
Reconciling Environment Integration and
Scftware Evolution

KEVIN J. SULLIVAN and DAVID NOTKIN

University of Washington, Seattle

Common software design approaches complicate both tool integration and software evolution
when applied in the development of integrated environments. We illustrate this by tracing the
evolution of three different designs for a simple integrated environment as representative
changes are made to the requirements. We present an approach that eases integration and
evolution by preserving tool independence in the face of integration. We design tool integration

relationships as separate components called mediators, and we design tools to implicitly invoke

mediators that integrate them. Mediators separate tools from each other, while implicit invoca-

tion allows tools to remain independent of mediators. To enable the use of our approach on a
range of platforms, we provide a formalized model and requirements for implicit invocation

mechanisms. We apply this model both to analyze existing mechanisms and in the design

of a mechanism for C++.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution and Mainte-
nance—enhancement, extensibdity; D.2. 10 [Software Engineering]: Design—methodologies:

K.6.3 [Management of Computing and Information Systems]: Software
Management—software development, software maintenance

General Terms: Design

Additional Key Words and Phrases: Abstract behavior type, behavior abstraction, component

indepmdence, environment integration, event mechanism, implicit invocation, integrated envi-

ronment, mediator, mediator\ event design, software evolution, tool integration

1. INTRODUCTION

An integrated environment is a collection of software tools that work together,

freeing the user from having to coordinate them manually. An integrated

programming environment with tools for text editing, compiling, and debug-

ging, for example, might ensure that when the debugger reaches a breakpoint

the editor scrolls to the corresponding source statement. Integrating these

This research was funded in part by NSF grants CCR-8858804 and CCR-9113367, AFOSR grant

89-0282, Digital Equipment Corp., Xerox Corp., Tokyo Institute of Technology, and Osaka

University. K. Sullivan was funded in part by a GTE fellowship. An earlier version of this paper

appeared in the Proceedings of SIGSOFT90.
Authors’ address: Department of Computer Science and Engineering, FR-35, University of

Washington, Seattle, WA 98195
permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission.

01992 1049-331X/92/0700-229 $01.50

ACM Transactions on Software Engineering and Methodology, Vol 1, No 3, July 1992, Pages 229-26S

230 . K. J Sullwan and D Notkln

tools relieves the user from the tedium of locating source files and line

numbers, and supports instead the primary task, finding the bug.

Integrated environments support tasks in many domains. These include

word processing systems integrating editors, outlining tools, and style and

spelling checkers; financial systems integrating spreadsheets, portfolio

databases, and tax preparation tools; programming environments integrating

compilers, editors, debuggers; and sW%ware development environments inte-

grating tools for many phases of the software life-cycle, from planning and

analysis through retirement.

Managing the complexity of integrated environments is hard. Many of the

difficulties are similar to those encountered in any medium- to large-scale

software system: requirements must be satisfied; implementation decisions

should not be unduly constrained; components should be reused when possi-

ble; requirements evolve. But environment integration produces an addi-

tional, complicating tension. Software evolution, which is unavoidable in

practice, is easiest when system components are largely independent; but

integration requires fine-grained coordination of tools, and hence of system

components.

Integrated tools are often designed by merging responsibility for the inte-

gration relationships into the tools themselves. Knowledge of the relationship

between an editor and a debugger, for instance, might be designed into both

the editor and the debugger components. This can lead to unmanageably

complex tools. In the worst case, each tool interacts with every other to

manage complex integration relationships in addition to its own basic func-

tions. This approach also distributes decisions regarding integration through-

out the environment: tool A has to know how it relates to B and also B to A,

for instance. Furthermore, intermingled tools are statically sculpted to partic-

ipate in specific relationships. The resulting complexity of individual tools,

the connections among tools, and the distribution of integration concerns all

complicate software evolution.

Another approach is to design integration relationships as separate compo-

nents that encapsulate tools in order to effect their integration. For example,

an editor and a debugger might be wrapped in a third component that

interacts with the user and manages the underlying tools on the user’s

behalf. Although the tools themselves remain independent, encapsulated

tools cannot be accessed independently. This design technique complicates

evolution by making it hard to change, add, and remove tools and integration

relationships. We illustrate these ideas more carefully in Section 2, through

three designs for a simple specification.

These design styles arise in part because system specifications often merge

tool and integration concerns or frame integration requirements in terms of

explicit tool invocations. To ease evolution, then, we need to structure both

specifications and designs to reduce the complexities that result from integra-

tion. Our goals should be to keep tool complexity proportional to function,

to localize decisions regarding both tools and integration relationships,

and to do this while also facilitating tool integration.

ACM TransactIons on Software Engmeermg and Methodology, Vol. 1, No. 3, July 1992.

Reconciling Environment Integration and Software Evolution . 231

We have developed an approach that appears to reconcile environment

integration and software evolution to a reasonable degree. The key to our

approach is to define tool integration relationships separately from the tools

themselves and to connect the tools to these integration components through

an implicit invocation mechanism.

Applying this approach yields a system composed of a set of independent

and visible tool components plus a set of separate, or externalized, integration

components, which we call mediators. At its heart, we stress the importance

of keeping tool components visible in contrast to encapsulated and indepen-

dent in contrast to intertwined. New integration relationships are easier to

design when tool components are visible, while tool independence eases both

evolution and integration. 1

In Section 2 we present an example that illustrates the sorts of problems

encountered when traditional designs are confronted with the combination

of integration and evolution. In Section 3, in the context of this example,

we present our approach and show how it eases the tension between

these conflicting interests. We also discuss our use of mediators and

implicit invocation more fully. In particular, we present a simple, formal

mod el that can serve as a starting point in the design of implicit invocation

mechanisms. We discuss additional requirements that implicit invoca-

tion mechanisms should meet to support our approach. We also sketch the

design of our mechanism for C++.

In Sections 4 and 5 we summarize our experiences with this approach.

Section 4 discusses how our approach can be applied to meet requirements

that integrated environments tend to generate. In Section 5 we briefly

present several systems that we have built using our approach. Sections 6

and 7 are devoted to a discussion of related work. In Section 6 we apply our

imp] icit invocation model to analyze several existing mechanisms to gain a

better understanding of their key similarities and differences. In Section 7 we

discuss other systems that separate integration relationships from the com-

ponents they relate. We conclude, in Section 8, with a brief summary and a

discussion of the strengths and limitations of our effort.

2. TRADITIONAL DESIGN APPROACHES

Traclitional design approaches tend to produce integrated environments that

are hard to change as requirements evolve. We illustrate this by applying

thres such approaches to requirements for a simple integrated environment.

We then challenge each design with each of two enhancements. The basic

specification and the enhancements are intended to capture key aspects of

integration and evolution in a simplified framework. All three designs compli-

cate evolution, either by encapsulating components or by merging tool and

integration concerns.

JInde pendence is also closely related to tool reusability, but we do not stress this connection in

this article.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 3, July 1992.

232 . K. J, Sullivan and D Notkm

2.1 Initial Specification

The two “tools” in our environment manage a set of points and a set of pairs

of these points. The user can create points and, given two points, can create a

pair. The user can also insert and delete points and point-pairs into and from

the point and point-pair sets respectively. In addition, we specify an “integra-

tion relationship” between the point and point-pair sets: the two sets should

form a graph. We thus will be justified in referring to points and point-pairs

at vertices and edges, respectively.

The vertex (i.e., point) type stores a pair of coordinates and exports

methods for vertex creation, for getting and setting the coordinates and for

testing equality with another vertex. The edge (i.e., point-pair) type stores

references to the two vertices and exports methods for edge creation, for

getting these vertices and for testing equality with another edge. The set

types export methods for set creation, element insertion, deletion, and mem-

bership testing, and for getting an iterator object that can return each

element in turn.

To the vertex-set and edge-set tools (which we denote VS and ES) we add a

third, a user interface, through which the user can create, insert, and remove

vertices and edges. This structure makes it possible to violate the require-

ment of the integration relationship—that the sets form a graph—by insert-

ing an edge into ES for which neither or only one of the vertices of the edge is

in VS or by deleting a vertex from VS upon which one or more edges in ES is

incident.

To maintain the required constraint we integrate the tools under an

integration relationship G that ensures that the invariant

G(VS, ES) = ES c VS X VS

is maintained. Many different policies could be defined to maintain this

invariant—one that undoes the deletion from VS of any vertex on which

edges in ES are incident, for example. In this case we specify a policy that

preserves the user’s last action: when a vertex is deleted from VS, delete from

ES all edges incident on that vertex; when an edge is inserted in ES, check

the membership in VS of the edge’s vertices and insert into VS each vertex

that is not already a member.

We often specify a given integration relationship as a combination of an

invariant and a policy to maintain this invariant in the face of changes.
Often, these policies have to satisfy additional requirements, such as preserv-

ing rather than undoing the user’s last change.

2.2 Two Representahve Enhancements

We now consider two enhancements to the specification, which we discuss

with respect to each forthcoming design in order to assess the robustness of

these designs with respect to evolution. The first enhancement is a change to

an integration relationship. We enhance G to support lazy, in addition

to eager, maintenance of the graph relationship. The new invariant is

G’(VS, ES) = (eager ~ G) V lazy.

ACM TransactIons on Software Engineering and Methodology, Vol 1, No 3, July 1992

Reconciling Environment Integration and Software Evoluhon . 233

Our new policy for G’ is to apply the policy for G when in eager mode, to

make no compensating updates when in lazy mode, and to reestablish the

invariant when toggling from lazy to eager mode by inserting into VS any

vertex not already a member upon which any edge in ES is incident.

‘I’he second enhancement we consider is a change to the set of tools and

integration relationships in the environment. We illustrate by integrating

a rlew tool, which involves adding both a tool and an integration relation-

shipp. The new tool N stores a nonnegative integer and exports methods for

incrementing, decrementing, and getting the value of this number. The new

relationship is that N should reflect the cardinality of VS. We thus define an

integration relationship C with invariant

C(N, VS) = N = IVSI.

Our policy for C, which, again, retains the effects of user changes, is to

increment or decrement N whenever a vertex is inserted into or deleted from
VS, and to insert a vertex into or delete one from VS whenever N is changed.

2.3 Three Traditional Designs

We now apply three traditional design approaches to the basic requirements.

The resulting designs are intended to reflect characteristics that arise in

practice when these design approaches are applied. All three designs include

components for the vertex and edge types that are defined identically, so we

do not discuss them any further. The design of the user interface differs in

each case, but is always defined directly in terms of the visible components;

we also omit further discussion of this component.

The components realizing the tools VS, ES, and N and the integration

relationships G, G’, and C, on the other hand, vary considerably based on the

design approach applied. These differences are at the heart of the matter, so

we focus on these components.

2.3.1 Encapsulation. The first design, shown in Figure I,z defines three

components, G, VS, and ES. The components VS and ES realize the tools VS

and ES, while G realizes the integration relationship G through encapsula-

tion of VS and ES.S The methods exported by G call VS and ES to insert

and delete vertices and edges on the user’s behalf. Since G encapsulates

VS and ES, only G’s methods are visible to the user interface.

When one of these methods disrupts G, by deleting a vertex on which edges

in iZS are incident, for example, the method reestablishes the relationship by

2In the figures discussed in this and the following section, components are represented
by olouble-framed boxes and the methods they export by single-framed boxes. Shaded boxes
denc]te hidden components or methods not accessible to the user interface, while unshaded

boxes denote visible components or methods. Black arrows denote explicit, and grey arrows,

implicit method invocation. The tail of an arrow designates the method making the invocation,
and tbe head, the method that is invoked. If the head points to an entire component, one or
more methods in that component are invoked. For clarity, only invocations made to maintain
integration relationships are represented, in contrast to those implementing basic tool functions.

3We use a boldface font to denote specification components such as VS, and an italic font for

corresponding design components such as VS.

ACM Transactions on Software Engmeermg and Methodology, Vol. 1, No. 3, July 1992.

234 . K. J. Sullivan and D. Notkin

G

Figure 1

[ES_Delete(e) VS_lnsert(v)
1

invoking a separate update method defined by G. After G. VS–Delete(u) calls

VS. Delete(u) to delete u from VS, for example, it calls G. G-VS-Delete(u)4 to

ensure the consistency of G. This method iterates over the edges of ES

deleting any incident on u. G encapsulates VS and ES to prevent other

components from invalidating G by bypassing these necessary update meth-

ods.

This design is fairly clean. Separate aspects of the specification-the tools

VS and ES and the relationship G—are represented separately; and within

the design, VS and ES are independent of each other and of G: there are

no invocations from VS to ES, from ES to VSJ or from VS or ES to G. G

does invoke VS and ES explicitly, but this is reasonable since G manages the

relationship between them. However, VS and ES are encapsulated by G, and

this, as we shall see below, complicates integration of new tools.

First, though, we note that designing G as a separate component G eases

evolution by localizing the effects of changing G to G’, as shown in Figure 2.

We add a mode-bit (LazyFlag), a method to switch modes, and we modify the

update methods to maintain the new relationship G’. These changes

are reasonable: they are implied by the change to the specification,

and the overall change to the design is proportional to the size of the

change to the specification. Notably, VS and ES do not have to change

in order to change the relationship between them.

The second change, shown in Figure 3, is harder, however, because G

encapsulates VS, which makes it hard to integrate N with VS. N can be

designed as an independent component N, but then we have to migrate N

into G, where VS is visible. Thus, we expand G’s interface with public

methods to change N and with private update methods to maintain C
(as well as G). The new version of G really represents a composition of
G and C, as the new name GC indicates.

i Our method names reflect the component defimng the method and the function performed.

G. VS-Delete(u) M defined in G and deletes a vertex from VS by calling VS. Delete(u); G.G_

VS_Delete(v) maintains the relationship of G in the face of the deletion of a vertex from VS, for

example. Update methods, such as G. G–VS–Delete(u), are not strictly needed. This code could

be placed directly into the methods exported from G. However, the separation makes the code
and the explanation clearer by Isolating the basic tool activities from the actions needed to
preserve G.

ACM TransactIons on Software En~neermg and Methodology, Vol 1, No. 3, July 1992

Reconciling Enwronment Integration and Software Evolution .

G’

ES_Delete(e)
~~1

VS_lnsert(v)
1

t + t
G’_ES_lnsert(e) G’_ToggleLazyo I G’-VS_Delete(v)

I+ i

I
Vs II 1~1 IILazy Flag ES

II

Figure 2

235

GC

ES_Delete(e)
--l

N_lncremento VS_lnsert(v)

I
ES_lnsett(e) N_Decremento VS_Delete(v)

+ T +

GC-ES_lnsert(e) GC_N_lncremento GC_N-Decremento GC_VS_Delete(v)

I+!&-”pi

Vs N ES

Figure 3

When faced with the integration of a new tool, the encapsulation approach

thus forces a merging of separate concerns. Maintaining C should not require

knowledge of either ES or of G, but this separation is not possible because G

hides VS. When N is decremented the update method of

GC.GC.N.Decrement ()

must not only delete a vertex to restore C, but must also access ES to delete

edges incident on the deleted vertex. The update methods GC.GC–ES–In-

sert(.e) and GC. GC–VS–Delete(v) must be modified, too, even though G has

not been changed at all.

While this design seemed promising at first, it degrades when a new tool is

integrated. Integrating N substantially increases the complexity of G and

damages the correspondence between specification and design by merging G

and C in GC. These factors further complicate future evolution.

This approach is typical. Indeed, one can easily anticipate a programmer

prod ucing the initial design given the original specification. Unix tools exem-

plify this approach. They often have rich and well-modularized inner struc-

tures, but these are hidden from other tools. This decreases the potential for

integrating Unix tools without merging their implementations or making
other major changes to expose internal representations and activities.

2.3.2 Hard- Wiring. The second design, shown in Figure 4, defines two
components, VS and ES, both of which export methods to the user interface.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 3, July 1992.

236 . K, J, Sullivan and D. Notkin

mm
Vs
Insert(v)

Member(v)

Delete(e)
1

I Iterateo I

Figure 4

ES

m
Delete(v) Delete(e)

1

Iterateo Iterateo

G’_VS_Delete(v)
1- 1

G’_ES_lnseti(e)

LazyFlag

t

G_ToggleLazyo
Y

t II

Figure 5

To maintain G, VS and ES invoke each other directly. For example, after

VS. Delete(u) deletes U, it invokes VS. G-VS-Delete(v), which maintains G by

making appropriate calls to the exported methods of ES. Likewise, when an

edge is added, ES. G–ES–Insert(e) calls VS to maintain G.

In contrast with the previous design, this one exposes VS and ES
in an attempt to ease integration of N. In doing so, however, it sacri-

fices the explicit representation of the relationship G in the design and

creates explicit invocation dependencies between VS and ES. These structural

problems complicate both enhancements.

As shown in Figure 5, adding a lazy mode to G is hard because G is not

represented explicitly. Instead, both VS and ES have to be modified when

the relationship between VS and ES is changed. This distribution of G also

makes it hard to know where to place the lazy-mode bit and associated

methods. In Figure 5, the change is made to VS, but the change to ES would

be symmetric. Distributing the change between the components would be

ACM TransactIons on Software Eng-meermg and Methodology, Vol. 1, No. 3, July 1992

Reconciling Environment Integration and Software Evolution . 237

Vs ES

•1 Insert(v)
I

Insert(e)

Member(v) Member(e)
1

Delete(v) Delete(e)

Iterateo
1

Iterateo

GC_VS_Delete(v) GC_ES_lnsert(e)

GC_VS_lnsert(v)

I

GC_N_Decremento

GC_N_lncremento
I

Figure 6

confusing. Creating another component may be the best solution, but VS and

ES would still have to change and the interactions among the three compo-

ne.mts would be similar to those in our design.

Furthermore, as shown in Figure 6, this design does not ease the integra-

tion of N, even though VS is exposed. VS must still be modified to handle the

relationship C. Moreover, the modified design merges aspects of C and G in

VS, further decreasing the independence of VS and complicating the corre-

spondence between specification and design.

Software designs based on this approach abound. It is hard to cite specific

systems, but not hard to find advocates of this approach. Coad and Yourdon’s

object-oriented analysis method, for example, is based precisely on subsystem

(subject) composition by explicit invocation [6]. Using this approach for an
integrated environment would be inadvisable. It complicates evolution and

produces structures that degrade rapidly as enhancements are made. It

makes it hard to change and add relationships and also to replace or reuse

toc,ls, since each may be tightly intertwined with many others.

2.4 Events

The third design, a variation of the second, employs implicit invocation in

pklCe of the explicit invocations between VS and ES. Briefly, implicit invoca-

tion occurs when one component announces an euent that it has defined

to which other components have attached methods to be executed. The key

point is that the component making an implicit invocation—the one that

clei~nes the event—need not know the names or even the number of methods
invoked when it announces the event. We discuss this topic further in

Sections 3 and 6.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 3, July 1992.

238 . K. J. Sullivan and D, Notkin

w ES

Member(v)

I
[

Iterateo

G.ESebtserLed(e)

Insert(e)

Delete(e)

Member(e)

Itereteo

G_vS_Deleted(v)

-

Figure 7

In this design, shown in Figure 7,s VS and ES are extended with events

that they announce when insertions or deletions succeed. The update meth-

ods are similar to those in the previous design, but in this design each

operates on the component that defines it rather than on the other com-

ponent. To complete the design, we associate the ES. G–VS–Deleted(u)

update method in ES with the VS. Deleted(u) event of VS and similarly

the update method in VS with the edge addition event of ES.

This design has characteristics similar to those of the previous one. Chang-

ing G to G’ poses exactly the same problems. The representation of G is

distributed through VS and ES, making it necessary to change both compo-

nents to change the relationship between them. Implicit invocation has no

fundamental affect on the difficulty of making this change.

This design does allow N to be integrated with VS without changing VS, as

shown in Figure 8, but not without sacrificing the independence of N. To

maintain C when VS changes, we associated update methods in N with

events of VS. In contrast, when N changes, it invokes VS explicitly to add or

delete a vertex. This yields a hybrid hard-wired and event-based design. VS
remains independent, but iV does not. An alternative that preserves the

independence of N is to add update methods to VS, associated with events of

N. But this requires changing VS.

Thus there is no completely satisfactory way to integrate a new tool.

Furthermore, both alternatives merge tool and integration concerns, and the

one that changes VS merges multiple relationships (G and C) in VS.

5Events are drawn as darkened boxes; the connection between events and methods to be

Implicitly invoked is shown in tabular form. Tracing the connections from events through the

event-method association to methods is helpful.

ACM TransactIons on Software Engineering and Methodology, Vol. 1, No. 3, July 1992,

Reconciling Environment Integrahon and Software Evolution . 239

w ES

Insert(v)

Delete(v)

Member(v)

Iterateo

IL-+G_ES_kwwtad(e)
1 II

Figure 8

insen(e)

Delete(e)

‘a
G_VS_Deleted(v)

I
N

Increment

‘~]Dacremento

C_VS_Deleted(v}

C_VS_lneerted(v)

Many contemporary integration frameworks take this approach. These

include FIELD [27], the Hewlett-Packard SoftBench [5], and the Smalltalk-80

Moclel-View-Controller (MVC) [21]. When implicitly invoked, tools update

themselves to maintain the specified integration relationships. MVC, for

example, takes the hybrid approach: models implicitly invoke views, but

views explicitly invoke models.

3. THE MEDIATOR/ EVENT APPROACH

In this section we present a design approach that appears to ease the

evolution of integrated environments. We illustrate it with a design for

the graph environment. Our approach is based on mediators, separate compo-

nents designed to integrate independent tools, and implicit invocation. By

sepcwate we mean a component defined as a unit, such an abstract data type,

an object, or a Unix program. By independent we mean a component that

does not explicitly invoke any component other than itself. Following our

desj gn, we describe our approach in greater detail and discuss the role played

by implicit invocation.

3.1 An Improved Design

As in the encapsulation-based design, we define three components, VS, ES,

and G, as shown in Figure 9. VS and ES realize the tools and provide

ACM TransactIons on Software Engmeermg and Methodology, Vol. U No. 3, JUIY 1992.

240 . K, J Sullivan and D. Notkln

w
Insert(v)

I Delete(v) I

Member(v)

G_ES_lnsefted(e)

Iterateo
J

e
Figure 9

ES

Insert(e)

Delete(e)

[Member(e)

I lterateo I

the methods called by the user interface; G realizes the relationship

G and provides the update methods used to maintain the integration rela-

tionship. In contrast with the earlier design, this G does not encapsulate VS

or ES. Instead, we use implicit invocation, as in the third design, to guaran-

tee that update methods are called as necessary. Specifically, we associate

the update methods of G with the insertion and deletion events of VS and

ES. G in turn explicitly invokes VS and ES to reestablish G. This replaces

the encapsulation by G of VS and ES in the first design with implicit

invocation of G by VS and ES in this design.

In contrast to earlier designs, ours eases both the change in G and

integration of N. Changing G is easy because the relationship is localized

in a separate component, as in the first design. In addition, designing

N as a component N that announces appropriate events allows us to

design C as a mediator C that is implicitly invoked by N and VS. When a

vertex is deleted from VS, for example, the event announcement invokes both

G and c, which then update ES and N to restore G and C, respectively.

Figure 10 depicts our design with both enhancements simultaneously,

which would have been hard under the previous approaches. In this design,

VSJ ES, and N are independent, thus easier to understand, reuse, and

compose. More importantly, by simply adding or removing mediators the

environment can be changed to provide any of the following subsets of

integration relationships: { }, {G}, {G’}, {C}, {G, C}, and {G’, C}. Finally, the

correspondence between specification and design is preserved, easing future

enhancement.

In review, the first design cast G as a separate component and V and E as

independent components. This eased evolution of G, but encapsulating VS

and ES made it hard to integrate N. The second and third designs exposed

VS and ES to ease integration of N, but intertwined these components to

maintain G. This made it hard both to change G and to integrate N. The

ACM TransactIons on Software Engineering and Methodology, Vol 1, No 3, July 1992.

Reconciling Environment Integration and Software Evolution . 241

m
Member(v)

1 II

F====z Lazy Flag

ToggleLazyo

“’E&Ed

Delete(e)

Member(e)

Iterateo

1
II

c
C_N_Decrementedo

Event Method
C_N,Jncrementedo

~ ‘E/

ES.inserted(e) G’.G_ES_lnserted(e)

VS. Delfled(v) G’.G_VS_Deleted(v)

VS.lnsertad(v) C.C_VS_lnserted(v)

VS. Dak4ed(v) C.C_VS_Deleted(v)

N.lncrementedo C.C_N_lncrementedO

N. Decrc!mentedo C.C_N_Decrementedo
I

Figure 10

third design used implicit invocation to preserve the independence of VS and

ES. It also allowed N to be integrated without changing VS, but in other

regards it had the same problems as the second because it failed to separate

tool and integration concerns.

Our design combines positive aspects from each of these. We design tool

integration relationships as separate components, and we keep VS and ES

both independent and visible, which eases both evolution and integration.

3.2 Why Mediators and Implicit Invocation

A misunderstanding we sometimes encounter when presenting this approach

is tile notion that mediators represent a new programming mechanism. In

truth, they only represent a new usage of existing mechanisms. The media-

tors G and C, for example, could be implemented as objects or Unix tools.

This has several advantages. Since mediators are first-class design and

implementation components, they can maintain state and invoke tools as

necessary to maintain complex relationships. When implemented as objects,
they also respect tool encapsulation boundaries. They can export abstract

interfaces, announce their own events, and be composed in arbitrary ways.

For example, they can be used within designs of larger components, and can

be treated as tools to be integrated with other tools. Finally, they can be used

ACM TransactIons on Software Engineering and Methodology, Vol. 1, No. 3, July 1992

242 . K. J, Sullivan and D, Notkin

in existing languages and on existing platforms. Mediators do not represent a

mechanism, but an approach to structuring environment designs.

Taking full advantage of our mediator-based design approach is impossible,

however, without an implicit invocation programming abstraction. The avail-

ability of explicit invocation alone implies dependence of an invoking compo-

nent on the component invoked. The reason is that the invoking component

must import the name of the method to be invoked from the component that

defines it, In a mediator-based design, components would have to explicitly

invoke mediators that relate them to other components, decreasing indepen-

dence and, as shown in Section 2, complicating evolution.

The availability of an implicit invocation mechanism—an abstraction not

supported across a wide range of languages—can be used to reverse such

dependencies. Specifically, the invoking component simply exports an event;

it is the component whose method is to be invoked that must import the

name of the event. Since the invoking component does not import the names

of the methods that it invokes, it can remain independent. This allows the

designer to distinguish between situations in which a component must

communicate and those in which it may communicate.

We can now present our approach in a nutshell. We design integration

relationships as separate components to eliminate dependence of tools on

each other. We then design tools to implicitly invoke mediators to eliminate

the dependence of tools on mediators while still ensuring that update meth-

ods are invoked when necessary. The resulting combination of tool indepen-

dence, tool visibility, and separate representation of relationships reconciles,

to a reasonable degree, the conflict between integration and evolution.

3.3 Developing an Implicit Invocation Mechanism

Implicit invocation is not a new idea. Many mechanisms supporting this

abstraction have been designed and are in use. These include, among many

others, the LOOPS active values system [32], which is intended to support

program debugging and simple graphical view consistency-maintenance; the

change/update protocol of Smalltalk-80 used by the Model View Controller

(MVC) to support complex graphical views; the FIELD message multicast
mechanism, intended as a mechanism for integrating Unix-based tools; and

relational triggers in AP5 [7], intended to support declarative, relational

constraint-based programming.

A formal model. Despite the diversity of purposes and designs, in the

abstract these mechanisms have key underlying similarities. We have devel-

oped a minimalistic formal framework to try to capture these similarities,

both to better understand existing mechanisms and as a starting point for

designing new mechanisms.

We characterize implicit invocation mechanisms in terms of a set E of

events, each of which can be announced; a set M of methods, each of which

can be invoked; a mapping EM: E ~ 2 ‘1 from events to multisets of meth-

ods; and an event announcement procedure A that invokes all the methods

AC!MTransactIons on Software Engmeermg and Methodology, Vol 1, No 3, July 1992

Reconciling Environment Integration and Software Evolution . 243

associated with a given event whenever that event is announced.G We thus

characterize the underlying structure of implicit invocation mechanisms in

terms of a four-tuple (E, M, EM, A). We use this model as the basis for the

design of a mechanism extending C++, and in Section 6 we apply it to an

analysis of several existing mechanisms.

Additional requirements. In addition to this model, we have developed a

set of requirements for implicit invocation mechanisms intended to support

mediator-based design. These requirements reflect the idea that implicit and

explicit invocation are dual to each other and of equal importance as pro-

gramming abstractions. They are also intended to lead to mechanisms that

have characteristics that help in the design and maintenance of complex

systems. We thus adopt usage patterns established by explicit invoca-

ticm mechanisms, such as the inclusion of event declarations in component

interfaces.

First, because the events that a component announces are as important to

its specification as its methods, event names and signatures should be

declared in component interfaces. Failure to satisfy this requirement makes

it harder to use components that announce events. Meyers [25] has pointed

out difficulties owing to this problem, which arise in FIELD, particularly in

urlderstanding events that are announced, which obviously is important

when integrating new tools.

A second, related, requirement is that event announcement be explicit in

source code. This tells readers precisely when control can be passed to other

components. Clarifying component behaviors in this way eases reasoning

about Components that use implicit invocation. It also gives the designer

precise control over which events are announced and when.

Third, any component should be able to declare events. This allows the

designer to use implicit invocation when it seems appropriate, independent of

the kind of component involved. Limiting the components that can use

implicit invocation complicates design by limiting the designer’s freedom to

organize dependencies: components that cannot announce events cannot be

integrated in the same way as those that can.

Many systems fail to meet this requirement. These include LOOPS, in

which only variables announce events; APPL/A [34], in which only relations

armounce events; and Gandalf, which limits events to abstract syntax tree

ncldes [16]. These systems were not primarily intended to support general

programming with implicit invocation, so they cannot be faulted in this

dimension, but experiences with some of them indicate that these limitations

significantly constrain design.

Fourth, the designer should be able to specify new event names and

signatures. The available events should not be limited to those defined by the

GThe range of EM is a multiset because many implicit invocation mechanisms allow multiple
copies of a method to be associated with an event, with each being invoked on announcement of
the event.

7Signatures are appropriate in languages in which method signatures are also declared.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 3, July 1992.

244 . K, J. Sullivan and D. Notkin

system. Failure to meet this requirement complicates design in much

the same way as restricting the components that can announce events, by

denying the designer full control over the use of implicit invocation. We

extensively exploit the ability of components to declare arbitrary events in

the systems we have built.

A system that fails to meet this requirement is the Gandalf kernel. It

defines about a dozen special-purpose events that are used to invoke action

routines. Another is LOOPS, which limits events to variable read and write

operations. AP5, Smalltalk-80, and FIELD, on the other hand, meet

this requirement. In AP5, events are specified using relational predicates.

FIELD events are specified with regular expressions. Smalltalk-80 defines a

few fixed events, but allows for unrestricted event parameters, which enables

encoding of arbitrary events.

Design and implementation. It is straightforward to implement implicit

invocation mechanisms based on our model. It should take no more than a

day or two to implement one in any object-oriented language. The ease with

which such mechanisms can be implemented has significant benefits. It

eliminates costly development efforts, makes it easy to use our approach

without changing platforms, and broadens the range of application domains

in which our approach can be applied. Mechanisms for platforms other than

object-oriented languages are feasible given the equivalent of procedure

pointers. Our primary mechanism, used to implement the examples and

systems in this article, which we now discuss, extends C++ [33].8

In terms of our formal model, we require that each C++ object be able to

declare events, hence our E consists of the collection of events exported by all

the objects in a system. To a given event we want to be able to associ-

ate nonstatic member functions defined by other objects. Thus our M is

the set of nonstatic member functions exported by all objects. EM then

associates multisets of these member functions with events in E. Our

event announcement procedure A behaves as follows. When an event is

announced, the methods associated with the event are executed in an unspec-

ified sequential order. Event announcements should not return until

all invoked methods have returned. Actual event parameters are passed

to the invoked methods using standard C++ parameter passing. One limita-

tion of the mechanism we describe here is that events do not support return
values: signatures are not fully first class. Our design can be extended easily
to fix this, if necessary.

A critical decision in specifying an implicit invocation mechanism is decid-

ing how the designer specifies EM. We take the simplest route. At runtime

an object can register one of its member functions with any appropriately

typed visible event. We require that the signatures of events and associated

‘These systems were actually built using a number of minor variations of the mechanism

we present in this article. The program restructuring tool, described later, used a

CommonLisp/CLOS [3] implementation.

ACM TransactIons on Software Engineering and Methodolo=q, Vol. 1. No. 3, July 1992

Reconciling Environment Integration and Software Evolution . 245

member functions conform. In terms of our model, registering a member

furiction m with event e adds the tuple (e, m) to EM. We also allow objects to

unregister methods, which deletes tuples from EM. Our mechanism is based

on manipulation of EM as a set of tuples. An alternative that we do not

adopt, but which we discuss in Section 6, is to allow the programmer to

manipulate EM indirectly—using high-level expressions that specify sets of

tuples, for example. Nor does our mechanism support statically-bound event-

method connections, although it would be desirable to do so.

The key to implementing this mechanism is to design events as C++

classes. An object declares an event by including an event object as an

instance variable in its public interface. An event object maintains a bag of

pointers to member functions, to invoke when the event is announced, and

exports a method which is used to announce the event. When invoked (i.e.,

when the event is announced), this method simply iterates over the elements

of the bag invoking the designated member functions.

A complicating factor is that in C++ nonstatic member functions cannot be

treated polymorphically (except as uoid”s), even if their declared parameter

lists and return types appear to conform. This problem is that nonstatic

member functions have an implicit first argument, this, with type “pointer to

the class that declares the function.” This makes the types of nonstatic

member functions unrelated in general. Thus, our event objects do not

maintain bags of pointers to nonstatic member functions.

Rather, we use the fact that static member functions have no implicit this

parameter; so if their declared types appear to conform, they do conform. We

therefore define event objects to store bags of pointers to static member

functions, all of the same type. For each nonstatic member function to be

implicitly invoked we define a corresponding static member function with a

parameter list identical to the member function’s, except for an additional

first parameter of type void’. A nonstatic member function is registered with

an event by registering a pointer to the object in which to invoke the member

function and a pointer to the corresponding static member function. When an

event is announced it invokes these static member functions, passing to each

the specified object pointer as the first parameter followed by the rest of the

event actual parameters. The static member function casts the object pointer

to a pointer of the type of the receiving object and invokes the nonstatic

member function through this pointer, passing it the rest of the argument

list.
]Ivent classes themselves export three methods. One implements event

announcement. The signature of this method defines the signature of the

event. The other two support registration and unregistration of static mem-

ber function/object-pointer pairs, as described above. We use C++ macros to

declare and implement event classes with event signatures specified by the

designer. This frees the designer from having to know about how events are
actually announced and associated with methods. We also use C++ macros to

reciuce the clutter required for the auxiliary static member functions,

and to make it appear to the designer that nonstatic member functions are

beimg registered directly with events.

ACM Transactions on Software Engineering and Methodology, Vol 1, No. 3. July 1992

246 . K. J. Sullwan and D. Notkln

Extending this design to meet additional requirements is easy. A new event

class could be defined to impose a partial order on the bag of methods and to

invoke methods respecting this order. The announcement method could use a

C++ threads package such as Presto [I] to invoke registered methods

concurrently. We have not implemented either of these enhancements, but

are reasonably confident that there would be no great problems in doing so.

4. MEDIATOR-BASED DESIGN STYLES

In this section we present ways in which our mediator and implicit

invocation-based approach can be used to model a variety of design styles

especially common to integrated environments; one example is the represen-

tation of a shared database as a collection of views. We also present idioms

for solving some common problems that arise in using mediators and events;

one example is avoiding unbounded circularities.

We have developed idioms for meeting requirements of these sorts while

retaining key characteristics such as component independence, visibility, and

encapsulation of implementation details. We present our solutions through

an example extending the graph environment.

4.1 Views for Tools

Tool-specific views, or representations, of shared data ease integration by

allowing tools to operate on natural interfaces, rather than on interfaces

conjured up to support a range of tools.

Garlan provides views for tools by merging abstract data types (ADTs)

so that each provides a different view of a shared (merged) representation

[11]. In merging, separate interfaces are preserved, but multiple implementa-

tions are replaced with a single implementation that supports both the views

and any necessary consistency relationships among them. A system kernel

produces merged implementations automatically using compatibility maps,

which are selected inductively based on the system’s knowledge of the basic

types and relationships. Different interfaces onto a merged implementation

can then be used by different tools. In Garlan’s approach, a system has a

fixed set of compatibility maps and composition rules; follow-on work loos-

ened this restriction by providing a programming language for defining maps

and composition rules [17].
An advantage of this approach is that it allows merged implementations to

be optimized, with potentially significant savings in both time and space. For

example, two views containing identical elements may share a single instance

of that element in a merged view. On the other hand, the approach prevents

types from being integrated simultaneously in several relationships: a view

interface can be bound to only one merged implementation. Nor is merging

desirable in all cases: protection or reuse concerns may suggest separate

implementations, for example. Finally, in practice, generating merged imple-

mentations may be costly, since the types and relationships needed for a

ACM Transactions on Software Engineering and Methodology, Vol. 1, No 3, July 1992

Reconciling Environment Integration and Software Evolution . 247

broad range of environments are not likely to be known by the system in

advance.

Our design approach illustrates a different way of achieving a similar

structure. We have presented VS and ES as tools, but they can also be seen

as views of a shared graph. G then serves the same role as a compatibility

map, maintaining consistency among multiple views of shared data.

Our approach reuses existing view implementations by composing them

using mediators. This obviates the need for merged implementations or for a

system to generate such implementations. It also allows types to participate

in multiple relationships simultaneously. Consider, for example, the way in
which component Vfl can participate in both the G and C relationships. In

the Garlan-style approach, a single merged type representing the components

VS, ES, and N and the relationships G and C would be produced.

Our approach, however, does not naturally allow for optimization of a set of

views, because we stress the importance of keeping the underlying compo-

nents independent. Thus we are driven, for example, to keep multiple

instances of the identical elements consistent. In cases where the costs of this

are unacceptable, a hand-crafted alternative is required in our approach.

However, in the absence of a clear need for optimization, our approach is

more flexible.

4L.2 Views of Tools

The converse problem is to provide integrated views of tools—single views

representing the states, functions, and activities of multiple tools.

A common solution is to view tools as ADTs and to design integrated views

as ADTs implemented in terms of these tool A13Ts. This is straightforward, in

theory at least, since ADT composition is well understood.

Our approach is similar, but is based on an extension of the notion of ADT.

ADTs define abstractions in terms of method interfaces; our abstractions, in

contrast, also include explicitly exported events. We use the term abstract

behcwioral type (ABT) to distinguish our components from ADTs. By includ-

ing events in the interface, ABTs model components that can abstractly and

concretely participate in integration relationships without sacrificing their

independence.

Our solution to providing integrated views of a collection of tools, then, is to

view tools as ABTs and to design integrated views as ABTs implemented on

top of these tools. Although we have not developed either a formal theory of

ABT composition or even rules of thumb about how to apply this notion, our

experiences with this approach provide some evidence that ABT composition

may be useful as a more general design technique.

We illustrate the approach by extending G to implement a graph ABT in

terms of VS and ES. The main problem in making this extension is to ensure

that the event announcements of G reflect a graph abstraction. Specifically,

viewing the sequence of event announcements of the underlying vertex and

edge sets is not at all the same as viewing a sequence of event announce-

ments that are natural to the graph. For example, a vertex deletion should be

ACM Transactions m Software Enjgneering and Methodology, Vol. 1, No. 3, July 1992

248 . K J. Sullivan and D. Notkln

Vs

[Insert(v)

\ Delete(v)

I Member(v)

I iterateo I1 ,

G

I VS_lnserl(v) I

[VS_Delete(v)

ES_lnsert(e)

ES_Delete(e)

[G_VS_lnsert(v)
I

[
G_VS_Delete(v)

Y

‘f G_E$_lnean(e)

G_ES_Deiete(e)
I

ES

Insert(e)

Delete(e)

Member(e)

I lterateo I

Figure 11

announced only after the incident edges are deleted, even if the deletion from

the underlying vertex set VS actually happens first, which is possible since

VS is visible. Otherwise, the viewer of the graph abstraction will temporarily

see an inconsistent view of the graph in which there are edges containing

nonexistent vertices; that is, the viewer of the graph will not be guaranteed

that the integration relationship G always holds. It is important, however, to

allow the underlying components, such as the vertex and edge sets, to

continue announcing events for those components viewing the underlying

components rather than the graph itself.
A new version of G in which the graph viewers both see a con-

sistent sequence of event announcements, and also never see an inconsis-
tent view of Cl, is presented in Fi~re 11. This graph ABT G exports

public methods and events for vertex insertion and deletion and pri-

vate update methods for maintaining the consistency of VS and ES. The

public methods are implemented as direct calls to corresponding methods in

VS and ES. G. VS–Delete(u), for example, simply calls VS. Delete(u). The

update methods implement the solution to the event announcement problem.

The two update methods G. G–VS–Insert (u) and G. G–ES–Delete(e), are

simple, announcing the events G. VS–Inserted(u) and G. ES–Deleted(e),

respectively. The other update methods, G. G_ES_Insert(e) and

ACM TransactIons on Software Engmeermg and Methodology, Vol. 1, No. 3, July 1992.

Reconciling Environment Integration and Software Evolution . 249

G .G–VS–Delete(v), maintain consistency and announce events. When

G .G-VS-Delete(u), for example, is invoked by deletion of a vertex from VS, it

first deletes from ES edges incident on the deleted vertex and then an-

nounces the vertex deletion event of G. Before this event is announced,

however, each deletion from ES implicitly invokes G. G-ES-Delete(e), which

announces the edge deletion event of G as described above. Thus, G does not

announce the vertex deletion until after announcing deletion of all incident

edges. This design implements a graph ABT G as a composition of the

underlying set ABTs VS and ES. Components interested directly in the

vertex or edge sets are unaffected.

4.3 Abstract Depictions

Chiron-1 [20] is characteristic of user interface systems that maintain consis-

tency between internal and visual representations of components. In Chiron-1,

artists are used to maintain consistency between an abstract depiction and

another arbitrary data type. An abstract depiction is a representation from

which a concrete (i.e., graphical) display of the type can be generated. An

artist is a component that updates an abstract depiction when implicitly

invoked by invocation of an operation exported by the data type, and that

updates the data type when explicitly invoked by the abstract depiction

manager, a part of the Chiron- 1 system.

In our approach, we model this structure by defining appropriate new

components to represent the abstract depictions and new mediators to repre-

sent the artists. In our example, for instance, to create concrete graphical

views of the graph G we define a new component P (for picture) that exports

methods and events for inserting and deleting dots and segments into and

from a representation of a picture. Each dot and segment stores a graphic

that can be directly displayed by a user interface system, such as InterViews

[22]. Dot graphics are drawn as filled circles and segment graphics as line

segments; these are the concrete depictions, or graphical realizations, of

abstract depictions, as in Chiron- 1.

We integrate G and P with a mediator GP that maintains a bijection

between elements of G and P. When a vertex or edge is inserted into or

deleted from G, a corresponding dot or segment is inserted into or deleted

from P. Likewise, when P changes, GP updates G to restore consistency.

This design supports both display and direct manipulation: when any tool

changes G, P is updated, and when a tool such as a mouse handler changes

P, G is updated. P thus serves as an abstract depiction and GP as an artist.

In contrast to Chiron-1, P and GP are undistinguished in our design, while

abstract depictions and artists are fixed types used by all Chiron-1 instances.

Both approaches have benefits. Chiron-1 provides extensive support for user

interface development, including a rich abstract depiction language, a spe-

cialized version of Ada for implementing artists, and a mechanism imple-
menting implicit invocation in a style similar to CLOS wrapper methods [3].

Our approach lacks these mechanisms but generalizes the technique, making

it possible to integrate existing and new user interface systems more flexibly.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 3, July 1992.

250 . K J Sullwan and D. Notkln

4.4 Compound Relationships

Relationships among complex representations can frequently be expressed, in

part, as sets of simpler relationships among parts of the representations. To

provide an example, we extend our relationships between dots in P and

vertices in G by further requiring that the locations of corresponding dots

and vertices remain equal as either is moved. Such a relationship would be

useful for constructing intuitive user interfaces. This relationship can

be expressed as a bijectivity relationship on the vertex and dot sets plus a

set of equality relationships on corresponding dot-vertex pairs.

An idiom we have found useful is to use submediators to maintain indepen-

dent parts of relationships of this sort. GP, for example, could deploy an

instance of a new mediator DV (for dot-vertex) for each corresponding

dot-vertex pair. Each would respond to events announced by associated

dots and vertices to keep their locations equal. Similarly, G might deploy

submediators between vertices and incident edges to keep edge locations

consistent with those of their vertices.

This idiom mirrors the use of subartists in the Chiron- 1 system. This works

well when only a “moderate” number of submediators are needed. Although

implementations of simple mediators can be kept small,g in an image analy-

sis environment with millions-of-pixel images [23], a design using one subme-

diator per pixel would probably be impractical.

4.5 Integrating Existing Tools

Another key problem for environment designers is to integrate existing tools

into new environments. The possibilities are limited by interfaces exported

by existing tools; these are often inadequate. While most tools export the

equivalent of method interfaces to allow explicit invocation of tool functions,

most do not export events by which the tools can be made to interact with

other tools.

This leaves the designer with two obvious choices: to use a tool as

is, limiting its usage to guarantee required invariants; or to add methods

and events as needed to enable tight integration. There are at least two ways

to implement the latter choice: by modifying the tool or by encapsulating it

inside another component that exports a sufficient interface implemented in

terms of the encapsulated tool. FIELD [27] takes the first approach; the

Hewlett-Packard Encapsulator is a tool designed to facilitate the latter [10].
Our mediator approach does not dictate any of these choices, but facilitates

integration once a choice is made. We have had several successes integrating

existing tools without modification, for example. To illustrate, we hypothesize

a user interface component D (for display) exporting methods to insert,

delete, and move graphic elements, but exporting no events.

9In our C++ implementation a mediator to keep two integer-maintaining classes equal requires

25 bytes, 8 to reference the two integers, 16 to register with each of their changed events, and

one to store a boolean value to limit the propagation of updates,

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 3, July 1992

Reconciling Environment Integration and Software Evolutlon . 251

We integrate P and D through a mediator PD that updates D by inserting

or deleting graphics into or from D upon being implicitly invoked by addition

and deletion of dots and segments into or from P. We also integrate each dot

or segment with D, using submediators, so that whenever a dot or segment

moves, D is updated.

This is sufficient to maintain a correspondence between elements of D and

P as long as no component other than PD changes D. This restriction is

necessary because D does not announce events that could be used to trigger

updates of P. We used this design in integrating a user interface based on

InterViews with our graph ABT G.

To complete the system we defined a component H to handle a mouse

input device. We handle mouse clicks by adding or deleting elements to or

frolm P (since we cannot change D directly). We handle dragging by repeat-

edly moving a dot in P. Each update of a dot is reflected both to a vertex in

VS and back to D by submediators. This design thus tightly integrates an

“existing” user interface toolkit without modification. Griswold used this

approach in integrating an existing program dependence graph component

into a program restructuring tool. This system is described in the next

section.

4.6 Miscellaneous

In this section, we discuss a number of mediator implementation strategies

and idioms that are common and useful. We use GP as an example. The

following definition shows the instance variables, update method declara-

tions, and the implementation of one of these update methods in C++.

class GP {
/ * lJpDATE METHODS *\
void WhenVertexDeleted(Vetlex & v);
void WhenVertexAdded(Vertex & v);
void WhenEdgeDeleted(Edge & e),
void WhenEdgeAdded(Edge & e);
void When DotDeleted(Dot & d);
void When DotAdded(Dot & d);
void WhenSegmentl>eleted(Segment & s);
void WhenSegmentAdded(Seg merit & s);

/“ INSTANCE VARIABLES *\
G* graph;
P* picture;
Boolean VertexDotInterlock;
Boolean EdgeSegmentInterlock;
Binary Relation VertexToDot;
Binary Relation DotToVertex;
Binary Relation EdgeToSegment;
Binary Relation SegmentToEdge;

};

void GP: :WhenSegmentAdded(Segment & s)
{

if (ESlnterlock = false)
{

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 3, July 19%3.

252 . K. J. Sullivan and D, Notkin

ESlnterlock = true;
Vertex+ VI = new Vertex(s.Orig,X, s.Ong.Y);
Vertex’ V2 = new Vertex(s.Dest X, s.Dest Y):
Edge & e = *new Edge(’vi, ‘v2);
EdgeToSegment InsertPair(e, s);
SegmentToEdge.lnsertPair(s, e);
graph ~ ES _lnsert(e);
ESlnterlock = false;

}

}

Avoiding circularities. In general, allowing updates to either of two com-

ponents participating in a relationship requires ensuring that circular propa-

gation of updates is avoided. The mutual update dependence of G and P

makes this necessary. For instance, if G changes P is updated, but this

should not necessarily cause G to be updated again.

One common structure we use to overcome this is to add interlocks to the

mediators. In our design of GP, for instance, we use two boolean-valued

variables as interlocks. In many designs, one is sufficient. Here, one is used

to break circularities involving edges and corresponding segments; the other

is used to break cycles involving vertices and dots.

Two interlocks are needed in this design because addition of a segment to

P, for example, requires addition of an edge to G, which may in turn require

the addition of vertices to G, and hence of dots to P. Thus the first change to

P may require the propagation of additional updates back to P.

Consider adding a segment to P, which implicitly invokes GP. WhenSeg-

mentAdded(s), the implementation of which is given in the above definition

of GP. This method sets the segment-edge interlock and then adds an edge,

10 To maintain the consistency of G, theseincident on two new vertices, to G.

vertices are added to the vertex set of G. The resulting vertex insertion

events then implicitly invoke GP. When VertexAdded(v). Since the vertex-dot

interlock is not yet set, this method sets it and then adds corresponding dots

to P. Each dot addition implicitly invokes GP again, but these events are

ignored since the vertex-dot interlock is now set. Finally, an edge is added to

G, implicitly invoking GP; but the edge-segment interlock is already set, so

this event is dismissed.

This design will not work in the presence of concurrency. One key problem

is that updates having both local and nonlocal effects need to be serialized. It

appears that a general solution compatible with our approach requires a
nested transaction mechanism [26], although we have not verified this.

The design of GP also seems complex. However, this complexity is not a

consequence of our approach, but of the requirement for a mutual update

dependence between G and P. A similar interlock-based approach would also

be necessary under the hardwired and event approaches discussed in Section

—
10A more useful implementation would define GP to look for vertices m G at locations corre-

sponding to the endpoints of the new segment. If found, these vertices would be used; if not, one

or both vertices would be mstantlated, as necessary.

ACM Transactions on Software Engineering and Methodology. Vol. 1, No. 3, July 1992

Reconciling Environment Integration and Software Evolution . 253

2. Of the approaches presented, only the encapsulation-based approach avoids

this complexity: the mutual dependence is avoided by making only GP

visible, hiding G and P entirely. This, in turn, makes integration of other

tools with G and P more difficult.

Implementing GP seems to require a deep understanding of both G and

P. It is true, and reasonable, that the implementor of GP must under-

stand the specifications of G and P. However, the implementation details

of the underlying types need not be known by the implementor of GP.

That G is implemented as a composition of VS and ES can be ignored by

clients of G, such as GP. Reasoning in terms of ABTs and ABT interactions

may be more complex than in terms of ADTs, owing to the inclusion of

implicit invocations in the specifications of ABTs. On the other hand, making

the events explicit rather than implicit more accurately models the behavior

of these components, which might make reasoning easier, not harder.

Externalized relations. We make extensive use of separate components to

track relations among independent components. GP, for example, uses its

instance variable DotToVertex to track the association between dots and

vertices: given a dot, it returns the associated vertex. Rumbaugh et al.

discuss a number of advantages of externalized representations of relations,

in contrast to representations based on embedded pointers [29].

l?rom our perspective, externalized relations have two advantages. First,

they support integration of independent components. Mediators themselves

can be viewed as externalized associationsll with implicitly invoked methods

that define the semantics of the association. The implementation of GP

includes a pair of pointers, for example, one to G and one to P. This is an

externalized representation of the association between these components.

Second, efficiently implemented relations enable more efficient integration.

For example, we can improve the performance of the vertex-deletion update

method of G by an order of magnitude—from 0(1 ESI) to 0(] ES(u) I), the

number of edges incident on -by replacing the exhaustive search of ES for

incident edges with a lookup in a hash table keyed by vertex. The cost is

0(IES 1)in space, to represent the relation and its inverse, and constant time

pe~ event announced by ES to keep these relations up to date.

5. APPLICATIONS AND EXPERIENCES

We have developed a number of medium-scale systemslz using our mediator-

based design approach. In this section, we briefly describe these systems,

noting places where our approach was most useful.

Computer-Aided Geometric Design (CAGD). McCabe developed a proto-

type CAGD [24] kernel that extends our graph environment. This environ-

ment supports editing of a mesh, a representation of surface (technically,

a two-manifold) in an n-dimensional Euclidean space. A mesh is similar

11We use the terms assoczatzon to denote a tuple and relation a set of tuples,
12The systems we describe range in size from ten to thirty thousand lines of code

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 3, July 1992.

254 . K. J Suliwan and D. Notkin

to a graph, but it also maintains topological information—the ordering of

edges around vertices, in this case.

This system supports multiple graphical views of a mesh. As a vertex is

dragged in one view, for example, other views animate the motion. This

allows a mesh with n-dimensional geometry (n > 2) to be viewed as a

collection of two-dimensional projections.

A mesh, M, is represented as a vertex set VS and an edge set ES. Vertices

in VS have property lists storing information such as vertex geometry and

labels. ES stores a topological algebra—a set of edges plus several ordering

relations over this set. 13 A4 implements a mesh ABT as a composition of VS

and ES.

Separate topological and geometrical views and an integrated mesh view

are useful. They allow one tool to create a torus or a sphere, a topologi-

cal property, by operating on ES; another to assign a geometric layout by

operating on VS; and a third to compute a smooth surface or a projection of

the mesh by operating on M.

For example, McCabe defined a mediator that projects n-dimensional

meshes into two-dimensional subspaces, leaving their topology unchanged.

Another mediator composes two-dimensional meshes with components that

serve as abstract depictions. A third composes abstract depictions with a

display based on InterViews.

McCabe used submediators to keep n and two-dimensional vertices con-

sistent. Because the mapping from n to two dimensions discards informa-

tion, the reverse mapping from two to n is ambiguous. This is an instance

of the general ambiguity problem for systems supporting views. McCabe

solved this with mediators that fill in the missing information by map-

ping two-dimensional movements to n-dimensional movements parallel to

the two-dimensional plane. Mediators provide a convenient framework for

implementing designer-defined policies for any given instance of the ambi-

guity problem. This approach increases flexibility over any system that

constrains designers by fixing a policy for handling ambiguity.

Program restructuring. Griswold applied our approach in his program

restructuring tool, which allows an engineer to restructure a software system

while preserving its meaning, in preparation for making functional enhance-

ments [14]. If the formal parameters in a procedure declaration are swapped,

for example, the system compensates by swapping actual parameters at all

call sites, unless this would change the meaning of the program.

The key to the design of this tool is the maintenance of two consis-

tent views of the program to be restructured. A syntactic view

allows the engineer to indicate local changes and provides representations

that the system updates to compensate for such changes. A semantic view

13ES implements a quad-edge data structure [15]. This is not perfect for a CAGD system; it only
represents manifolds without boundary. Its clean structure, however, makes it useful for our

work.

ACM TransactIons on Software Engmeermg and Methodology, Vol. 1, No 3, July 1992

Reconciling Environment Integration and Software Evolution . 255

H

allows the system to determine whether a transformation preserves mean-

ing and to find all aspects of a program that have to be changed to restore

meaning in the face of a local change.

Figure 12 shows the structure of the system. REST is the restructuring

tool; AST the syntactic representation based on an abstract syntax tree;

PDG the semantic representation based on a program dependence graph;

RELS a set of externalized relations between AST and PDG nodes; and

MED is a mediator that maintains RELS while keeping AST and PDG

consistent.

MED employs several interesting mediator idioms. First, it allowed over

10,000 lines of existing code, comprising PDG, to be integrated almost

without change. 14 Second, it provides an integrated view of AST and PDG,

which includes RELS. REST makes extensive use of these relations in

mapping between syntactic and semantic program representation. Third,

because computation of program dependence graphs from abstract syntax

trees is expensive,15 and since PDG consistency is required only at the

beginning of a restructuring operation, MED caches changes made to

the AST during restructuring. This illustrates a general issue for systems

supporting views: it is ofken beneficial to allow slippage in the consistency of

multiple representations. Mediators provide a convenient framework for

implementing slippage and for isolating the required implemention details

from the components involved.

Parallel programming. We also applied our approach in the design of a

prototype environment for programming nonshared-memory parallel comput-

ers [30]. Abstractly, a program in this system is a sequential composition of

phases, each phase is a parallel program that runs on an interconnected

processor graph; and each processor in a graph executes a sequential process

in any given phase. Concretely, a program is represented as a collection of

objects in the C++ programming language.

‘I’he environment supports four interactive tools for manipulating pro-

grams. The phase and graph tools are graphical, depicting programs as

flowcharts and interconnection graphs, respectively. The process tool, used to

write simple sequential programs, is text based. The fourth tool provides a

l~Griswold’s event mechanism, which implements an earlier version of the system specified in

this article, uses CLOS wrapper methods to announce events.

15The complexity is not known, but is thought to be roughly cubic in the size of the program.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 3, July 1992.

256 . K, J. Sullivan and D. Notkin

user interface that allows instances of the other tools to be created and

deleted dynamically.

The phase, graph, and process tools are related to their respective parts of

a program database by mediators that keep the depictions and the database

mutually consistent. Furthermore, the three parts of the database are also

related to each other by mediators. If the name of a sequential process is

changed, all graphs having processors that execute that process are updated

accordingly; these updates then propagate to all graph tools.

This structure allowed separate designers independently to develop the

parts of the database and the tools that operate on them. Once the tools and

their respective parts of the databases had been developed and tested,

we integrated them by adding mediators to keep related representations

consistent.

6. RELATED WORK: IMPLICIT INVOCATION

Our research has helped us understand and evaluate a range of systems.

Many have contributed to the nature of the implicit invocation mechanism we

use. Our research in turn has produced a framework that we have found

useful in analyzing existing implicit invocation mechanisms. We organize this

section by system, taking a similar approach in the next section, which

discusses systems related to our use of mediators. The systems we discuss

cover many of the key issues in implicit invocation and mediators, and they

seem to be representative of the many important systems that we omit.

In this section we analyze four implicit invocation mechanisms in terms of

the model presented in Section 3. This analysis serves several purposes. It

helps to validate our model by showing that it captures a key underlying

similarity among of a set of seemingly diverse mechanisms. It also highlights

capabilities supported by some mechanisms that are not captured by our

model or implemented by our mechanism. A more recent effort uses Z [31] to

explore these dimensions based on a formal description of implicit invocation

systems [13].

As we discussed in Section 3, we characterize implicit invocation mechan-

isms in terms of a set E of events, each of which can be announced, a set M

of methods, each of which can be invoked; a mapping EM; E -2 M from

events to multi sets of methods; and an event announcement procedure A

that invokes all the methods associated with a given event whenever that

event is announced. In the analysis of related mechanisms, we focus on three

issues: the manner in which the user manipulates the association EM
between events and methods; the behavior of the event announcement proce-

dure A; and restrictions, if any, imposed on E, M, and EM.

We note here (and discuss no further) that some mechanisms use their

representations for purposes not strictly related to implicit invocation. An

attribute grammar system may use its EM to optimize attribute evaluation

16 FIELD queries its EMand to detect cyclic dependencies among attributes.

16In most such systems, ES is represented exphcitly only during attribute grammar processing;

at run-time, associations are represented as direct links between tree nodes.

ACM TransactIons on Software Engineering and Methodology, Vol. 1, No. 3, July 1992

Reconciling Environment Integration and Software Evolution . 257

to avoid spawning redundant copies of network tools. An EM could also be

used to support debugging by indicating which methods would be invoked by

announcement of a given event.

6.1 LOOPS

LOOPS [32] extends LISP with active valz~es, to support access-oriented

programming. An active value av is an object used to annotate a variable v.

Such an annotation causes each access to v to be replaced by invocation of a

method exported by au. Specifically, reading u invokes au. Get Wrapped-

Value(), and writing the value x into v invokes au. Put WrappedValue(x).

The base active value class defines default implementations for those meth-

ods that mimic variable reads and writes using the local state of active value

objects. Subclass designers specialize these methods for additional behaviors.

We model this mechanism as follows. Each variable u contributes two

events to 1?, namely U.read() and u.writterz(x). Each active value au con-

tributes two methods to M, av.Get WrappedValue{) and au. Put Wrapped-

Vatue(x). Attaching au to v or detaching it from v adds to or deletes from

EM the maplets17

~.reado ~ o .GetWrappedValue()
u.written(x) ~ o. WrappedValue (x).

The user thus manipulates EM in terms of fixed pairs of tuples specified in

terms of a variable object and an active value annotation object. LOOPS also

restricts both the components that announce events—to variables—and the

events that can be announced—to read and written.

On the other hand, LOOPS supports a capability not captured by our model

or mechanism: the programmer can specify an order on the set of methods

associated with an event. This is accomplished by nesting active value

annotations. When a variable is accessed, active values attached to it are

activated; when these access their instance variables, nested active values

may be implicitly invoked.

This suggests a possible extension of our model and mechanism: the user

could be allowed to specify a partial order on the methods associated with a

given event. The ordering issue arises naturally, since an event may be

imported by many components simultaneously. A partial order allows for no

order, a complete order, or a properly partial order.

6.2 APPLIA

APPL/A [34] is an Ada-based language that supports process program-

ming. APPL/A’s implicit invocation mechanism focuses on a relational

model. APPL/A imposes restrictions similar to those of LOOPS. Only

relations, instances of a special type constructor, can announce events, and

the events that relations can announce are restricted to insert, delete,
update, and find.

17By maplet we mean a single tuple (e, m) in the overall mapping EM of events to methods.

ACM Transactions on Software Engineering and Methodology, Vol 1, No 3, July 1992.

258 . K. J. Sullwan and D, Notkln

These restrictions imply that the programmer must either use explicit

invocation mechanisms to connect components that are not relations, or

model those components as relations. If explicit invocation is used, the

potential benefits of implicit invocation, such as easier evolution, are lost. If

all components are modeled as relations, then the programmer may have to

forego more natural representations in situations where relations are not

best.

APPL\A, in contrast to our mechanism, handles concurrency by allowing

the designer to specify the synchronization of event announcement with the

execution of invoked methods. APPL/A also allows a component that receives

multiple events to prioritize these events. Events are queued at the compo-

nent, which handles them in priority order.

6.3 Smalltalk-80

Smalltalk-80 defines an implicit invocation mechanism in which objects

register themselves as dependents of other objects [21]. 18 All objects in this

system export three predefine events and three predefine methods. When

one object x registers with another object y the predefine methods of y are

associated with the corresponding events of x.

Specifically, the method update With(s, p) is associated with the changed-

With(s, p) event, updateRequest(s) is associated with changeRequest(s), and

perform Updaters, p) is associated with broadcast With(s, p). The event

parameter s is a Smalltalk-80 symbol, a literal value, and p is an arbitrary

object.

ChangeWith(s, p) is announced to notify registered objects, usually graphi-

cal views, that the announcing object, a model, has changed. Views can then

update themselves to restore consistency. ChangeRequest(s) is announced to

request permission from registered objects to make a change. The methods

implicitly invoked return true or false to indicate whether permission is

granted or not. These answers are conjoined and the result returned to the

event announcer. This can be used to implement cooperation among compo-

nents that do not know about each other. Broadcast With(s, p) invokes, in

each registered object, the method named by s with parameter p.

In terms of our model, an object x contributes its three predefine events

to E and its three methods to M. Registering x with, or unregistrating it

from, y, respectively, adds to or deletes from EM the following three

maplets:lg

x. changedWith(s, p) - y.update(s, p)
x. changeRequest (s) - y.updateRequest(s)
x. broadcast(s, p) - y.s(p),

18While this change dependence mechanism is available for other reasons, it is used most

aggressively in MVC.

19Actually, there are eight events with corresponding methods. The additional events are short

forms of those described above. There are three for change notification, for example, One takes

both a symbol and an object as parameters; one takes just a symbol: and one takes no

parameters.

ACM Transactions on Software Engineering and Methodology. Vol. 1, No. 3, July 1992

Reconciling Environment Integration and Software Evolution . 259

In this system the user manipulates EM indirectly by specifying, through

explicit registration, an object dependence relation from which EM is de-

rived. Specifically, an object dependence implies two maplets in EM cor-

responding to the changed With and changeRequest events, plus addi-

tional maplets, one for each possible value of the parameter s passed to the

broadcast event. The announcement procedure A invokes methods

sequentially in an unspecified order.

The Smalltalk-80 mechanism suggests two extensions to our model and

perhaps to our mechanism. First, specifying EM indirectly, in terms of

another representation, can be useful. In contrast to the mechanisms dis-

cussed in this article, ours is based on direct, low-level manipulation of EM.

In part, this is for the sake of simplicity, but it also implements a program-

ming abstraction that emphasizes our analogy between explicit and implicit

invocation. Second, the way in which changeRequest computes a return value

suggests that returning values from an implicit invocation requires synthesis

of the several values returned by the implicitly invoked methods. The

Smalltalk-80 mechanism defines the semantics of this operation for the

changeRequest event as Boolean conjunction. General support for return

values would seem to require that the designer be able to specify such

procedures.

A limitation of this mechanism is that only system-defined events are

announced. Events defined by the designer can be encoded as parameterized

versions of these events, but this solution is not completely satisfactory .20

One reason is that designer-defined events do not appear in component

interfaces, increasing the difficulty of reasoning about events. More seriously,

defining new events by using a parameter conflicts with class inheritance for

code reuse. The problem occurs when a subclass needs both to hide events

exported by the superclass and also to export its own events. Either it can

hide the system-defined events, in which case it cannot export its own, or it

can leave them visible, leaving superclass events visible. The problem is that

information-hiding mechanisms such as private subclasses in C++ operate

on interfaces and cannot be used to hide selected parameterizations of events

or methods.

6.4 FIELD

FIELD [27] defines an integration mechanism for Unix-hosted tools based on

selective broadcast of ASCII messages on a network. Both explicit and

implicit invocation abstractions can be implemented on top of this basic

communication mechanism, although the indirect connection of implicit invo-

cation is of most interest to this analysis.

Each FIELD tool exports a method interface by defining a set of messages

to which it can respond. A message is an ASCII string that encodes both

the method name and parameters. Tools can invoke other tools, either

‘o Of course, Smalltalk-80 makes it easy to define classes and methods representing new events,
but in practice such modifications are not common.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 3, July 1992.

260 . K J. Sullwan and D. Notkin

explicitly or implicitly—the distinction is only in the designer’s use of

the mechanism—by sending messages to a distinguished tool called the

message server, which routes invocations to their destinations.

Routing is based on a set of expressions registered by tools with the server.

An expression consists of a pattern part and an action part. Patterns

are written as regular expressions. When the server receives an invo-

cation message, it finds all expressions for which the pattern matches

the (ASCII) message string. Each corresponding action part specifies

a method to be called in the tool that registered the expression. All such

methods are then invoked. A pattern that literally names a specific tool

and method supports explicit invocation, since invokers must name the

tool and the method to invoke. Other patterns can be used to specify

events or classes of events.

In terms of our model, a FIELD tool t contributes a set of methods {m,} to

M. E corresponds to the infinite set of ASCII strings, since a tool can

announce an event by sending an arbitrary string. EM is specified indirectly

in terms of a set T of pattern-method pairs {(p, m)}. EM is then computed

from T as necessary.

Specifically, each regular expression p specifies an equivalence class of

events, Euents(p) = {e ● E Imatches(p, e)}, where matches is a predicate

that is true if and only if event e is recognized by regular expression p. The

effect of adding (p, m) to or deleting it from T is to add to or delete from EM

the set of maplets

{e - nzle E Euent.s (p)}.

Thus EM, too, can be infinite, since an infinite class of events can be

associated with a method by insertion of a single pair (p, m,) into T. Obvi-

ously, EM is not represented as an infinite set. Rather, the announcement

procedure A calculates EM(e) when the event e is announced. Specific-

ally, the multiset of methods EM(e) invoked by e is

{ml(p, m) G T A matclzes(p, e)}.

FIELD thus supports a declarative event specification mechanism based on

regular expressions. Our approach, in contrast, lacks the equivalent of T and

a mapping from T to EM, Instead, our design is intended to support a more

imperative style of programming with implicit invocation. We do not yet fully
understand the tradeoffs involved in these respective choices.

FIELD also supports concurrent and asynchronous invocation. The FIELD

announcement procedure A invokes methods concurrently in an unspecified

order. An event announcer specifies whether the event is synchronous or

asynchronous. Asynchronous events return immediately with no return value.

Synchronous announcements return after all methods return, returning the

string value returned by the fh-st method to terminate.

This suggests possible extensions to our mechanism. A concurrent mechan-

ism encapsulating the complexities of thread creation, dispatching, and

synchronization may provide ‘significant benefits at a reasonable cost.

ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 3, July 1992

Reconciling Environment Integration and Software Evolution . 261

However, we have no systematic approach to combining asynchronous

invocation with mediators.

6.5 AP5

AP5 [7] extends Common Lisp with a relational database abstraction and a

mechanism based on triggers to support declarative, constraint-based pro-

gramming. An AP5 trigger t = (p,m) has a predicate part p and an action

part m. A predicate is written in a notation based on first-order logic,

extended with relational operators, and a temporal aspect capturing the

notions of before and after a proposed transaction. When a transaction is

proposed, the system logically reevaluates all predicates and invokes the

corresponding action parts of those that evaluate to true. To maintain a

constraint, a predicate detects violations that would occur if proposed trans-

actions were to commit; the corresponding action part then either modifies

and resubmits the proposed transaction or simply aborts it. Action parts can

also be used to implement arbitrary activities, such as sending mail to a

project manager.

In terms of our model, E is the infinite set of proposed changes to a

database. Much as in FIELD, an AP5 predicate p specifies a set of events
Euents(p) = {e ● E Isatisftes(e, p)}, where satisfies is a predicate that is true

if and only if the application change e would cause the database to satisfy

relational predicate p. T’bus, a trigger t = (p,m) contributes m to M and, to

EM, the set of maplets

{e ~ mlsatisfies(e, p)}.

The AP5 announcement procedure A invokes the methods triggered by an

event in an unspecified sequential order.

A key advantage of AP5 is its support for atomic transactions, which it uses

to guarantee global consistency in the face of concurrent updates. We believe

that transactions are necessary to solve the consistency problem in a general

way for concurrent environments. Although we have not verified this, it

appears that our imperative approach can exploit transaction-based concur-

rency control by implementing tools and mediators on a platform supporting

nested transactions.

7. RELATED WORK: MEDIATORS

Our emphasis on the separate specification, design, and implementation of

relationships among components is based, in part, on evidence produced by

numerous related efforts that suggests the utility of this approach. In this

section, we discuss a number of these systems. Many of these systems provide
~upport in areas unrelated to our focus—obj ect management and user access

control, for example. Because our work applies narrowly to integration and

evolution, we omit discussion of these and other important issues that these

systems address.

ACM TransactIons on Software Engineering and Methodology. Vol. 1, No. 3, July 1992

262 . K. J Sulllvan and D Notkin

7.1 Unix Pipes

Most Unix programs, such as Is, awk, grep, and sort are independent but easy

to integrate using pipes [28]. This ease of integration derives from the

separation of tool and integration concerns, combined with a flexible mecha-

nism for recombining the two. Unix shells that allow the user easy access to

pipes also encourages their use. We view Unix programs as tools, and pipes

as mediators that relate them. (Viewing pipes as simple tools and Unix

programs as complex mediators is also reasonable.)

Although this approach makes it easy to assemble systems by composing

sequences of tools, it makes it hard to implement tightly integrated, interac-

tive environments. The key reason is that only one-way stream composition

relationships are supported. In addition, common practice in Unix limits

programs to a single input (stdin,) and two output (stdout and stderr) streams

to which pipes can be associated. These restrictions make it hard to implement

mutual dependencies among tools and make sharing of fine-grained, struc-

tured information costly, since each tool has to linearize and parse data.

7.2 Forest

Forest [12] is an extension of FIELD. As in FIELD, tools register pattern-ac-

tion pairs with a message server. In Forest, however, an action part is not an

invocation message to be sent to a tool, but a policy program to be executed,

A policy program can send an invocation message to a tool, send another

message to the message server, or do nothing.

Policy programs are written as sets of condition-action pairs. Conditions

are Boolean expressions over variables and environment-defined functions,

such as LoadAverage(), which returns the system load. The conditions are
evaluated in the order written. If none evaluate to true, no action is taken,

otherwise the action associated with the first true expression is executed.

Policy programs can be viewed as limited mediators. Each is bound to a

single event; they are not first-class (Unix tool) components; and the lan-

guage in which they are specified is quite limited. On the other hand, they

suggest that mediators written in an interpreted language may be a reason-

able approach to integrating tools on the fly.

7.3 Contracts

Helm et al. define a language for specifying behavioral relationships based on

contracts and conformance declarations [18]. A contract specifies a relation-

ship in terms of interfaces that participating components must export; pre-

conditions on and initialization of these components; an invariant to be

maintained; and mutual invocation obligations sufficient to maintain the

invariant. To encourage the identification of generally useful relationships,

contracts are generic with respect to participating components. Conformance

declarations specify how particular components discharge the obligations of

roles specified by a contract.

ACM Transactions on Software Engmeermg and Methodology. Vol. 1. No. 3, July 1992

Reconciling Environment Integration and Software Evolution . 263

This work provides additional evidence that behavioral relationships should

be treated as first-class entities in software systems. We agree; but the

approach we define differs significantly from that of contracts.

First, contracts specify policies in terms of explicit invocation obligations,

While this does not preclude the design of behavioral relationships as sepa-

rate components, it is biased towards hard-wired designs. Our approach is to

state invariants and policies in a way that does not bias design. This eases

adoption of a mediator-based design, but also leaves the designer free

to adopt hard-wired or other approaches as circumstances dictate.

Second, contracts emphasize relationships over the components (classes in

this system) that they relate. Helm et al. state that “the specification of a

class becomes spread over a number of contracts and conformance declara-

tions, and is not localized to one class definition” [ibid., p. 178]. On the other

hand, contracts are justified by the observation that in previous languages,

“behavioral compositions. . . are spread across many class definitions” [ibid.,

p. 169]. Our approach, in contrast, emphasizes the equal importance of

relationships and the components they relate.

Third, our approach is tailored for use with existing languages. We iso-

late invariants in the specification, as opposed to language-level, because

these declarative constructs cannot be represented easily in imperative

programming frameworks.

7.4 ThingLab II and OPUS

Constraint programming is based precisely on separate specification of rela-

tionships among otherwise independent components. Constraint program-

ming systems emphasize language support for the declarative assertion of

constraints.

Many systems, including ThingLab II [8], a successor to ThingLab [4],

and OPUS [19] are based on a set of variables—components storing values

from some domain—and a set of constraints relating these values. When

the value of a variable changes, a constraint satisfaction algorithm is invoked

to resatisfy specified constraints by changing the values of other variables. If

no satisfactory solution (an assignment of values to variables) can be found,

an error is flagged.

Key differences among constraint programming systems follow from the

constraint-satisfaction algorithms they support. OPUS uses a relatively sim-

ple incremental attribute evaluation algorithm that propagates changes in

one direction only. If changing a updates b, changing b cannot update a, for

instance. ThingLab II uses a more complex algorithm that allows the system

to choose the direction in which changes propagate.

In more detail, a ThingLab II constraint is implemented as an object that

maintains references to the variables that it constrains and that exports a set

of methods to the system, one for each such variable.zl Each method must

‘L The absence of a method for a given variable constitutes an implicit read-only annotation,
indicating that the variable cannot be influenced by the presence of the constraint.

ACM TransactIons on Software Engineering and Methodology, Vol. 1, No. 3, July 1992.

264 . K. J. Sullivan and D. Notkln

guarantee that it resatisfies the constraint by setting the value of its variable

as a function of the values of the other variables.

Thus the system has a choice of which variable to change to resatisfy a

constraint. Given a set of constraints and a variable to be changed, the

system computes a compatible set of choices, one from each constraint object

affected (directly or indirectly) by the change. ThingLab II is incremental in

its computation of this set, which is called a plan.

This suggests an extension to our implicit invocation model. Logically,

changing a variable implicitly invokes one of the methods defined in each

object attached to the variable. This can be characterized as disjunctive, as

opposed to conjunctive, implicit invocation: a select procedure chooses one

method from those registered for invocation. In these systems select bases

this decision on exactly the information used in computing a plan. In other

systems this choice might be based on performance or other considerations.

In contrast to our approach, constraint systems guarantee global properties

based on an analysis of their underlying constraint representations.

Both ThingLab II and OPUS detect and prohibit cyclic dependencies, and

ThingLab II ensures that no two constraint methods writing to the same

variable are included in the same plan.

On the other hand, these systems are not suitable as integration mechan-

isms for complex environments. First, they limit the components that can

be related, the relationships that can be specified, and the policies that

can be used to maintain relationships. ThingLab II prohibits methods

that change more than one variable, for example, precluding policies that

update both a set and a relation. OPUS prohibits mutual dependencies.

Both limit constraints to variables, as opposed to arbitrary abstract types.

Second, constraint systems based on variables are incompatible with en-

capsulation, and hence with data and behavioral type abstraction: objects

other than variables can be constrained only by constraining variables in

their respective implementations. This is true of OPUS, ThingLab II, and

Kaleidoscope [9], an object-oriented language that tightly integrates the
ThingLab mechanism. This is a serious shortcoming with respect to our

objective, to help manage complexity in the face of integration. Type abstrac-

tion and encapsulation are key tools for managing complexity; and integra-

tion mechanisms compatible with these techniques are needed.

Our approach supports the integration of arbitrary types, specification of

arbitrary relationships, and definition of relationship-maintenance policies

that respect type abstractions and encapsulation boundaries.

8. CONCLUSION

8.1 Limitations

Our approach has proven useful in a number systems that we have devel-

oped. Several problems have to be solved, however, for it to be applied in the

development of larger integrated environments.

First, a key problem is to extend it for design of concurrent and distributed

environments. Some systems use atomic transactions to maintain global

ACM TransactIons on Software Engineenng and Methodology, Vol 1, No 3, July 1992

Reconcdlng Environment Integration and Software Evolution . 265

consistency in the face of concurrency. It appears that our approach can be

combined with nested transactions for this purpose; it is not clear, though,

that this is a reasonable solution. We have yet to find the best way to balance

the benefits of our lightweight approach with the need for global consistency.

The experience with FIELD suggests that practical environments can be built

without a general solution to this problem. Whether a mediator-based ap-

proach will prove useful in such an environment is not known. To enable

research in this dimension we have designed and are implementing a remote

implicit invocation mechanism to complement a remote procedure call [2]

mechanism.

Second, reasoning about systems constructed using implicit invocation

mechanisms may not be easy as the scale of systems increases. Our experi-

ence with medium-scale systems, such as the CAGD system discussed earlier,

gives us some confidence-but no conclusive evidence—that scale will not be

a serious problem. Unconstrained implicit invocation would, in all likelihood,

present a reasoning problem (just as unconstrained explicit invocation would).

However, designing with mediators is quite constrained, which may account

for the absence of problems so far. Additionally, mediators use explicit

invocation to maintain relationships among components, so considering our

approach as a reasoned balance of implicit and explicit invocation is more

accurate than considering it as implicit invocation alone.

8.2 Synthesis

Our design approach. One way to manage the complexity of integrated

environments is to employ programming constructs with restricted semantics

in order to automatically ensure that basic properties, such as termination

and global consistency, hold. The change propagation mechanisms used by

ThingLab II and OPUS represent such mechanisms.

These mechanisms are appropriate for problems suited to their particu-

lar strengths, but the restrictions they impose on components, relation-

ships, and relationship-maintenance policies make them unsuitable as general

mechanisms intended to ease development and evolution of integrated envi-

ronments. The constructs they support may not be appropriate for imple-

m enting a given design, and the semantic restrictions they impose may exact

significant tolls in decreased efficiency.

Overcoming these problems may require semantically less restricted con-

structs, such as imperative programming with implicit and explicit invoca-

tion. On the other hand, undisciplined use of an imperative style can make it

impossible to reason about a resulting system. Our approach is intended to

exploit the familiarity and flexibility of these imperative constructs, while

helping the designer to control complexity by providing design composi-

tion techniques that encourage software structures robust with respect to
changing requirements.

Implicit invocation. Our approach includes implicit invocation as a

first-class abstraction, dual to explicit invocation. We presented a model

ACM Transactions on Software Engmeermg and Methodology. Vol. 1, No. 3, July 1992.

266 . K. J. Sullivan and D. Notkln

of implicit invocation in terms of which we characterized a number

mechanisms. Each of these placed a layer between the programmer and

the event-method association, EM. The Smalltalk-80 EM, for instance,

is specified indirectly in terms of object dependencies, Reducing impli-

cit invocation to a minimum by stripping away this layer, as in our

model and in our mechanisms, reveals more clearly the duality between

explicit and implicit invocation.

We also showed how object-oriented languages can be extended easily to

support our implicit invocation abstraction. Although we have only limited

experience with this model, its utility in characterizing a diverse range of

mechanisms provides additional evidence that it, and hence our mechanism,

is reasonable.

Design tradeoffs. Our approach encourages the decomposition of require-

ments as well as designs and implementations along lines separating compo-

nents from the integration relationships among them. Specifications that fail

in this regard may bias designers toward designs that complicate environ-

ment integration and evolution. On the other hand, specifications organized

in this manner leave the designer free to choose among a range of designs.

We identified four idealized approaches that encourage designs with distinct

tradeoffs among ease of integration, evolution, and, perhaps, efficiency.

Given a specification in this form, which approach should a designer

choose? In the absence of other concerns, a software system should be

designed for change. Our analysis suggests that, of the canonical approaches

we discuss, our mediator approach yields the greatest ease of evolution in

integrated environments. An interesting characteristic of this approach is

that it preserves the specification structure separating components and

relationships in both design and implementation. In the absence of this

correspondence, which is disrupted by the other approaches we discuss, it is

unlikely that the overall cost of an evolutionary change will be proportional to

its apparent size in the specification. Although we cannot yet define apparent

size or proportional with precision, this property is clearly desirable: the

client specifies changes in terms of the specification and bases expectations

about costs on it. Designs that amplify actual costs for reasons not apparent

to the client are likely to prove unacceptable as requirements evolve.

ACKNOWLEDGMENTS

Tony DeRose, Bill Griswold, and Larry Snyder provided the domains for the

environments discussed herein. Alex Klaiber, Bob Mitchell, and Sitaram Raju

implemented the tools in our parallel programming environment. Tom Mc-

Cabe’s experience with his CAGD system provided valuable feedback that

helped significantly in the development of our approach. Yoshi Yamane and

Derrick Weathersby contributed to the ideas of ABT composition and disjunc-

tive implicit invocation, respectively. Robert Wahbe pointed out the utility of

macros in simplifying the use of a C++ implicit invocation mechanism. In

addition to many of these people, Gail Alverson and Michael Hanson gave us

ACM Transactions on Software Engmeermg and Methodology, Vol. 1, No. 3, July 1992

Reconciling Environment Integration and Software Evolution . 267

useful comments on an earlier version of this paper. Finally, the comments

and suggestions made by the anonymous referees were cogent, valuable, and

appreciated.

REFERENCES

1. BERSHAD, B. N., LAZOWSKA, E. D., LEVY, H. M. PRESTO: A system for object-oriented

parallel programming. So@J. B-act. Exper. 18, 8 (1988), 713-732.

2. BIRRELL, A. D., AND NELSON, B. J. Implementing remote procedure call. ACM Trans.

Comput. Syst. 2, 1,(Feb. 1984), 39-59.

3. BO~ROW, D. G. ET AL. Common Lisp object system specification X3J13. Dec. 88-002R. ACM

SZGPLAN Not. 23 (Sept. 1988).

4. BORNINC+, A. The programming language aspects of ThingLab, a constraint-oriented simula-

tion laboratory. ACM Trams. Program. Lang. Sys. 3, 4 (Oct. 1981), 353-387.

5. CAGAN, M. R. The HP SoftBench environment: An architecture for a new generation of

software tools. Hez.ulett-Packard J. 41, 3 (June 1990), 36–47.
6. COAD, P. AND YOURDON, E. Object-Or~ented Analyws. Yourdon Press, Englewood Cliffs, N J.,

1991.

7. COHEN, D. Compiling complex transition database triggers. In Proceedings of the 1989

ACM SIGMOD (Portland, Ore., 1989) pp. 225-234.

8. FREEMAN-BENSON) B., MALONEY, J., BORNING, A. An incremental constraint solver.

Comrnun. ACM 33, 1 (Jan. 1990), 54-63.

9. FREEMAN-BENSON, B. N. Kaleidoscope: Mixing objects, constraints, and imperative pro-
gramming. In Proceedings of OOPSLA / ECOOP 90, (Ottawa, 1990), 77-88.

10. FROMME, B. D. HP encapsulator: Bridging the generation gap. Hewlett-Packard J. 41, 3

(June 1990), 59-68.

11, GARLAN, D. Views for tools in integrated environments. Ph.D. dissertation, Carnegie-Mellon

Univ., 1987,
12. GARLAN, D., AND ILIAS, E. Low-cost, adaptable tool integration policles for integrated envi-

ronments. In Proceedings of SIGSOFT90: Fourth Symposl am on Software Development

Environments (Irvine, Calf., 1990), 1-10.
13. G~RLAN, D., AND NOTKIN, D. Formalizing design spaces: Implicit invocation mechanisms. In

VDM ’91, Formal Software Development Methods. Lecture Notes in Computer Sczence 551,

Springer Verlag, New York, 1991.

14. GRISWOLD,W. G., AND NOTKIN, D. Program restructuring as an aid to software maintenance.
Tech. Rep. 90-08-04, Dept. of Computer Science and Engineering, Univ. of Washington, Aug.

1991.

15. GUIBAS, L.. AND STOLFI, J. Primitives for the manipulation of three-dimensional subdivi-
sions. ACM Trans. Graph. 4, 2 (April 1985), 74–123.

16. HABERMANN, A. N., ANI) NOTKIN, D. Gandalf software development environments. IEEE

Trans. Sofh.o. Eng. SE-12, 12 (Dec. 1986), 1117-1127.

17. HABERMANN, A. N., KRUEGER, C., PIERCE, B., STAUDT, B., AND WENN, J. Programming with

views. Tech. Rep. CMU-CS-87- 177, Carnegie-Mellon Univer. Jan. 1988,

18. HELM, R., HOLLAND, I. M., AND GANGOPAI)HYAY, D. Contracts: Specifying behavioral composi-

tions in object-oriented systems. In Proceedings of 00PSLA / ECOOP 90. 1990, 169-180.

19. HUDSON, S. E., AND MOHAMED, S. P. Interactive specification of flexible user interface

displays. ACM Trans. Znfi Syst. 8, 3 (1990), 269-288.

20. KELLER, R. K., CAMERON, M., TAYLOR, R. N., mm TROUP, D. B. User interface development

and software environments: The Chiron-1 system. In Proceedings of the 13th International

Conference on Software Engineering (Austin, Tex., May 1991), 208-218.
21. KRASNER, G. E., AND POPE. S. T. A cookbook for using the model-view-controller user

interface paradigm in Smalltalk-80. J. Object Oriented Program. 1, 3 (Aug. /Spet. 1988),
26-49.

22, LINTON, M. A., VLISSIDES, J. M., AND CALDER, P. R. Composing user interfaces with Inter-
Views. Computer 222 (Feb. 1989), 8-22.

ACM TransactIons on Software Engineenng and Methodology, Vol. 1, No. 3, July 1992.

268 . K. J, Sullwan and D Notkm

23. MACDONALD, J. A., AND STUETZLE, W. Painting multiple views of complex objects. In

Proceedings of OOPSLA / ECOOP. 1990, 245-257.

24. MCCABE, T. Programming with mediators. Developing a graphical mesh environment. M.S.

thesis, Univ. of Washington, 1991.

25. MEYERS, S. Difficulties in integrating multiview development systems. IEEE Softw. (Jan.

1991), 49-57.

26. Moss, J. Nested transactions: An introduction. In Concurrency Control and Relzabzlzty zn

Dzstrzbuted Systems. B. Bhargava, Ed., Van Nostrand Reinhold, New York, 1987.

27, REISS, S. P. Connecting tools using message passing in the field envmonment. IEEE Softw.

7, 4 (July 1990), 57-66.

28. RITCHIE, D. M., AND THOMPSON, K. The Unix time-sharing system. Bell Syst. Tech J. 57, 6,

part 2 (July-Aug. 1987), 1905-1930.

29. RUMBAUGH, J. Relations as semantic constructs m an object-oriented language. Proceedings

of OOPSLA, 1987> 466–481.

30, SNYDER, L. The XYZ abstraction levels of poker-like languages. In Proceedings of the

Second Workshop on Parallel Compilers and Algor~t}Lms (Urbana, 111., 1989).

31. SPIVEY, J. M. The Z NotatLon; A Reference Manual, Prentice-Hall International, Englewood

Chffs, N. J., 1989.

32. STEFIK, M. J., BOBROW, D. G, AND KAHN, K. M. Integrating access-oriented programming

into a multiparadigm environment, IEEE Softu,. (Jan. 1986), 10– 18.

33. STROUSTRUP, B. The C++ Programming Language. Addison-Wesley, Reading, Mass.. 1976.

34. SUTTON, S., HEIMBIGNER, D., AND OSTERWEIL, L. Language constructs for managing change

in process-centered environments. In Proceedz ngs of SIGSOFT90 Fourth Sympos~um on

Software Development Enoz,ronrnents. (Irvine, Calif., 1990), 206-217,

Received May 1991: revised December 1991: accepted February 1992

ACM TransactIons on Software Engineering and Methodology, Vol 1, No 3, July 1992

