
Configuration by Combustion:
Online Simulated Annealing for Dynamic Hardware Configuration

Steven Swanson, Ken Michelson and Mark Oskin
Department of Computer Science and Engineering, University of Washington

The Computation Cache is an execution substrate for scal-
able execution on future silicon fabrication processes. It is
a grid-based reconfigurable processor architecture for gen-
eral purpose computation and is composed of an array of
thousands of processing elements that communicate over a
switched, grid-based network. Each processing element con-
tains a single 64-bit functional unit, space for a single in-
struction, and a small amount of storage for input and output
queues. Programs for the Computation Cache are made up
of normal RISC-type instructions (with a few additions), but
with an explicit dataflow encoding of their operands. Execu-
tion proceeds in a dataflow fashion with instructions passing
their results to the instructions that require them.

One of the central challenges of this architecture is map-
ping the application onto the grid. We are presently investi-
gating real-time, on-line simulated annealing to dynamically
layout and optimize the Computation Cache’s reconfigurable
hardware. The goal is to inject a description of an application
and have the substrate dynamically decide how to implement
it and then reorganize itself to adapt to changing application
behavior. There are two principle advantages to optimizing
layout dynamically at runtime: First, the layout can be routed
around defective hardware components. Future silicon pro-
cesses will be increasingly unreliable and routing around de-
fective hardware is essential if the Computation Cache is to
be a fault tolerant, scalable architecture. Second, the layout
can change over time to match the changing requirements of
the computation so that the current “hot-spot” executes most
efficiently.

We envision simply “pouring” the executable onto the sub-
strate and then optimizing the initial layout while this applica-
tion executes using simulated annealing. When each instruc-
tion arrives at a processing element, it broadcasts its location
and an identifier so that dependent instructions know its lo-
cation. Once this stage is complete execution can begin, but
it will likely be inefficient because the instructions are placed
semi-randomly.

The Computation Cache then dynamically reorganizes the
instructions during execution to improve performance. Since
the Computation Cache design strives to be scalable, opti-
mization can use only local information. Fortunately, each
processing element can collect a wealth of local information
about local behavior: Each instruction knows the locations
of the other instructions it exchanges messages with and the
round-trip latencies to each of them. It also knows how fre-
quently it executes. Branch instructions can collect taken/not-
taken statistics useful for optimizing for the common case.

Using this information we plan to use simulated annealing,
a randomized technique, to allow more global changes to the
layout. In general, simulated annealing starts with a config-
uration and searches for better solutions by making random
modifications to it and seeing how they perform. If the mod-
ification is an improvement, it becomes the “current” con-

C.P. length = 15

1

2

3

4

9

16

13

14

117

8

5

10

C.P. length = 8

1

3

5 9

10

4 13

16

8

2 7

11 14

Before After

Critical path

Figure 1: Effects of online optimization.
figuration and the process continues. To escape from local
optima, simulated annealing will also make non-optimizing
changes with some probability. The probability varies over
the course of optimization with a temperature parameter: The
higher the temperature, the higher the probability it will make
a non-improving change. As the optimization process pro-
ceeds, the temperature is lowered and the layout settles into
an efficient solution.

In the Computation Cache an instruction will move to a
new location in the grid. If the performance improves or
the temperature is high enough it will stay put, otherwise it
will return to its original location and try again. Since the
instruction layout should adapt and change as program be-
havior changes, the temperature parameter will rise and fall
over time. The rate of change for the temperature and period
of its oscillations are open questions.

Currently we are implementing an execution simulator for
the Computation Cache architecture. Therefore, evaluating
the online real-time performance of simulating annealing al-
gorithms in the actual architecture will take some time. How-
ever, we have constructed a trace-based simulator with a per-
fect memory system to investigate just the layout algorithms
and their effect on program performance. The results are ex-
tremely encouraging. For example, for a core function of
bzip2, the “ideal” (1 cycle communication between all in-
structions, which is admittedly unrealistic with 2D grid net-
work) ILP is 6.68 (on a trace of 30M instructions). Several
initial placement algorithms where designed and the best per-
forming of these achieved in ILP of 3.04. However, after
simulated annealing this same trace achieves an ILP of 6.07,
much closer to the “ideal”. Figure 1 depicts a simple dataflow
graph and the intended effects of optimizations; the critical
path (dark lines) are substantially shorter.

As new process technologies change the way we design
microprocessors and force wire delay and defect tolerance to
the forefront, the need for new techniques to utilize large (and
possibly flawed) dies will increase. At the same time, transis-
tor budgets will soon be large enough to allow real-time moni-
toring and reconfiguration of the processor to match workload
conditions. The Computation Cache, using a simulated an-
nealing algorithm for configuration and optimization, is one
example of a design built to address these problems and ex-
ploit these opportunities.


