used the MC-SAT algorithm, the default choice in ALCHEMY 2.0,

with the default parameters. For LSM, we used the example parameters in the implementation

(Nwalks = 10, 000, π = 0.1; remaining parameters as specified by Kok and Domingos [79]).

We report results in terms of area under the precision-recall curve (AUC; [27]) and the average

conditional marginal log-likelihood (CMLL) of test atoms. AUC is a prediction quality measure

that is insensitive to the fraction of true negative atoms. CMLL directly measures the quality of the

probability estimates. For LearnRSPN, we also report test set log-likelihood (LL) normalized by

the number of queries, as an alternate measure of prediction quality. (ALCHEMY does not compute

this quantity, since it is intractable for MLNs.) Unlike CMLL, LL captures the joint likelihood,

rather than just the individual marginal likelihoods.
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Table 7.2: Friends & Smokers link prediction results. N is the number of people in the network.

N |Q| Inference time (s) AUC-PR CMLL LL/|Q|
RSPN MSL LSM RSPN MSL LSM BL RSPN MSL LSM BL RSPN

100 2,000 0.10 25.31 8.11 0.22 0.08 0.02 0.02 -0.09 -0.13 -0.13 -0.12 -0.09

200 8,000 0.34 202.14 51.29 0.16 0.03 0.01 0.01 -0.05 -0.54 -0.06 -0.07 -0.05

300 18,000 0.75 740.64 150.13 0.13 0.01 0.00 0.00 -0.04 -3.24 -0.04 -0.06 -0.03

400 32,000 1.29 1753.14 330.92 0.13 0.00 0.00 0.00 -0.03 -6.10 -0.04 -0.05 -0.02

Table 7.3: Fault localization results.

Program Avg. LOC Inference time (s) Fraction skipped CMLL LL/|Q|
RSPN MSL RSPN MSL TAR BL RSPN MSL TAR BL RSPN

oddTup 10.9 0.001 0.040 0.65 0.66 0.80 0.58 -0.67 -3.98 -1.47 -0.74 -0.67

deriv. 15.3 0.003 0.056 0.70 0.52 0.53 0.47 -0.37 -4.07 -0.62 -0.42 -0.37

isWord 15.8 0.003 0.057 0.59 0.72 0.63 0.42 -0.53 -3.12 -0.57 -0.40 -0.45

newtons 22.1 0.000 0.079 0.58 0.65 0.51 0.47 -0.39 -3.20 -0.80 -0.37 -0.39

Average 16.5 0.002 0.058 0.63 0.64 0.62 0.48 -0.60 -3.59 -0.86 -0.48 -0.47
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Figure 7.3: Part structure for UW-CSE domain.
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7.4.2 UW-CSE

The UW-CSE database [118] has been used to evaluate a variety of statistical relational learning

algorithms. The dataset describes the University of Washington Computer Science & Engineering

department, and includes advising relationships, paper authorships, etc. The database is divided

into five non-overlapping mega-examples, by research area.

To generate a part structure for this domain (fig. 7.3), we separated the people into one research

group per faculty member, with students determined using the AdvisedBy and TempAdvisedBy

predicates (breaking ties by number of coauthored papers). Publications are also divided among

groups: each paper is assigned to the group of the professor who wrote it, voting by the number of

student authors in the group in the event of a tie. The prediction tasks are to infer the roles of faculty

(Professor, Associate Professor or Assistant Professor) and students (Pre-Quals, Post-Quals, Post-

Generals), as well as paper authorships. The part structure is also made available to ALCHEMY

in the form of predicates Has(Area,Group), Has(Group, Professor), Has(Group, Student),

Has Group(Group, Paper), and Has NonGroup(Group, Paper).

We performed leave-one-out testing by area, testing on each area in turn using the model trained

from the remaining four. 80% of the groundings of the query predicates were provided as evidence,

and the task was to predict the remaining atoms. Table 7.1 shows the results on all five areas,

and the average. The RSPN approach is orders of magnitude faster than the other systems, and

significantly more accurate. Training times in this domain are 9s (RSPN), 14,094s (MSL) and

1,620s (LSM).

7.4.3 Social Network Link Prediction

Link prediction is a challenging statistical relational learning problem [114, 136]. The task is to

predict missing links in a partially observed graph, taking into account observed attributes of the

nodes.

We generated artificial social networks in the Friends-and-Smokers domain [131], using a gen-

eralization of the Barabási-Albert preferential attachment model [10]. A network with N nodes is
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generated as follows:

• For some fraction psmokes = 0.3 of nodes x, set Smokes(x) to ‘true’, and set the remainder

to ‘false’.

• For each node, sample another node and create an undirected edge. In the basic Barabási-

Albert model, the probability of choosing a node is proportional to its degree. To en-

courage homophily, we multiply the unnormalized probability of an edge by a factor of

hsmokes,smoker = 100 for smoker-smoker edges, and hnonsmoker,nonsmoker = 10 for edges

between non-smokers.

• Iterate, creating more edges for each node using the above distribution. We generate 2 or 3

edges (with equal probability) for each smoker node, and 1 or 2 edges for each non-smoker

node.

This procedure results in graphs with small, dense communities of smokers, sparser communities

of non-smokers, and relatively few links between smokers and non-smokers.

For training data, we generated five 100-person graphs. We tested on graphs of size ranging

from 100 to 400 nodes (10,000 to 160,000 possible edges), to evaluate how well the structures

learned by LearnRSPN generalize to mega-examples of different size.

At test time, all the Smoker labels and 80% of the Friendship edges are known; the prediction

task is to infer the marginal probabilities of the remaining 20% of the graph edges.

An RSPN was trained with two classes: Network and Person. Network has both classes

as exchangeable subparts. The part decompositions were generated using the Louvain method1

[12], and the resulting community structure was also made available to ALCHEMY in the form of

Has(Network,Network) and Has(Network, Person) predicates.

Table 7.2 shows the inference time and accuracy of the three systems. Results are averaged

over five runs. Figures in bold are statistically significant improvements over all other systems

1http://perso.crans.org/aynaud/communities/
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Figure 7.4: Sample 100-node social network. Red nodes are smokers.
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(using the sign test, with a p-value of 0.05). Average training times for the three systems are 168s

(RSPN), 31,083s (MSL) and 105,018s (LSM).

This is an extremely challenging link prediction task, due to the sparsity of the domain, and

the relatively weak dependence between a node’s attributes and links. MSL’s greedy structure

learning fails to find formulas that either exploit the provided community structure or capture the

relationship between a person’s friendships and smoking habits. Additionally, the weights learned

by MSL on 100-node networks become increasingly inappropriate as the network size changes.

On larger graphs, MLNs become prone to predicting that everybody is friends, a known pathology

in social network models. Nevertheless, MSL outperforms the baseline in the AUC metric, which

corrects for sparsity. LSM avoids the above pathology, learning a model similar to the baseline. As

in the UW-CSE domain, RSPNs greatly outperform the other systems in both speed and accuracy.

7.4.4 Automated Debugging

We applied RSPNs to a fault localization problem. The task is to predict the location of the bug

in a faulty program. (See also chapter 8 for an application of a domain-specific version of our

algorithm to a larger, more realistic fault localization problem.)

The test corpus consists of four short Python programming assignments from MIT edX intro-

ductory programming course (6.00x) [128]: oddTuples, derivatives, isWordGuessed

and newtons method. We developed a suite of ten unit tests for each assignment, and identified

ten buggy but syntactically valid responses to each question. (We filtered out submissions with

multiple bugs, non-terminating loops, etc.) We manually annotated the location of the bug in each

of the 40 programs in the corpus.

The corpus included several other programs, which were unusable for the following reasons:

• ate1 and biggest had a single example each.

• polynomials and getAvailableWords predominantly contained syntactic errors; we

did not find examples that met the constraints above.
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c l a s s Program :

e x c h a n g e a b l e p a r t I f S t m t
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c l a s s LoopStmt :

un iq ue p a r t Program

a t t r i b u t e Buggy

c l a s s AtomicStmt :

a t t r i b u t e Buggy

Figure 7.5: Part structure for debugging domain.

• hangman and simple hangman were interactive programs, incompatible with our auto-

mated testing environment.

• The predominant cause of failure in getGuessedWord was that the output string was

formatted differently from our reference implementation.

The program parse tree provides the part structure. The parse tree is mapped to the part structure

in fig. 7.5; this part structure is also provided to ALCHEMY as evidence. The aggregation used by

LearnRSPN is simply a discrete variable indicating which class of statement is most common in

the subprogram (IfStmt, LoopStmt, or AtomicStmt). This information is also provided as
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evidence to ALCHEMY. The systems were trained on three programs and tested on the fourth;

reported results are averaged over the 10 buggy versions of each program.

In addition to MSL, we compared RSPNs to TARANTULA (TAR; [67]), a well-established fault

localization approach. A common evaluation metric for fault localization systems is the fraction of

program lines ranked lower than the buggy line. Higher scores indicate better localization. Ties in

the line ranking are broken randomly. TARANTULA scores are computed in closed form from the

coverage matrix. We also report the CMLL; for TARANTULA, this was computed by treating the

suspiciousness score (which falls between 0 and 1) as a probability. As seen in table 7.3, RSPNs are

competitive with both MSL and TARANTULA in ranking quality, and outperform them in CMLL.

Average training times are 0.08s (RSPN) and 320s (MSL).

7.5 Conclusions & Future Work

SRL algorithms have been successfully applied to several problems, but the difficulty, cost and

unreliability of approximate inference has limited their wider adoption. In practice, applying SRL

methods to a new domain requires substantial engineering effort in choosing and configuring the

approximate learning and inference algorithms. The expressiveness of languages like Markov

logic is both a boon and a curse: although these languages can compactly represent sophisticated

probabilistic models, they also make it easy for practitioners to unintentionally design models too

complex even for state-of-the-art inference algorithms.

In the propositional setting, several approaches have been recently proposed for learning high-

treewidth tractable models [89, 55, 113]. To our knowledge, LearnRSPN is the first algorithm for

learning high-treewidth tractable relational models. Empirically, LearnRSPN outperforms conven-

tional statistical relational methods in accuracy, inference time and training time.

A limitation of RSPNs is that they require a known, fixed part decomposition for all training and

test mega-examples. Applying RSPNs to a new domain does require the user to specify the part

decomposition; this is analogous to specifying the relational structure in PRMs. Many domains

have a natural part structure that can be exploited (like the UW-CSE and debugging domains); in

other cases, part structure can be created using existing graph-cut or community detection algo-
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rithms (as in our link prediction experiments). An important direction for future work is to develop

an efficient, principled method of finding part structure in a database.

Another direction for future work is applying tractable relational models to other problems.

This chapter presented RSPNs and the related algorithms in a domain-independent manner; to ap-

ply RSPNs to a new problem, a domain expert need only define the RSPN class structure, and

provide the part decompositions. However, the RSPN definition presented above can be tailored

to better represent the features and dependencies needed to solve specific problems. The follow-

ing chapter describes a variant of RSPNs tailored to the problem of software fault localization.

These customizations allow us to outperform standard fault localization methods on a larger, more

realistic dataset than the one used in our preliminary fault localization experiments, described in

section 7.4.4.



86

Chapter 8

TRACTABLE PROBABILISTIC MODELS
FOR AUTOMATED DEBUGGING

8.1 Introduction

According to a 2002 NIST study [123, 103], inadequate software testing infrastructure costs the

US economy an estimated $59.5 billion per year. While some of these costs are unavoidable, the

report claimed that an estimated $22.2 billion could be saved with more effective tools for the

identification and removal of software errors. Several other sources estimate that over 50% of

software development costs are spent on debugging and testing [58, 11].

The need for better debugging tools has long been recognized. The goal of automating various

debugging tasks has motivated a large body of research in the software engineering community.

However, this line of work has only recently begun to take advantage of recent advances in proba-

bilistic models, and their inference and learning algorithms [144].

In this work, we apply state-of-the-art probabilistic methods to the problem of fault localization.

We propose Tractable Fault Localization Models (TFLMs) that can be learned from a corpus of

known buggy programs (with the bug locations annotated). The trained model can then be used

to infer the probable locations of buggy lines in a previously unseen program. Conceptually, a

TFLM is a probability distribution over programs in a given language, modeled jointly with any

attributes of interest (such as bug location indicator variables, or diagnostic features). Conditioned

on a specific program, a TFLM defines a joint probability distribution over the attributes.

The key advantage of probabilistic models is their ability to learn from experience. Many

software faults are instances of a few common error patterns, such as off-by-one errors and use of

uninitialized values [18]. Human debuggers improve with experience as they encounter more of

these common fault patterns, and learn to recognize them in new programs. Automated debugging
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systems should be able to do the same.

Another advantage of probabilistic models is that they allow multiple sources of information

to be combined in a principled manner. The relative contribution of each feature determined by its

predictive value in the training corpus, rather than by a human expert. A TFLM can incorporate as

features the outputs of other fault localization systems, such as the TARANTULA hue [68] of each

line.

A limitation of probabilistic methods is that models that capture rich probabilistic dependen-

cies often result in NP-hard inference problems. In recent years, there has been renewed interest in

learning rich, tractable models, on which exact probabilistic inference can be performed in polyno-

mial time (e.g. Sum-Product Networks (SPNs) [113]). TFLMs make use of similar ideas to RSPNs

(chapter 7) to enable exact inference in space and time linear in the size of the program.

8.1.1 Contributions

1. We propose TFLMs, a scalable probabilistic fault localization model that can be learned

from data. TFLMs are context-sensitive; the predicted bug probability for a statement can be

affected by other statements in the program.

2. We describe an efficient exact inference algorithm for TFLMs, and propose an algorithm to

learn TFLMs from a corpus of buggy programs.

3. We empirically compare TFLMs to the widely-used TARANTULA fault localization method,

as well as the Statistical Bug Isolation (SBI) system, on four mid-sized C programs. TFLMs

outperform the other systems on three of the four test subjects.

8.2 Background

8.2.1 Coverage-based Fault Localization

Coverage-based debugging methods isolate the bug’s location by analyzing the program’s coverage

spectrum on a set of test inputs. These approaches take the following as input:



88

1. a set of unit tests;

2. a record of whether or not the program passed each test;

3. program traces, indicating which components (usually lines) of the program were executed

when running each unit test.

Using this information, these methods produce a suspiciousness score for each component in the

program. The most well-known method in this class is the TARANTULA system [68], which uses

the following scoring function:

STarantula(s) =
Failed(s)

TotalFailed
Passed(s)

TotalPassed
+ Failed(s)

TotalFailed

Here, Passed(s) and Failed(s) are respectively the number of passing and failing test cases that

include statement s, and TotalPassed and TotalFailed are the number of passing and failing test

cases respectively. In an empirical evaluation [67], TARANTULA was shown to outperform previ-

ous methods such as cause transitions [23], set union, set intersection and nearest neighbor [116],

making it the state of the art in fault localization at the time.

Since the publication of that experiment, a few other scoring functions have been shown to out-

perform TARANTULA under certain conditions [1], including the Jaccard score and Ochiai score.

Nonetheless, TARANTULA remains the most well-known fault localization method in this class.

8.2.2 Probabilistic Debugging Methods

Per-Program Learning

Several approaches to fault localization make use of statistical and probabilistic methods. Liblit et

al. proposed several influential statistical debugging methods. Their initial approach [84, 152] used

`1-regularized logistic regression to predict non-deterministic program failures. (The instances are

runs of a program, the features are instrumented program predicates, and the models are trained to

predict a binary ‘failure’ variable. The learned weights of the features indicate which predicates
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are the most predictive of failure.) In later work [85], they use a likelihood ratio hypothesis test to

determine which predicates (e.g. branches, sign of return value) in an instrumented program are

predictive of program failure. Zhang et al. [151] evaluate several other hypothesis testing methods

in a similar setting.

The SOBER system [87, 86] improves on Liblit et al.’s 2005 approach by taking into account

the fact that a program predicate can be evaluated multiple times in a single test case. They learn

conditional distributions over the probability of a predicate evaluating to true, conditioned on

the success or failure of the test case. When these conditional distributions differ (according a

statistical hypothesis test), the predicate is considered to be ‘relevant’ to the bug. The HOLMES

system [21] extends Liblit et al.’s approach along another direction, analyzing path profiles instead

of instrumented predicates.

Wong et al. [148, 146] use a crosstab-based statistical analysis to quantify the dependence

between statement coverage and program failure. Their approach can be seen as a hybrid between

the Liblit-style statistical analysis and TARANTULA-style spectrum-based analysis. Wong et al.

also proposed two neural network-based fault localization techniques trained on program traces

[147, 145]. Ascari et al. [8] investigate the use of SVMs in a similar setting.

Many of the methods described above operate under the assumption that the program contains

exactly one bug. Some of these techniques have nevertheless been evaluated on programs with

multiple faults, using an iterative process where the bugs are isolated one by one. Briand et al. [16]

explicitly extend TARANTULA to the multiple-bug case, by learning a decision tree to partition

failing test cases. Each partition is assumed to model a different bug. Statements are ranked by

suspiciousness using a TARANTULA-like scoring function, with the scores computed separately

for each partition. Other clustering methods have also been applied to test cases; for example,

Andrzejewski et al. [7] use a form of Latent Dirichlet Allocation to discover latent ‘bug topics’.

TARANTULA-style scoring functions have also been studied through the lens of association rule

mining [36]. Nessa et al. [100] discover association rules on N-grams over blocks of statements,

mined from program traces.

Jiang and Su [66] use various machine learning techniques to discover faulty control paths, as
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well as clusters of correlated predicates, which they claim are useful aids for bug understanding.

Their approach uses SVMs (for small datasets) or random forests (for larger datasets) for feature

selection (i.e. classifying program predicates as good or bad predictors of failure). The selected

predicates are used to guide the construction of faulty control flow paths.

Dietz et al. [39] rank suspicious statements using a learned a graphical generative model over

a program’s execution graphs.

Generalizing Across Programs

The key limitation of the statistical and machine learning-based approaches discussed above is

that they only generalize over many executions of a single program. Ideally, a machine learning-

based debugging system should be able to generalize over multiple programs (or, at least, multiple

sequential versions of a program). As discussed in section 8.1, many software defects are instances

of frequently occurring fault patterns; in principle, a machine learning model can be trained to

recognize these patterns and use them to more effectively localize faults in new programs.

This line of reasoning has received relatively little attention in the automated debugging lit-

erature. Hovemeyer and Pugh [62] manually identified 45 bug patterns, and wrote detectors for

them. The most prominent learning-based approach that takes advantage of program-independent

bug patterns is the Fault Invariant Classifier (FIC) of Brun and Ernst [18]. FIC is not a fault local-

ization algorithm in the sense of TARANTULA and the other approaches discussed above. Instead

of localizing the error to a particular line, FIC outputs fault-revealing properties that can guide

a human debugger to the underlying error. These properties can be computed using static or dy-

namic program analysis; FIC uses the Daikon dynamic invariant detector [45]. At training time,

properties are computed for pairs of buggy and fixed programs; properties that occur in the buggy

programs but not the fixed programs are labeled as ‘fault-revealing’. The properties are converted

into program-independent feature vectors, and an SVM or decision tree is trained to classify prop-

erties as fault-revealing or non-fault-revealing. The trained classifier is then applied to properties

extracted from a previously unseen, potentially faulty program, to reveal properties that may be
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indicative of latent errors.

8.2.3 Tractable Probabilistic Models

Most of the existing statistical debugging methods discussed in section 8.2.2 use simple statistical

tests that can be computed in closed form, or models such as logistic regression that fail to capture

dependencies among the feature variables. These models are adequate for capturing direct depen-

dencies between individual program predicates and a failure outcome, given a set of executions of

a single program.

However, to generalize across programs, the model must be rich enough to capture common

bug patterns, and distinguish them from bug-free code. Such a model must take into account

both the content of a line and its context in the program. Probabilistic graphical models (PGMs)

such as Markov networks are an obvious candidate, allowing a rich dependency structure among

different parts of the program. Unfortunately, inference in graphical models is #P-complete [120];

a debugging model based on PGMs would require approximate inference algorithms to scale to

realistically-sized programs. Approximate probabilistic inference algorithms tend to be unreliable

and computationally expensive, and generally cannot provide non-trivial error bounds.

An emerging line of research (section 2.2.2) has explored tractable high-treewidth probabilistic

models, which are significantly richer than traditional tractable models like logistic regression

and hidden Markov models (HMMs), while still guaranteeing polynomial-time exact inference.

This work builds on one such approach, Sum-Product Networks (SPNs) [113]. The use of this

rich class of models allows our approach to capture the contextual information necessary to learn

useful bug patterns. The efficient exact inference algorithms of SPNs can also be applied to our

model, allowing bugs to be rapidly localized even on relatively large programs without resorting to

approximate inference algorithms.

TFLMs are also closely related to RSPNs (chapter 7). Specifically, TFLMs can be seen as

RSPNs with one class per non-terminal symbol in the grammar. TFLMs use a fixed class SPN

structure, instead of a structure discovered by an algorithm such as LearnRSPN. As seen in the fol-

lowing section, TFLMs also allow the attributes to be modeled jointly (e.g. via a logistic regression



92

model) rather than as separate univariate distributions, as in standard RSPNs.

8.3 Tractable Fault Localization

8.3.1 Tractable Fault Localization Models

A Tractable Fault Localization Model (TFLM) defines a probability distribution over programs in

some deterministic language L. The distribution may also model additional variables of interest

that are not part of the program itself; we refer to such variables as attributes. In the fault local-

ization setting, the important attribute is a buggy indicator variable on each line. Other informative

features may also be included as attributes; for instance, one or more coverage-based metrics may

be included for each line.

More formally, consider a language whose grammar L = (V,Σ, R, S) consists of:

• V is a set of non-terminal symbols;

• Σ is a set of terminal symbols;

• R is a set of production rules of the form α→ β, where α ∈ V and β is a string of symbols

in V ∪ Σ;

• S ∈ V is the start symbol.

Definition 7. A Tractable Fault Localization Model for language L consists of:

• a map from non-terminals in V to sets of attribute variables (discrete or continuous);

• for each symbol α ∈ V , a set of latent subclasses α1, . . . , αk;

• πS , a probability distribution over subclasses of the start symbol S;

• for each each subclass αi of α,

– a univariate distribution ψαi,x over each attribute x associated with α;
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– ραi , a probability distribution over rules αi → β, for each rule α→ β in L;

– for each rule αi → β, for each non-terminal α′ ∈ β, a distribution π(αi→β),α′ over

subclasses of α′.

The univariate distribution over each attribute may be replaced with a joint distribution over all

attributes, such as a logistic regression model within each subclass that predicts the value of the

buggy attribute, using one or more other attributes as features. However, for simplicity, we present

the remainder of this section with the attributes modeled as a product of univariate distributions,

and assume that the attributes are discrete.

TFLMs are related to the Latent Variable PCFG (L-PCFG) models used in the natural language

processing (NLP) community [91, 115, 109]. As in L-PCFGs, each symbol α in the language is

drawn probabilistically from a set of latent subclasses α1, . . . , αk. For each latent class, the model

can define a different distribution over the sub-trees rooted at that symbol.

Conceptually, TFLMs differ from the PCFG-based models as used in NLP in two ways:

1. In addition to modeling a distribution over strings in the given language, TFLMs can also

jointly model other variables of interest (‘attributes’). Different latent subclasses can have

different distributions over attributes.

2. In NLP, PCFGs and their extensions are usually used for parsing, i.e. finding the most prob-

ably parse tree according to the given probabilistic grammar. In the debugging context, we

assume the program can be parsed unambiguously. The purpose of a TFLM is to answer

probabilistic queries about the attributes of the given program (e.g. infer marginal probabili-

ties).

Being defined over the grammar of the programming language, TFLMs can capture informa-

tion extremely useful for the fault localization task. For example, a TFLM can represent different

fault probabilities for different symbols in the grammar. In addition, the latent subclasses give

TFLMs a degree of context-sensitivity; the same symbol can be more or less likely to contain a
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fault depending on its latent subclass, which is probabilistically dependent on the subclasses of an-

cestor and descendent symbols in the parse tree. This makes TFLMs much richer than models like

logistic regression, where the features are independent conditioned on the class variable. Despite

this representational power, exact inference in TFLMs is still computationally efficient, as seen in

section 8.3.1.

Example 4. The following rules are a fragment of the grammar of a Python-like language:

w h i l e s t m t → ’ whi le ’ c o n d i t i o n ’ : ’ s u i t e

c o n d i t i o n → exp r o p e r a t o r exp r

c o n d i t i o n → ’ not ’ c o n d i t i o n

We refer to the above rules as r1, r2 and r3 respectively.

The following is a partial specification of a TFLM over this grammar, with the while stmt

symbol as root.

• All non-terminal symbols have buggy and suspiciousness attributes. buggy is a fault indica-

tor, and suspiciousness is a diagnostic attribute, such as a TARANTULA score.

• Each non-terminal has two latent subclass symbols. For example, while stmt has sub-

classes while stmt1 and while stmt2.

• The distribution over start symbols is:

π(while stmt1) = 0.4

π(while stmt2) = 0.6

• For subclass symbol while stmt1 (subclass subscripts omitted):

– ψbuggy ∼ Bernoulli(0.01)

– ψsuspiciousness ∼ N (0.4, 0.05)

– ρ(r1) = 1.0, since while stmt has a single rule.
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– The distributions over child symbol subclasses for r1 are:

πr1,condition(condition1) = 0.7

πr1,condition(condition2) = 0.3

πr1,suite(suite1) = 0.2

πr1,suite(suite2) = 0.8

(The complete TFLM specification would have similar definitions for all the other subclass sym-

bols in the model.)

Semantics

Conceptually, a TFLM defines a probability distribution over all programs in L, and their attributes.

More formally, the joint distribution P (T,A,C) is defined over:

• a parse tree T ;

• an attribute assignment A, specifying values of all attributes of all non-terminal symbols in

T ;

• a latent subclass assignment C for each non-terminal in T .

For parse tree T containing rules r1 = α1 → β1, r2 = α2 → β2, . . . , rn = αn → βn, and root

symbol αR,

P (T,A,C) =
∏
ri

(
ρC(αi)(αi → βi)

×
∏
α′∈βi

π(C(αi)→βi),α′(C(α′))

×
∏

x∈attr(αi)

ψC(αi),x(A(x))

)
× πS(C(αR))

Intuitively, the generative process is as follows:
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• Choose a subclass for the start node, according to πS . Let the current symbol α be the start

symbol, and let αi be its subclass.

• Choose attribute values for the current symbol, according to ψαi,x.

• Choose a production rule α→ β for the current symbol, according to ραi .

• Recurse over each non-terminal α′ in β, choosing its subclass from π(αi→β),α′ .

The joint probability of a parse tree, its attributes, and its symbols’ subclass assignments is the

product of the individual probabilities of all these choices.

Inference

In the fault localization setting, the parse tree T is known; the inference task is to compute the

marginal probabilities of the buggy attributes, conditioned on the buggy program and diagnostics.

This computation can be done in polynomial time, using a dynamic programming algorithm similar

to the inference algorithm for SPNs.

Given parse tree T and evidence E (possibly empty or incomplete) about attributes of symbols

in T , let Tα be the subtree rooted at symbol α, and Eα be the evidence about symbols in Tα. Let

α → β be the rule applied from α within T . The function to be memoized is P (Eα|C(α)), which

represents the probability of evidence within that subtree, conditioned on a particular subclass

assignment for root symbol α. (Note that the probability is also conditioned on the parse tree, T ;

for readability, we omit this condition from probability expressions in this section.) This can be

computed as follows by summing over attribute value assignments A and class assignments C:

P (Eα|C(α)) =
∑
A

∑
C′=C\C(αR)

P (A,C ′, Eα|C(α))

=
∑
A

∑
C′

∏
ri

∏
α′∈βi

π(C(αi)→βi),α′(C(α′))
∏

x∈attr(αi)

ψC(αi),x(A(x), Eα)
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P (Eα|C(α)) =
∏

x∈attr(α)

∑
A(x)

ψC(α),x(A(x), Eα)

×
∏
α′∈β

∑
C(α′)

(
π(C(α)→β),α′(C(α′))× P (Eα′ |C(α′))

) (8.1)

(Note that ψC(α),x(A(x), Eα) = 0 when A(x) is inconsistent with the evidence Eα, and

ψC(α),x(A(x), Eα) = ψC(α),x(A(x)) otherwise.)

As seen above, P (Eα|C(α)) decomposes into two terms:

• a product of conditional partition functions (i.e. the total probability mass consistent with the

evidence) of univariate distributions over attributes of the root symbol;

• a product of evidence probabilities within each of the subtrees of Tα, each of which is a

weighted sum over the subclass of the subtree’s root symbol.

P (Eα|C(α)) can be computed in a bottom-up fashion, with the values for each symbol α com-

puted after those of its children in the parse tree. The cardinality of the domain of the memoized

function is the number of non-terminals in the parse tree, multiplied by the number of subclasses

of each symbol in the grammar. This provides a bound on the time and space cost of inference: if

the number of attributes and rule length are bounded, inference is linear in the size of the program

and the number of subclasses.

The probability of the evidence E according to the full model is simply:

P (E) =
∑
C(αR)

πS(C(αR))P (E|C(αR))

(Where αR is the root symbol of T .) This enables marginal probabilities to be inferred through a

single bottom-up pass of the dynamic programming algorithm, conditioned on the evidence.

Note that the above probability computation can be directly mapped to an SPN, of the form

described by Poon and Domingos [113]. The computation of P (Eα|C(α)) (in the form of equa-

tion 8.1) corresponds to a product node; each weighted summation over subclasses corresponds to

a sum node; the attribute indicators correspond to leaf nodes. The dynamic programming-based

inference algorithm described above can be seen as a special case of SPN inference. Like SPNs,
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TFLMs can also compute the most probable (MAP) state of (A,C), by replacing the summations

with maximizations.

Simultaneous Inference

Like SPNs, TFLMs also allow all marginal probabilities to be computed simultaneously, instead

of computing the buggy probabilities one by one. The simultaneous inference algorithm requires

two passes – first, a bottom-up (children-first) pass, and then a top-down pass. This is analogous to

the two passes used by the forward-backward algorithm for Hidden Markov Models, or the belief

propagation algorithm for tree-structured graphical models.

The first pass of the algorithm is simply the bottom-up computation of P (Eα|C(α)), as de-

scribed in the previous section. As in the previous section, let T denote a parse tree, and let Tα be

its subtree rooted at symbol α. E denotes evidence (possibly empty or incomplete) about attributes

of symbols in T ; let Eα be the subset of the evidence dealing with symbols in Tα, and Eᾱ be the

evidence concerning the remaining symbols in T .

The probability of a subclass assignment conditioned on the evidence is:

P (Cα|E) = P (C(α)|Eα, Eᾱ)

= P (Eα|C(α), Eᾱ)
P (C(α)|Eᾱ)

P (Eα|Eᾱ)

P (Cα|E) ∝ P (Eα|C(α))P (C(α)|Eᾱ)

(This is because Eα and Eᾱ are independent conditioned on the class of α.)

The first term is simply the memoized function computed by the bottom-up parse. Therefore,

to compute the marginal probability of the class assignment, we must compute the second term,

P (C(α)|Eᾱ), which is the probability of the given class assignment conditioned on the evidence

outside the subtree Tα. This is the function to be memoized in the top-down pass.

If α is the root of the entire parse tree T ,Eᾱ is empty; in this case, P (C(α)|Eᾱ) follows directly

from πS , the distribution over subclasses of the start symbol.

If α has a parent symbol β in T , the evidence Eᾱ can affect the probability of α’s class assign-
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ment via its effect on β’s class assignment probabilities:

P (C(α)|Eᾱ) =
∑
C(β)

P (C(α)|C(β))P (C(β)|Eᾱ)

The first term follows directly from C(β)’s πr,C(α) distribution for the rule r that generated α in T .

To compute the second term, P (C(β)|Eᾱ), notice that a similar term has already been memoized

in the top-down pass: P (C(β)|Eβ̄) is the previously-computed probability of the class assignment

of the parent symbol β conditioned on the evidence outside Tβ . This allows us to compute the

above expression by additionally conditioning on Eᾱ\Eβ̄ , i.e. the evidence on β itself. We denote

this as eβ .

P (C(β)|Eᾱ) = P (C(β)|Eβ̄, eβ)

=
P (C(β), eβ|Eβ̄)

P (eβ|Eβ̄)

=
P (C(β)|Eβ̄)P (eβ|C(β), Eβ̄)

P (eβ|Eβ̄)

=
P (C(β)|Eβ̄)P (eβ|C(β))

P (eβ|Eβ̄)

P (C(β)|Eᾱ) ∝ P (C(β)|Eβ̄)P (eβ|C(β))

The first term is the memoized function, and the second term follows directly from the ψC(β),x

attribute distributions.

The above procedure allows us to compute the marginal probabilities of all the latent subclass

assignments of the symbols in T , conditioned on the available attribute evidence (i.e. P (C(α)|E),

for all α in T ). This in turn allows us to trivially compute the marginal probabilities of all unknown

attributes:

P (A(xα)|E) =
∑
C(α)

P (C(α)|E)ψC(α),xα(A(xα))

Computing the marginal probabilities in this manner requires one bottom-up parse to compute

P (Eα|C(α)), one top-down pass to compute P (Cα|Eᾱ), and a constant number of operations per

query variable to sum over the subclass probabilities of the corresponding symbol. This yields a

linear speedup (in the number of queries) over the naı̈ve approach of recomputing equation 8.1
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from scratch, conditioning on one query variable at a time. In the fault localization setting, the

number of queries is the number of executable lines in the program; as a result, the simultaneous

inference approach yields a several order of magnitude speedup.

Learning

The learning problem in TFLMs is to estimate the π and ψ distributions from a training corpus of

programs, with known attribute values but unknown latent subclasses. (Note that unlike standard

PCFGs, the ρ distributions have no effect on the distribution of interest, since we assume that every

program can be unambiguously mapped to a parse tree.)

Models with latent variables are typically trained via Expectation Maximization (EM). As is

typically done with multilayered models like SPNs, TFLMs use the Hard EM variant, which as-

signs a single value to each latent variable rather than a fractional assignment. The TFLM training

algorithm alternates between the two steps:

• E-step: given the current parameters of π and ψ, compute the MAP state of the training

programs (i.e. the latent subclass assignment that maximizes the log-probability).

• M-step: re-estimate the parameters of π and ψ, choosing the values that maximize the log-

probability.

These two steps are repeated until convergence, or for a fixed number of iterations.

If the attributes are modeled jointly rather than as a product of univariate distributions, re-

training the joint model in each iteration of EM may prove computationally expensive. A more

efficient alternative is to use a product of univariates during EM, in order to learn a good subclass

assignment. The joint model is then only trained once, at the conclusion of EM.

8.4 Experiments

We performed an experiment to determine whether TFLM’s ability to combine a coverage-based

fault localization system with learned bug patterns improves fault localization performance, rela-
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tive to using the coverage-based system directly. As a representative coverage-based method, our

study used TARANTULA, one of the most widely-used approaches in this class, and a common

comparison system for fault localization algorithms. We also compared to the statement-based

version of Liblit et al.’s Statistical Bug Isolation (SBI) system1 [85], as adapted by Yu et al. [150].

SBI serves as a representative example of a lightweight statistical method for fault localization.

8.4.1 Subjects

We evaluated TFLMs on four mid-sized C programs from the Software-artifact Infrastructure

Repository (SIR) [133]. All four test subjects are real-world programs, commonly used to eval-

uate fault localization approaches. The repository contained several sequential versions of each

program, each with several buggy versions. The repository also contained a suite of TSL tests for

each version, which we used to compute the TARANTULA scores.

See Table 8.1 for statistics about each of the datasets. Total line counts include white space,

documentation, and other non-executable lines (e.g. lines excluded by preprocessor directives).

The number of executable lines was measured by the gcov tool. We excluded buggy versions where

the bug occurred in a non-executable line, or consisted of line insertions or deletions. However,

unlike most previous fault localization studies that use these subjects, we do not exclude versions

for which the test results were uniform (i.e. consisting entirely of passing or failing tests). Although

coverage-only methods such as TARANTULA can provide no useful information in the case of

uniform test suites, TFLMs can still make use of learned contextual information to determine that

some lines are more likely than others to contain a fault.

8.4.2 Methodology

We implemented TFLMs for a simplified version of the C grammar with 23 non-terminal symbols,

ranging from compound statements like if and while to atomic single-line statements such as

assignments and break and continue statements.

1Also sometimes referred to as Cooperative Bug Isolation (CBI)



102

Table 8.1: Subject programs.

Program Bug type Version Total LOC Executable LOC Buggy versions Tests

grep seeded

2.2 12555 3197 9 470

2.3 13182 3363 4 470

2.4 13274 3445 14 470

2.4.1 13286 3465 5 470

gzip seeded

1.1.2 6502 1721 9 214

1.2.2 7196 2022 4 214

1.2.3 7222 1867 3 214

1.2.4 7273 1895 10 214

1.3 7933 2018 8 214

flex seeded

2.4.7 12329 3453 14 525

2.5.1 14034 4003 13 525

2.5.2 14082 4008 9 525

2.5.3 14171 4034 9 525

2.5.4 14192 4036 4 525

sed real, seeded

1.18 8059 2027 3 126

2.05 11907 3738 2 126

3.01 9976 2280 6 126

3.02 9981 2281 3 126

4.0.6 6635 1518 4 124

4.0.7 6665 1524 3 124

4.1.5 7125 1710 3 124
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Table 8.2: Fault localization accuracy (fraction of lines skipped).

Program TFLM Tarantula SBI

grep 0.645 0.640 0.564

gzip 0.516 0.682 0.540

flex 0.770 0.704 0.618

sed 0.927 0.851 0.603

Table 8.3: TFLM (with Tarantula as a diagnostic attribute) vs Tarantula alone.

Program TFLM wins Ties Tarantula wins

grep 18 0 14

gzip 11 0 23

flex 31 0 18

sed 17 0 7

Table 8.4: TFLM learning and inference times.

Program Avg. learn time (s) Avg. infer time (s)

grep 1135.00 20.91

gzip 433.33 5.25

flex 978.63 13.15

sed 326.37 5.18
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Figure 8.1: The horizontal axis is the fraction of lines skipped (FS), and the vertical axis is the

fraction of runs.
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Each symbol has a buggy attribute, and a suspiciousness attribute, which is the TARANTULA

score of the corresponding line. (For AST nodes that correspond to multiple lines in the origi-

nal code, we use the highest TARANTULA score among all lines). As described in section 8.3.1,

the attributes are modeled as independent univariates during EM (buggy as a Bernoulli distribu-

tion, and suspiciousness as a Gaussian), and then via a logistic regression model within each

subclass. The model predicts the buggy attribute, using the TARANTULA score and a bias term

as features. We use the SCIKIT-LEARN [107] implementation of logistic regression, with the

class weight=‘auto’ parameter, to compensate for the sparsity of the buggy lines relative

to bug-free lines. For TFLMs, we ran hard EM for 100 iterations.

For each of the four subject programs, TFLMs were learned via cross-validation, training on

all versions of the program except the one being evaluated. The number of latent subclasses was

also chosen via cross-validation, from the range [1, 4].

The output of a fault localization system is a ranking of the lines of code from most to least

suspicious. For TFLMs, we ranked the lines by predicted probability that buggy = 1. (Each line in

the original program is modeled by the finest-grained AST node that encloses it.) The evaluation

metric was the ‘fraction skipped’ (FS) score, i.e. the fraction of executable lines ranked below the

highest-ranked buggy line.

All experiments were run on 8 core 2.33 GHz PCs with 16 GB of RAM.

8.4.3 Results

Results of our experiments are displayed in tables 8.2 and 8.3, and figure 8.1. TFLMs outperform

TARANTULA and SBI on three of the four subjects, isolating the majority of bugs more effectively,

and earning a higher average FS score. However, TFLMs perform poorly on one the gzip domain.

This demonstrates the main threat to the validity of our method: machine learning algorithms

operate under the assumption that the test data is drawn from a similar distribution to the training

data. If the bugs occur in different contexts in the training and test datasets (as in gzip), learning-

based methods may perform worse than methods that try to localize each program independently.

This risk is particularly great when the learning from a small corpus of buggy programs.
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However, in three of the four subjects in our experiment, the training and test distributions

are sufficiently similar to allow useful generalization, resulting in improved fault localization per-

formance. TFLMs’ advantage arises from its ability to localize faults even when the coverage

matrix used by TARANTULA does not provide useful information (e.g. when the tests are not suf-

ficiently discriminative). TFLMs combine the coverage-based information used by TARANTULA

with learned bug probabilities for different symbols, in different contexts. Context sensitivity is

captured via latent subclass assignments for each symbol.

As seen in table 8.4, our unoptimized Python implementation predicts bug probabilities in a

few seconds for programs a few thousand lines in length. An optimized implementation may be

able to make predictions at interactive speeds; this makes TFLMs a practical choice of inference

engine for a debugging tool in a software development environment. Learning TFLMs can take

several minutes, but note that the model can be trained offline, either from previous versions of the

software being developed (as in our experiments), or from other related software projects expected

to have a similar bug distribution (e.g. projects of a similar scale, written in the same language).

8.5 Conclusions & Future Work

This chapter presented TFLMs, a probabilistic model for fault localization that can be learned

from a corpus of buggy programs. This allows the model to generalize from previously seen bugs

to more accurately localize faults in a new context. TFLMs can also incorporate the output of

other fault-localization systems as features in the probabilistic model, with a learned weight that

is dependent on the context. TFLMs take advantage of recent advances in tractable probabilistic

models to ensure that the fault location probabilities can be inferred efficiently even as the size of

the program grows. In our experiments, a TFLM trained with TARANTULA as a feature localized

bugs more effectively than TARANTULA or SBI alone, on three of the four subject programs.

In this work, we used TFLMs to generalize across sequential versions of a single program.

Given adequate training data, TFLMs could also be used to generalize across more distantly-related

programs. The success of this approach relies on the assumption that there is some regularity in

software faults, i.e. the same kinds of errors occur repeatedly in unrelated software projects, with
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sufficient regularity that a machine learning algorithm can generalize over these programs. Testing

this assumption is a direction for future work.

Another direction for future work is extending TFLMs with additional sources of information,

such as including multiple fault localization systems, and richer program features derived from

static or dynamic analysis (e.g. invariants [59, 18]). TFLM-like models may also be applicable

to debugging methods that use path profiling [21], giving the user more contextual information

about the bug, rather than just a ranked list of statements. The recent developments in tractable

probabilistic models may also enable advances in other software engineering problems, such as

fault correction, code completion, and program synthesis.
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Chapter 9

CONCLUSION

One of the central challenges in statistical relational learning is the tradeoff between expres-

siveness and tractability. This dissertation proposed several inference and learning approaches that

make statistical relational learning more practical for real problems.

9.1 Contributions of this Dissertation

In this dissertation, we explored two strategies for dealing with intractability in statistical relational

models: (a) better approximate inference methods, and (b) richer statistical relational represen-

tations that still allow efficient inference and learning. The following are our inference-related

contributions:

• We proposed Markov logic decision networks (MLDNs), a representation for utility maxi-

mization problems in relational domains. MLDNs extend Markov logic networks with action

and decision predicates.

• We proposed Expanding Frontier Belief Propagation (EFBP), an approximate propositional

algorithm for expected utility maximization, based on loopy belief propagation. We pro-

vided bounds on the difference between the marginals computed by EFBP and standard BP.

Empirically, EFBP is several orders of magnitude faster than BP, and produces extremely

similar results.

• We theoretically analyzed two approaches for approximate lifted belief propagation, deriv-

ing error bounds for the lifting approximation. In the course of this analysis, we extended

Ihler et al.’s [64] BP error bounds to arbitrary factor graphs.
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• We proposed ∆LNC, an efficient algorithm for updating the structure of a lifted network

with incremental changes to the evidence. ∆LNC works by retracing the path the changed

atoms would have taken during lifted network construction (LNC), modifing the network

as necessary. Experiments on video segmentation and viral marketing problems show that

∆LNC provides very large speedups over standard LNC, making it applicable to a wider

range of problems.

The following contributions are related to learning richer statistical relational models:

• We proposed a model and learning algorithm for Multiple Hierarchical Relational Clustering

(MHRC), unifying several previous approaches to relational clustering.

• We proposed Relational Sum-Product Networks (RSPNs), a new tractable first-order proba-

bilistic model. We also presented LearnRSPN, the first algorithm for learning high-treewidth

tractable statistical relational models. Empirically, LearnRSPN outperforms conventional

statistical relational methods in accuracy, inference time and training time.

• We presented TFLMs, a probabilistic model for software fault localization, based on similar

ideas to RSPNs. TFLMs can be trained on a corpus of previously seen bugs, learning to

recognize commonly occurring bug patterns. TFLMs can also include the output of other

fault localization systems as features in the probabilistic model. In our experiments, TFLMs

with TARANTULA as a feature localized faults more effectively than TARANTULA alone.

9.2 Directions for Future Work

Each of the contributions described above suggests several items for future work. Below, we first

discuss the future work for each individual contribution, and then outline some broader research

directions.
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Relational Decision Theory

In chapter 3, we proposed an algorithm for utility maximization in Markov Logic Decision Net-

works. However, learning the structure and parameters of MLDNs is an open problem. An algo-

rithm for learning MLDNs would make them applicable to relational reinforcement learning, and

other forms of utility-guided learning.

Our applications of MLDNs used a simple greedy search over actions. A greedy search has

the advantage of allowing much of the computation to be reused, when combined with algorithms

such as EFBP (chapter 3) and ∆LNC (chapter 5). However, for problems with rich sequential or

relational structure, a more sophisticated search algorithm may be needed. An important research

direction for MLDNs is the design of richer search algorithms over action assignments that still

allow efficient repeated inference.

EFBP and ∆LNC

EFBP and ∆LNC are general-purpose repeated inference algorithms. In this work, we applied

them to the problems of utility maximization and image segmentation in video streams. However,

they may also be useful for many other repeated inference problems, such as Marginal MAP, weight

learning, etc.

Both EFBP and ∆LNC were formulated to efficiently recompute marginal probabilities to in-

corporate changes in the evidence. However, both algorithms can be straightforwardly extended to

incorporate changes in the model structure. This makes them applicable to the problem of structure

learning in propositional and relational graphical models.

EFBP and ∆LNC allow the reuse of computation in propositional and lifted belief propagation.

However, other approximate algorithms (e.g. MCMC, MC-SAT [112]) may also allow some of the

computation to be reused as the evidence changes. Developing repeated inference versions of other

propositional and lifted inference algorithms is another promising direction for future work.
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Approximate Lifting

Lifted inference has been an active research area in recent years, with many recent approaches

based on algorithms other than belief propagation [139, 54, 141]. Extending these algorithms to

take advantage of approximate symmetries is another direction for future work.

Relational Sum-Product Networks

One of the key limitations of RSPNs is that applying them to a new domain requires the domain

expert to provide a part structure for each new mega-example. Developing an efficient, princi-

pled approach to automatically discovering this part structure would make RSPNs more widely

applicable.

Another direction for future work is extending relational decision theory to RSPNs, allowing

computationally tractable decision-making in relational domains.

As defined in chapter 7, RSPNs make use of the notion of finite exchangeability [38]. However,

Diaconis and Freedman also defined a more general notion of partial exchangeability. Extending

RSPNs to take advantage of partial symmetries would potentially make the model more tractable

and statistically robust.

Tractable Fault Localization Models

In this work, we used TFLMs to generalize across sequential versions of a single program. Given

adequate training data, TFLMs could also be used to generalize across more distantly-related pro-

grams. The success of this approach relies on the assumption that there is some regularity in

software faults, i.e. the same kinds of errors occur repeatedly in unrelated software projects, with

sufficient regularity that a machine learning algorithm can generalize over these programs. Testing

this assumption is a direction for future work.

Another direction for future work is extending TFLMs with additional sources of information,

such as including multiple fault localization systems, richer program features derived from static

or dynamic analysis (e.g. invariants [59, 18]), versioning system logs, human annotations, etc.
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TFLM-like models may also be applicable to debugging methods that use path profiling [21],

giving the user more contextual information about the bug, rather than just a ranked list of state-

ments.

The recent developments in tractable probabilistic models may also enable advances in other

software engineering problems, such as fault correction, code completion, and program synthesis.

9.2.1 Broader Directions

Despite the variety of representations and problem settings considered in the dissertation, our al-

gorithms derive much of their efficiency gains from the following two principles:

• Exploiting Symmetries

Detecting symmetries in a probabilistic model allows computation to be performed once and

reused across all symmetric components of the model. This is most apparent in the case

of lifted inference, but our repeated inference algorithms (EFBP and ∆LNC) can also be

viewed through the lens of symmetry: in this case, we exploit symmetries across different

evidence assignments. RSPNs are also rich in symmetries, in the form of exchangeable parts.

All these algorithms can be improved by broadening the classes of symmetries we exploit.

Exact symmetries are rare in real datasets. The approximate lifting techniques analyzed in

this paper exploit the notion of ‘approximate symmetry’, and we provide bounds on how

much the approximation affects our computed probabilities. EFBP similarly exploits ap-

proximate symmetries across evidence assignments. ∆LNC exploits symmetries both within

each evidence assignment, and across evidence assignments. RSPNs only make use of exact

symmetries; in addition to the possible use of partial exchangeability as discussed above,

they may also be extended to exploit approximate symmetries (making the model approxi-

mate, but also gaining the additional computational efficiency and statistical robustness that

result from the exploitation of symmetries). Another research direction is extending MHRC

and TFLM to make use of exact and approximate symmetries.
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Our algorithms could also be extended to make use of domain-specific symmetries. For

example, many vision problems such as object detection and image segmentation may be

symmetric with respect to rotation, reflection, translation etc. Potential symmetries to exploit

in natural language processing tasks include paraphrasing and synonymy.

• Variable Decompositions

A variable decomposition in a model is a partition of its random variables into indepen-

dent subsets. This makes the model more computationally tractable, but sacrifices the abil-

ity to model relationships and dependencies among variables in different partitions. The

MHRC learning algorithm we propose first decomposes the variables in the model, and

then learns a hierarchical clustering for each subset. In contrast, SPNs (and by extension

RSPNs and TFLMs) make the decompositions context-specific, allowing the dependencies

to be modeled in some contexts but not in others. This allows them to reap the computa-

tional benefits of the independence assumption, without sacrificing as much representative

power. Allowing MHRC to exploit context-specific independence in this manner may im-

prove the model’s ability to predict missing values in the database. Detecting and exploiting

approximate variable independence might also enable more efficient approximate inference

in MLN-like models.
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