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Abstract

Machine learning’s focus on ill-defined problems and highly flexible methods makes it ideally
suited for KDD applications. Among the ideas machine learning contributes to KDD are the
importance of empirical validation, the impossibility of learning without a priori assumptions,
and the utility of limited-search or limited-representation methods. Machine learning provides
methods for incorporating knowledge into the learning process, changing and combining repre-
sentations, combatting the curse of dimensionality, and learning comprehensible models. KDD
challenges for machine learning include scaling up its algorithms to large databases, using cost
information in learning, automating data pre-processing, and enabling rapid development of ap-
plications. KDD opens up new directions for machine learning research, and brings new urgency
to others. These directions include interfacing with the human user and the database system,
learning from non-attribute-vector data, learning partial models, and learning continuously from
an open-ended stream of data.

E4.1 Use of machine learning methods for KDD

Machine learning is characterized by a focus on complex representations, ill-defined problems, and
search-based methods. Representations studied include most of those described in Section B2,
but particularly decision trees, sets of propositional or first-order rules, sets of instances, clusters,
concept hierarchies and probabilistic networks. Ill-defined problems studied include generalizing
from a set of tuples in the absence of a known model structure [C5.1], clustering [C5.5], combining
logic theories of a domain with learning (de Raedt, 1996), and learning from delayed feedback in
very large decision spaces (Sutton & Barto, 1998). Search methods [B8] used for learning include
greedy search, gradient descent, expectation maximization, genetic algorithms, and some forms
of lookahead and pruned breadth-first search. Other types of search frequently found in artificial
intelligence, like best-first search and simulated annealing, tend to see less use in machine learning,
for reasons discussed below.

The flexibility of most machine learning methods makes them well suited to applications where
little is known a priori about the domain, and/or relevant knowledge is hard to elicit. This flex-
ibility also means they are often able to successfully learn from data that was not gathered by a
purposely designed experimental procedure, but rather obtained by some process whose end goal
was not necessarily knowledge discovery. The flip side of this is that theoretical analysis of machine
learning methods is often difficult, and strong guarantees regarding the correctness of results are
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consequently seldom available. This is compensated for by the fact that machine learning makes
full use of the power of the computer to experimentally validate its methods and results. The same
approach would seem to be indispensable in KDD. Standard elements of machine learning’s empir-
ical toolbox include the use of holdout sets and cross-validation [C8.1.6] to verify generalization,
comparison of systems on large collections of benchmark problems (e.g., Blake, Keogh, & Merz,
1999), lesion studies to elucidate the contribution of specific system components, and experiments
with carefully designed synthetic datasets to test specific hypotheses on when and why a given
approach will work (Kibler & Langley, 1998).

Difficulties notwithstanding, a significant body of theory has been developed within machine
learning (see Kearns and Vazirani (1994) for an introduction), and has produced highly success-
ful practical algorithms like boosting (Freund & Schapire, 1996), Winnow (Littlestone, 1997) and
support vector machines (Scholkopf, Burges, & Smola, 1998). Much of this theory is in the form
of bounds on the generalization error of a learner, given its empirical error and a measure of the
effective size of the hypothesis space it explores (its cardinality, for finite spaces; or its Vapnik-
Chervonenkis dimension, for infinite ones (Vapnik, 1995)). The wealth of theoretical results pro-
duced is made possible by not insisting on absolute guarantees (e.g., “error will always be less than
5%”), but instead aiming for probabilistic ones (e.g., “error will be less than 5% with greater than
99% probability”).

Machine learning’s readiness to perform generalization in the absence of strong guiding assump-
tions has led it to face squarely the problem of what — and how much — is needed to generalize
successfully. The lessons learned form an important part of any KDD practitioner’s baggage. One
is that generalization is impossible in the absence of assumptions or “biases”; purely empirical
learning is a chimera (Mitchell, 1980; Schaffer, 1994; Wolpert, 1996). Induction can be seen as a
“knowledge lever,” with much higher leverage than deduction, but still of no use without an applied
force. The converse lesson is that there is no “general-purpose” learning method; each method’s
utility is contingent on the assumptions it makes, and each application requires individual atten-
tion. “Universal” laws of discovery like “simple hypotheses are more accurate” (sometimes known as
“Occam’s razor”) should be viewed with suspicion (Schaffer, 1993; Webb, 1996; Domingos, 1998).
Having made the notion of bias explicit, machine learning has gone on to study the changes in
bias (Gordon & desJardins, 1995) and combinations of different biases (Michalski & Wnek, 1996)
that are often required for practical success. Awareness of the importance of knowledge has led to
development of methods for explicitly incorporating it into the learning process. This knowledge
can appear in the form of a propositional or first-order logic theory (e.g., Pazzani & Kibler, 1992;
Saitta, Botta, & Neri, 1993; Ourston & Mooney, 1994; Towell & Shavlik, 1994), or in a variety
of weaker forms (e.g., Clearwater & Provost, 1990; Donoho & Rendell, 1996; Pazzani, Mani, &
Shankle, 1997).

Machine learning is concerned simultaneously with statistical soundness and computational
efficiency. This has led it to explore issues that tend not to arise when either is considered in
isolation, but that will often be of concern in KDD applications. One such issue is deciding where a
KDD algorithm should fall in the lazy-eager computational spectrum. In the eager extreme, where
most traditional modeling approaches fall, all generalization (and therefore most computation)
is performed at learning time. In the lazy extreme, exemplified by nearest-neighbor algorithms
[C5.1.6], all generalization and computation occur at performance time. Machine learning has gone
between the extremes, identifying the entire lazy-eager spectrum as a useful design dimension, and
proceeding to explore it (Aha, 1997). For example, the RISE system autonomously determines the
best combination of rules and neighbors to use (Domingos, 1996b).

A central issue that involves both statistical soundness and computational efficiency is the effect
of (often massive) search on the significance of the patterns discovered. When thousands or even
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millions of hypotheses are generated in the the course of search, the probability that apparently
meaningful discoveries are simply the result of chance cannot be neglected. However, quantifying
it is notoriously difficult. Traditional sigificance testing assumes that a single hypothesis is being
tested. Techniques exist for “multiple comparison” or “simultaneous inference” problems [C8.1.2]
(Miller, 1981; Klockars & Sax, 1986), but they tend to overpenalize and consequently reject valid
patterns. Machine learning provides a number of techniques for assessing hypotheses in a search-
conscious fashion, and controlling search to make the best use of computational power without
falling into the trap of noise mining (Quinlan & Cameron-Jones, 1995; Freund, 1998; Domingos,
1999a; Jensen & Cohen, 1999). Although this is still very much an open problem, one of the
hard-and-fast heuristics to emerge so far has been that apparently impoverished search methods
(e.g., greedy search) are often preferable to more powerful ones (e.g., exhaustive search)(Quinlan &
Cameron-Jones, 1995; Murthy & Salzberg, 1995; Dietterich, 1995). Like all subfields of computer
science, machine learning is constrained by finite computational resources, but unlike most others,
it is also constrained by another finite resource: the quantity of data available for learning. Either
type of resource can be the bottleneck in any given application. If computation is the bottleneck,
underfitting can result; if data, overfitting. In KDD projects, where large computational resources
and large quantities of data are both frequent, either can be the case.

A generalization of the previous observation is that “less can be more.” Machine learning
researchers have found that more powerful representations do not necessarily lead to better results
(Holte, 1993; Domingos & Pazzani, 1997). Flexibility can have a price in instability. This trade-
off can be captured by the notions of statistical bias and variance, which were first developed
for regression, but have been extended to classification (Geman, Bienenstock, & Doursat, 1992;
Kong & Dietterich, 1995; Breiman, 1996b; Kohavi & Wolpert, 1996; Friedman, 1997). A related
observation is that computational power is often better used to induce multiple models and combine
them, instead of searching more for a single “best one.” This is the approach followed by some
of the best-performing learning methods available, including boosting (Freund & Schapire, 1996),
bagging (Breiman, 1996a), stacking (Wolpert, 1992) and error-correcting output codes (Kong &
Dietterich, 1995).

Another instance of “less can be more” is the “curse of dimensionality” (Duda & Hart, 1973).
Human intuitions from the three-dimensional world fail in high dimensions. Although we might
expect adding attributes to the data to improve learning, given that they provide additional infor-
mation, after a point the reverse is typically the case. This is because increasing the dimension of
the tuple space exponentially increases the quantity of data needed to populate it densely enough
for reliable learning. This problem is particularly acute in large KDD applications where the at-
tributes can often number in the hundreds or thousands. Machine learning provides some of the
best techniques available for very high-dimensional problems (e.g., decision tree induction [C5.1.3]
and rule induction [C5.1.4]) and for attribute selection (e.g., Moore & Lee, 1994).

A hallmark of machine learning is the focus on comprehensible results. While comprehensibility
is difficult to define precisely and ultimately subjective, it is essential to the insights that are often
the main goal of KDD. Many machine learning methods produce models that are comprehensible
even to someone without mathematical training. For example, they can be sets of “If . . . Then
. . .” rules, or in graphical form. Besides inducing such models directly, machine learning provides
methods for converting less-comprehensible ones into them (e.g., neural networks into decision trees
(Craven, 1996)).
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E4.2 Research problems in machine learning relevant to KDD

From the point of view of accurate generalization, machine learning algorithms are often the most
appropriate ones for a great variety of KDD applications. However, the volume of data available
in many of these applications far outstrips the capacity of classical machine learning algorithms.
Often, the solution adopted is simply to learn from a small-enough subset of the data, but the
selection of this subset is typically done in a very ad hoc fashion — often randomly — potentially
missing much of the learnable structure. The effort is now underway to enable machine learning
algorithms to learn from several orders of magnitude more data than they were originally designed
for.

The most basic requirement for algorithms that mine large databases is that they have linear or
only slightly superlinear running time as a function of the database size. Since this is not true for
most learning algorithms, it is necessary to adapt them. This can sometimes be done partly in a
“lossless” fashion by optimizing the algorithms without changing their output, but typically requires
a “lossy” approach: developing related algorithms that may not produce exactly the same results,
but achieve similar levels of performance. Cohen’s (1995) RIPPER and Domingos’s (1996a) CWS
algorithm are examples of this approach for the case of rule induction. Further, when the learning
data is too large to fit in main memory, learning algorithms must be able to efficiently retrieve it
from disk. This implies making only sequential passes through the data, as opposed to randomly
accessing it, and making as few passes as possible. The SLIQ and SPRINT algorithms for decision
tree induction exemplify this approach (Mehta, Agrawal, & Rissanen, 1996; Shafer, Agrawal, &
Mehta, 1996), as does the Apriori algorithm for finding association rules(Agrawal, Mannila, Srikant,
Toivonen, & Verkamo, 1996). The ability to learn efficiently from disk will increasingly be seen as
one of the fundamental characteristics of machine learning algorithms appropriate to KDD. Ideally,
algorithms should use only constant RAM and be able to learn from less than one full disk scan,
making useful results available at any time after they start running (Smyth & Wolpert, 1997), and
taking advantage of additional time to scan further and gracefully improve the output.

For still larger quantities of data the use of data reduction becomes inevitable. Two classes
of approaches can be distinguished here: sampling and summarization. One sampling approach
is to divide the examples into multiple subsets, learn on each, and combine the results (Chan &
Stolfo, 1995; Breiman, 1996c). Another is to start with a small subset of the examples and iterate,
adaptively selecting which new examples to include so as to obtain the maximum possible improve-
ment from each new addition (Catlett, 1991; Musick, Catlett, & Russell, 1993). Summarization
approaches attempt to produce summaries of the data that will fit in main memory, while still
containing all or most of the information necessary to learn in an efficiently accessible form. These
summaries may be in the form of sufficient statistics (e.g., Moore & Lee, 1997; Graefe, Fayyad, &
Chaudhuri, 1998) or they may be the result of applying compression techniques to the data (e.g.,
Davies & Moore, 1999). The sampling and summarization approaches are complementary and can
be used together (e.g., Bradley, Fayyad, & Reina, 1998).

For many problems, large quantities of data may be available, but may not be necessary to
learn the desired concepts to the required level of accuracy (Oates & Jensen, 1997). For others,
even the large quantities available may not be sufficient to capture all the relevant structure. It
would thus be useful to have methods, even if heuristic in nature, to estimate early on how much
data will be needed. Examples of research in this direction are the fitting of power laws to learning
curves (Frey & Fisher, 1999) and statistical tests on the slope of these curves (Provost, Jensen, &
Oates, 1999). A complementary approach is to attempt to estimate the Bayes rate, i.e., the error
rate at which even an infinite-capacity learner will necessarily asymptote (Dasarathy, 1991; Cortes,
1995; Tumer & Ghosh, 1996), and to stop learning once this level is reached.
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The numbers of examples, attributes, and classes presented by KDD applications effectively
constitute a previously unexplored region of the machine learning space. Because of its empirical
nature, the validity of much painstakingly assembled machine learning knowledge in these new
circumstances is an open question. Therefore it is important to determine which elements of this
knowledge need to be revised, and how.

Another type of adaptation to machine learning algorithms needed to make them useful for KDD
involves aspects of KDD problems that they currently do not capture well. An example of this is
cost information. Most machine learning algorithms assume that all errors have the same cost, but
this is seldom the case in practice. A related problem is that of imbalanced classes: when there is
a large majority of one class, it is easy to obtain high accuracy without useful results. Implicitly,
misclassifying minority tuples incurs a higher cost, although this may be hard to quantify. Research
on adapting machine learning algorithms for these problems is growing (e.g., Pazzani et al., 1994;
Turney, 1995; Provost & Fawcett, 1997; Domingos, 1999b).

More generally, an important research direction involves methods for formulating problems in
terms amenable to machine learning. Integrating, cleaning up and preprocessing the learning data
is the stage of the machine learning application process that typically consumes the most time,
because it is the one that requires the most human intervention. Automating this stage would
produce an order-of-magnitude speedup in the process, with the corresponding reduction in cost
and increase in the number of viable applications.

Although the main focus of machine learning research has been on classification problems [C5.1],
a significant motivation for this has been the belief that classifiers can be used as building blocks
for solutions to many other types of problems. Since many such problems are present in KDD
(see Section C5), research on the interface between classification and those problems has become
particularly relevant.

The perspective of widespread, large-scale application of machine learning creates the need
for rapid development and deployment of learning systems. It should be possible for computer
scientists with only minor knowledge of machine learning to produce a robust and reliable learning
component for whatever system they are building. This requires developing libraries of standard
machine learning components and of ways of putting them together. Despite a number of early
developments in this direction (Gilks, Thomas, & Spiegelhalter, 1994; Buntine, 1994; Kohavi,
Sommerfield, & Dougherty, 1996), for the most part it is still not clear how best to do this. Deciding
what representations and techniques to use is still a “black art.” The designer’s personal preferences
and a long trial-and-error process are often what determines the outcome. Many imprecise intuitions
and rules of thumb exist, but more theoretical and empirical research is needed on what conditions
favor what approaches and why, and on systematizing the current jungle of techniques. The results
of this research can then be codified in a form that is easily used by non-experts, or directly
incorporated into more self-sufficient learning modules.

E4.3 Impact of KDD on machine learning

KDD presents a veritable treasure of new research opportunities for machine learning. In many
respects, it allows a renewed focus on problems that were original concerns of the field, but that
have received decreasing attention over time, arguably in large measure due to the previous limited
availability of relevant real-world datasets. Perhaps serendipitously, machine learning’s powerful
methods often find their most compelling applications in today’s large databases, which were not
available when the methods were originally developed. KDD also allows machine learning to extend
its ideas and motivations in new directions, and to develop productive interfaces with disciplines

5



like databases, statistics, human-computer interfaces, visualization, information retrieval, and high-
performance computing.

Applying machine learning to the very large databases found in KDD involves qualitative
changes that go beyond simply scaling up the algorithms. For example, the traditional goal of
creating a model of everything that is represented in the database must often give way to finding
only local patterns or deviations from the norm. Compared to the model-building case, very little
theory has been developed so far for this type of problem. Current practical KDD approaches are
often more concerned with efficiency than with sound generalization. Since the latter is a central
concern of machine learning, analyzing and improving these approaches is potentially fertile ground
for new theoretical and methodological developments. Also, if a database is too large to model in
its entirety, even through the use of sampling, sufficient statistics or compression, then a “focus
of attention” mechanism becomes necessary. Many heuristics and sources of information could be
brought to bear on the design of such mechanisms. Further, in large databases gathered over a
period of time (sometimes many years) and without learning in mind, the usual assumption of
i.i.d. (independently and identically distributed) data often does not hold. Thus, an important
research direction is taking into account that examples are not independent and that past, present
and future data is not necessarily from the same population.

The majority of work to date in machine learning has focused on learning from examples rep-
resented as attribute vectors, where each attribute is a single number or symbol, and a single table
contains all the vectors. However, much (or most) of the data in KDD applications is not of this
type. For example, relational databases typically contain many different relations/tables, and per-
forming a global join to reduce them to one without losing information is seldom computationally
feasible. (Inductive logic programming (de Raedt, 1996) can handle data in multiple relations, but
simultaneously focuses on learning concepts that are themselves in first-order form, thus addressing
a doubly difficult problem.) The World Wide Web is mostly composed of a combination of text
and HTML, plus image and audio files. The data recorded by many sensors and processes, from
telescopes and Earth sensing satellites to medical and business records, has spatial and temporal
structure. In the customer behavior mining applications that are of central concern to many com-
panies, people can be hierarchically aggregated by occupation and other characteristics, products
by category, etc. Simply converting data of all these types to attribute vectors before learning,
as is common today, risks missing some of the most significant patterns. Although in each case
traditional techniques for handling these types of data exist, they are typically quite limited in
power compared to the machine learning algorithms available for the attribute-vector case, and
there is much scope for extending the ideas and techniques of machine learning in this direction.

A machine learning system appropriate to future KDD applications should be able to function
continuously, learning from an open-ended stream of data and constantly adjusting its behavior,
while remaining reliable and requiring a minimum of human supervision. The future is likely
to see an increasing number of applications of this type, as opposed to the one-shot, standalone
applications common today. Early indicators of this trend are e-commerce sites that potentially
respond to each new user differently as they learn his/her preferences, and systems for automated
trading in the stock market. The trend is also apparent in the increasing preoccupation among
corporations to instantly and continuously adapt to changing market conditions, leveraging for this
purpose their distributed data gathering capabilities. While there has been some relevant research
in machine learning (Widmer & Kubat, 1998), learners of this type must address several interesting
new issues. One is smoothly incorporating new relevant data sources as they come online, coping
with changes in them, and decoupling from them if they become unavailable. Another is maintaining
a clear distinction between two types of change in the learner’s evolving model(s): those that are
simply the result of accumulating data and consequently progressing in the learning curve, and
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those that are the result of changes in the environment being modeled.
In KDD applications, learning is seldom an isolated process. More typically, it must be em-

bedded into a larger system. Addressing the multiple problems this raises will be an opportunity
for machine learning to expand its focus and its reach. The need to efficiently integrate learning
algorithms with the underlying database system creates a new interface between machine learning
and database research: finding query classes that can be executed efficiently while providing infor-
mation useful for learning, and simultaneously finding learning approaches that use only efficiently
executable queries. Some relevant questions are: What types of sampling can be efficiently sup-
ported, and how can they be used? What is the best use that can be made of a single sequential
scan of the entire database? The outcome of this iterative process may be query types and learning
algorithms that are both different from those known today. The interface between machine learning
and databases also involves the use for learning purposes of the meta-data that is sometimes avail-
able in database systems. For example, definitions of fields and constraints between their values
may be a valuable source of background knowledge for use in the learning process.

To be used to its full potential, KDD requires a well-integrated data warehouse. Assembling
the latter is a complex and time-consuming process, but machine learning can itself be used to
partially automate it. For example, one of the main problems is identifying the correspondences
between fields in different but related databases (Knoblock & Levy, 1998) (or other data sources,
like the results of Web searches (Perkowitz & Etzioni, 1995)). This problem can be formulated
in learning terms: given a target schema {X1, X2, . . . , Xn} and examples of data in this schema,
induce general rules as to what constitutes an Xi column. Given a table in a source schema
{Y1, Y2, . . . , Yn}, the goal is now to classify each of the Y columns as one of the X’s (or none), with
the results for one Y potentially constraining those for the others. Data cleaning is another key
aspect of building a data warehouse that offers many research opportunities for machine learning.
Very large databases almost invariably contain large quantities of noise and missing fields. More
significantly, noise is often of multiple types, and its occurrence varies systematically from one part
of the database to another (e.g., because the data comes from multiple sources). Similarly, the
causes of missing information can be multiple and can vary systematically within the database.
Research enabling machine learning algorithms to deal with noise and missing data was one of the
main drivers of their jump from the laboratory to widespread real-world application. However,
example-independent noise and missing data are typically assumed. Modeling systematic sources
of error and missing information, and finding ways of minimizing their impact, is the next logical
step.

The need to produce learning results that contribute to a larger scientific or business goal
leads to the research problem of finding ways to integrate these goals more deeply into the learn-
ing process, and of increasing the communication bandwidth between the learning process and
its “clients” beyond simply providing (say) class predictions for new examples. The importance in
KDD of interaction with the human user (expert or not) gives a new urgency to traditional machine
learning concerns like comprehensibility and incorporation of background knowledge. Today’s mul-
tiple KDD application domains provide a wealth of driving problems and testing grounds for new
developments in this direction. Many major application domains (e.g., molecular biology, Earth
sensing, finance, marketing, fraud detection) have unique concerns and characteristics, and devel-
oping machine learning algorithms specifically for each of them is likely to occupy an increasing
number of researchers.

Most machine learning research to date has dealt with the well-circumscribed problem of find-
ing a classification model given a single, small, relatively clean dataset in attribute-vector form,
where the attributes have previously been chosen to facilitate learning and the end-goal (accurate
classification) is simple and well-defined. With KDD, machine learning is now breaking out of each
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one of these constraints. Machine learning’s many valuable contributions to KDD are reciprocated
by the latter’s invigorating effect on it. No doubt this mutually beneficial interaction will continue
to develop in the future.
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CA: Morgan Kaufmann. A very useful introduction to the methodology of machine learning.

10. Langley, P. (1996). Elements of machine learning. San Mateo, CA: Morgan Kaufmann. A
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interface of machine learning and KDD.

12. Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.). (1983). Machine learning: An
artificial intelligence approach, vols. 1–3. Palo Alto, CA: Tioga. A series of books containing
much of the early research.

13. Michalski, R. S., & Tecuci, G. (Eds.). (1994). Machine learning: A multistrategy approach.
San Mateo, CA: Morgan Kaufmann. Continuation of the previous series, with a focus on
combining multiple machine learning biases and using background knowledge.

14. Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (Eds.). (1994). Machine learning, neural and
statistical classification. New York, NY: Ellis Horwood. Describes a large-scale experimental
comparison of many algorithms. Also contains introductions to the algorithms and discussion
of their strengths and weaknesses. It is now out of print, but is available online at http://-
www.amsta.leeds.ac.uk/∼charles/statlog/.

15. Mitchell, T. M. (1997). Machine learning. New York, NY: McGraw-Hill. The standard
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16. Provost, F., & Kolluri, V. (1999). A survey of methods for scaling up inductive algorithms.
Data Mining and Knowledge Discovery, 2. An excellent overview of scaling-up research. The
place to start if you’re looking for a way to scale up your algorithm.

17. Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Mateo, CA: Morgan
Kaufmann. Describes the most widely used machine learning system.

18. Scholkopf, B., Burges, C., & Smola, A. (1998). Advances in kernel methods: Support vector
machines. Cambridge, MA: MIT Press. Expanded papers from a workshop on support vector
machines.

19. Shavlik, J. W., & Dietterich, T. G. (Eds.). (1990). Readings in machine learning. San
Mateo, CA: Morgan Kaufmann. A collection of classic machine learning papers from the
1980’s.

20. Sutton, R. S., & Barto, A. (1998). Reinforcement learning: An introduction. Cambridge,
MA: MIT Press. Introduction to one of the most active research areas in machine learning,
where the focus is on learning from delayed feedback.

21. Vapnik, V. N. (1995). The nature of statistical learning theory. New York, NY: Springer. In-
troduction to the Vapnik-Chervonenkis dimension, the theory of structural risk minimization,
and its application to the development of support vector machines.

22. Weiss, S. M., & Kulikowski, C. A. (1991). Computer systems that learn: Classification and
prediction methods from statistics, neural nets, machine learning, and expert systems. San
Mateo, CA: Morgan Kaufmann. An older textbook that also compares machine learning
algorithms with alternative techniques.

The Machine Learning journal, published by Kluwer, is the single most important repository
of research in the field. Machine learning articles also appear in the Artificial Intelligence journal,
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in the online Journal of Artificial Intelligence Research (http://www.cs.washington.edu/research/-
jair/home.html), in the Neural Computation journal, in the IEEE Transactions on Pattern Analysis
and Machine Intelligence, and others. The main conference in the field is the International Confer-
ence on Machine Learning, whose proceedings are published by Morgan Kaufmann. Recent machine
learning research is also reported in the European Conference on Machine Learning, the Interna-
tional Joint Conference on Artificial Intelligence, the National Conference on Artificial Intelligence
(AAAI), the European Conference on Artificial Intelligence, the Annual Conference on Neural In-
formation Processing Systems, the International Workshop on Multistrategy Learning, the Interna-
tional Workshop on Artificial Intelligence and Statistics, and others. Research on the theory of ma-
chine learning appears in the International Conference on Computational Learning Theory, the Eu-
ropean Conference on Computational Learning Theory, and elsewhere. Useful online machine learn-
ing resources include: the UCI repository of machine learning databases (http://www.ics.uci.edu/-
∼mlearn/MLRepository.html); the list of home pages of machine learning researchers maintained
by David Aha (http://www.aic.nrl.navy.mil/∼aha/people.html); the online bibliographies of several
subareas of machine learning maintained by Peter Turney (http://www.iit.nrc.ca/bibliographies/);
the Machine Learning List, maintained by Michael Pazzani (mailto:ml-request@ics.uci.edu); and
the AI and Statistics List, maintained by Doug Fisher (mailto:Majordomo@watstat.uwaterloo.ca,
with “subscribe ai-stats”). Publicly-available machine learning software includes the MLC++ and
Weka libraries, found respectively at http://www.sgi.com/Technology/mlc/ and http://www.cs.-
waikato.ac.nz/ml/weka/.
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