
This workshop submission is a shortened version of a paper submitted to KDD-08. 1

Augmenting Wikipedia-Extraction with Results from the Web

Fei Wu and Raphael Hoffmann and Daniel S. Weld
CSE Department

University of Washington
Seattle, USA

{wufei,raphaelh,weld}@cs.washington.edu

Abstract

Not only is Wikipedia a comprehensive source of quality in-
formation, it has several kinds of internal structure (e.g., re-
lational summaries known as infoboxes), which enable self-
supervised information extraction. While previous efforts at
extraction from Wikipedia achieve high precision and recall
on well-populated classes of articles, they fail in a larger num-
ber of cases, largely because incomplete articles and infre-
quent use of infoboxes lead to insufficient training data. This
paper explains and evaluates a method for improving recall
by extracting from the broader Web. There are two key ad-
vances necessary to make Web supplementation effective: 1)
a method to filter promising sentences from Web pages, and
2) a novel retraining technique to broaden extractor recall.
Experiments show that, used in concert with shrinkage, our
techniques increase recall by a factor of up to 8 while main-
taining or increasing precision.

Introduction
Like many others at the workshop, we wish to convert as
many facts in Wikipedia as possible into semantic form.
Such a system could be useful for next-generation search,
question answering and much more. Performing this process
autonomously is crucial, since the scale of available knowl-
edge is vast. In many ways our vision is shared with those
working on general-purpose information extraction, such as
Snowball (Agichtein & Gravano 2000), KnowItAll (Etzioni
et al. 2005) and Textrunner (Banko et al. 2007), but in con-
trast to systems which seek to extract from arbitrary Web
text, we focus on Wikipedia and hope to expand from that
base.

The Long-Tailed Challenge: While focusing on Wikipedia
helps solve the problem of inaccurate and unreliable source
data (Giles 2005), it introduces new challenges. For exam-
ple, many previous systems (e.g., Mulder (Kwok, Etzioni,
& Weld 2001), AskMSR (Brill, Dumais, & Banko 2002),
and KnowItAll) exploit the presence of redundant informa-
tion on the Web, enabling powerful statistical techniques.
The Wikipedia corpus, however, has greatly reduced dupli-
cation. Fortunately, Wikipedia has several attributes that sig-
nificantly facilitate extraction: 1) Infoboxes, tabular sum-
maries of an object’s key attributes, may be used as a source
of training data, allowing for self-supervised learning. 2)

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Wikipedia gives important concepts their own unique iden-
tifier — the URI of a definitional page. The first reference
to such a concept often includes a link which can be used
for disambiguation. As a result, homonyms are much less of
a problem than in unstructured text. 3) Wikipedia lists and
categories provide valuable features for classifying pages.

This paper reports on K2, which extends Wu and Weld’s
available Kylin system — a self-supervised Wikipedia infor-
mation extractor (Wu & Weld 2007). Like Kylin, K2 looks
for sets of pages with similar infoboxes, determines common
attributes for each class, creates training examples, learns
extractors, and runs them on each page — creating new in-
foboxes and completing others. Kylin, itself, works quite
well for popular infobox classes where users have previ-
ously created enough infoboxes to train an effective extrac-
tor model. For example, in the “U.S. County” class Kylin
has 97.3% precision with 95.9% recall. Unfortunately, most
classes contain only a small number of infobox-containing
articles. Specifically, 1442 of 1756 (82%) classes have fewer
than 100 articles, and 42% have 10 or fewer. For classes sit-
ting on this long tail, Kylin can’t get enough training data
and its extraction performance may be unsatisfactory.

Furthermore, even when Kylin does learn an effective ex-
tractor there are numerous cases where a Wikipedia article
simply doesn’t have much information to be extracted. In-
deed, another long-tailed distribution governs the length of
articles; among the 1.8 million pages,1 many are short arti-
cles and almost 800,000 (44.2%) are marked as stub pages,
indicating that much-needed information is missing.

Contributions: Thus, in order to create a comprehensive se-
mantic knowledge base summarizing Wikipedia topics, we
must confront the problems of these long-tailed distribu-
tions. This paper presents K2, which extends Kylin with
novel techniques for increasing recall.

• By mapping the contents of known Wikipedia infobox
data to TextRunner, a state-of-the-art open information
extraction system (Banko et al. 2007), K2 creates a larger
and cleaner training dataset for learning more robust ex-
tractors.

• When it is unable to extract necessary information from
a Wikipedia page, K2 retrieves relevant sentences from

1Unless noted otherwise, all statistics are taken from the
07/16/2007 snapshot of Wikipedia’s English language version.



Schema
Refiner

Training Data
Constructor

Document
Classifier

Sentence
Classifier

CRF Model

Infoboxes

Preprocessor

Classifier

Extractor

Wikipedia

Figure 1: Kylin performs self-supervised information extraction,
using Wikipedia inforboxes for training data.

the greater Web. The key to this method is a process for
tightly filtering which non-Wikipedia sentences are given
to the K2 extractors.

Our techniques work best in concert. Together with
shrinkage, they improve the area under the P/R curve by as
much as 8, compared with baseline Kylin.

Background: Extraction in Kylin
Following (Wu & Weld 2007) we are interested in the prob-
lem of infobox completion. An infobox is a relational sum-
mary of an article: a set of attribute / value pairs describing
the article’s subject (see (Wu & Weld 2007) for an exam-
ple). Not every article has an infobox and some infoboxes
are only partially instantiated with values. We seek to create
or complete infoboxes whenever possible. Before explain-
ing how K2 extracts data from the general Web to supple-
ment that found in Wikipedia, we review the basic Kylin
architecture (Figure 1), upon which we build.

Preprocessor: The preprocessor selects and refines infobox
schemata, choosing relevant attributes; it then generates
machine-learning datasets for training sentence classifiers
and extractors. Refinement is necessary for several reasons.
For example, schema drift occurs when authors create an in-
fobox by copying one from a similar article and changing
attribute values. If a new attribute is needed, they just make
up a name, leading to schema and attribute duplication.

Next, the preprocessor constructs two types of training
datasets — those for sentence classifiers, and CRF attribute
extractors. For each article with an infobox mentioning one
or more target attributes, Kylin tries to find a unique sentence
in the article that mentions that attribute’s value. The result-
ing labelled sentences form positive training examples for
each attribute; other sentences form negative training exam-
ples. If the attribute value is mentioned in several sentences,
then one is selected heuristically.

Generating Classifiers: Kylin learns two types of classi-
fiers. For each class of article being processed, a heuristic
document classifier is used to recognize members of the in-
fobox class. For each target attribute within a class a sen-
tence classifier is trained in order to predict whether a given
sentence is likely to contain the attribute’s value. For this,
Kylin uses a maximum entropy model (Nigam, Lafferty, &
McCallum 1999) with bagging. Features include a bag of
words, augmented with part of speech tags.

Learning Extractors: Extracting attribute values from a
sentence is best viewed as a sequential data-labelling prob-
lem. Kylin uses conditional random fields (CRFs) (Lafferty,
McCallum, & Pereira 2001) with a wide variety of features
(e.g., POS tags, position in the sentence, capitalization, pres-
ence of digits or special characters, relation to anchor text,
etc.). Instead of training a single master extractor to clip
all attributes, Kylin trains a different CRF extractor for each
attribute, ensuring simplicity and fast retraining.

Shrinkage: Although Kylin performs well when it can find
enough training data, it flounders on sparsely populated in-
fobox classes — the majority of cases. We partially miti-
gated this problem by refining Wikipedia’s infobox ontol-
ogy (Wu & Weld 2008) and improving Kylin’s performance
using shrinkage, a general statistical technique for improv-
ing estimators in the case of limited training data (McCallum
et al. 1998). K2 uses shrinkage when training an extractor
of a instance-sparse infobox class by aggregating data from
its parent and children classes.

Shrinkage improves Kylin’s precision, but more impor-
tantly, it increases recall, when extracting from the long tail
of sparse infobox classes. Because this technique leads to
extractors with improved robustness, we use shrinkage in
K2, when extracting information from the general Web.

Retraining
We now consider how to improve extractor robustness by
harvesting additional training data from the outside Web.
Leveraging information outside Wikipedia to help training
extractors, could improve Kylin’s recall. To see why, we
note that the wording of texts from the greater Web are more
diverse than the relatively strict expressions used in many
places in Wikipedia.2 Training on a wider variety of sen-
tences would improve the robustness of Kylin’s extractors,
which would potentially improve the recall.

The trick here is determining how to automatically iden-
tify relevant sentences given the sea of Web data. For this
purpose, K2 utilizes TextRunner, an open information ex-
traction system (Banko et al. 2007), which extracts seman-
tic relations {r|r = 〈obj1, predicate, obj2〉} from a crawl of
about 10 million Web pages. Importantly for our purposes,
TextRunner’s crawl includes the top ten pages returned by
Google when queried on the title of every Wikipedia article.
In the next subsection, we explain the details of our retrain-
ing process; then we follow with an experimental evaluation.

Using TextRunner for Retraining: Recall that each Wi-
kipedia infobox implicitly defines a set of semantic triples
{t|t = 〈subject, attribute, value〉} where the subject corre-
sponds to the entity which is the article’s title. These triples
have the same underlying schema as the semantic relations
extracted by TextRunner and this allows us to generate new
training data.

The retrainer iterates through each infobox class C and
again through each attribute, C.a, of that class collecting
a set of triples from existing Wikipedia infoboxes: T =

2It is possible that Wikipedia’s inbred style stems from a pattern
where one article is copied and modified to form another. A general
desire for stylistic consistency is another explanation.



{t|t.attribute = C.a}.3 The retrainer next iterates through
T , issuing TextRunner queries to get a set of potential
matches R(C.a) = {r|∃t : r.obj1 = t.subject, r.obj2 =
t.value}, together with the corresponding sentences which
were used by TextRunner for extraction. The K2 retrainer
uses this mapped set RC.a to augment and clean the training
data set for C’s extractors in two ways: by providing addi-
tional positive examples for the learner, and by eliminating
false negative examples which were mistakenly generated
by Kylin from the Wikipedia data.

Adding Positive Examples: Unfortunately, TextRunner’s
raw mappings, R(C.a), are too noisy to be used as pos-
itive training examples. There are two causes for the
noise. The most obvious cause is the imperfect preci-
sion of TextRunner’s extractor. But false positive exam-
ples can also be generated when there are multiple inter-
pretations for a query. Consider the TextRunner query
〈r.obj1 = A, r.predicate =?, r.obj2 = B〉, where A is a
person and B is his birthplace. Since many people die in
the same place that they were born, TextRunner may well
return the sentence “Bob died in Seattle.” which would be a
poor training example for birthplace.

Since false positives could greatly impair training, the K2
retrainer morphologically clusters the predicates which are
returned by TextRunner (e.g., “is married to” and “was mar-
ried to” are grouped). We discard any predicate that is re-
turned in response to a query about more than one infobox
attribute. Only the k most common remaining predicates are
then used for positive training examples; in our experiments
we set k = 1 to ensure high precision.

Filtering Negative Examples: As explained in (Wu & Weld
2007), Kylin considers a sentence to be a negative example
unless it is known to be positive or the sentence classifier
labels it as potentially positive. This approach eliminates
many false negatives, but some remain. A natural idea is
to remove a sentence from the set of negative examples if it
contains the word denoting the relation itself. Unfortunately,
this technique is ineffective if based soley on Wikipedia con-
tent. To see why, consider the “Person.spouse” attribute
which denotes the “marriage” relation —because the word
“spouse” seldom appears in natural sentences, few false neg-
atives are excluded. But by using TextRunner, we can better
identify the phrases (predicates) which are harbingers of the
relation in question. The most common are used to elimi-
nate negative examples. By adding new positive examples
and excluding sentences which might be false negatives, re-
training generates an improved training set, whose benefit
we now quantify.

Retraining Experiments: We pose two questions: 1) Does
K2’s retraining improve over Kylin’s extractors? 2) Do the
benefits from retraining combine synergistically with those

3We note that another way of generating the set, T , would be to
collect baseline Kylin extractions for C.a instead of using existing
infoboxes. This would lead to a cotraining approach rather than
simple retraining. One could iterate the process of getting more
training date from TextRunner with improvements to the Kylin ex-
tractor (Blum & Mitchell 1998).

from shrinkage? Before addressing those questions we ex-
perimented with different retraining alternatives (e.g., just
adding positive examples and just filtering negatives). While
both approaches improved extractor performance, the com-
bination worked best, so the combined method was used in
the subsequent study.

We evaluate retraining in two different cases. In the first
case, we use nothing but the target class’ infobox data to
prime TextRunner for training data. In the second case, we
first used uniform-weight shrinkage to create a training set
which was then used to query TextRunner. To compute pre-
cision and recall, we manually verified the attribute values
contained in the articles. This made it necessary to limit
the evaluation set and so we tested on four randomly picked
classes of different sizes. We got improved results on each;
Figure 2 shows the results on the sparsest and on the most
popular class.

We note that in most cases retraining improves the per-
formance, in both precision and recall. When compared
with shrinkage, retraining provides less benefit for sparse
classes but helps more on the popular class “writer.” This
makes sense because without many tuples to use for query-
ing TextRunner, retraining has little effect. We suspect that
full cotraining would be more effective on sparse classes
when shrinkage was unavailable. Finally, we observe that
the combination of shrinkage and retraining is synergistic,
always leading to the biggest improvement. Particularly, on
the two sparsest classes “Irish Newspaper” and “Performer”,
it substantially improved recall by 590% and 73.3% respec-
tively, with remarkable improvement in precision as well;
and the areas under the precision and recall curve improve
1753% and 66% respectively. For the more popular classes
“Baseball Stadium” and “Writer” recall improved by 41%
and 11% respectively.

Extracting from the Web
While shrinkage and retraining improve the quality of
Kylin’s extractors, the lack of redundancy of Wikipedia’s
content makes it increasingly difficult to extract additional
information. Facts that are stated using uncommon or am-
biguous sentence structures often hide from the extractors.

In order to retrieve facts which can’t be extracted from
Wikipedia, we extract from the general Web: We train ex-
tractors on Wikipedia articles and then apply them to rele-
vant Web pages. The challenge — as one might expect — is
maintaining high precision. Since the extractors have been
trained on a very selective corpus, they are unlikely to dis-
criminate irrelevant information. For example, an extractor
for a person’s birthdate will have been trained on a set of
pages all of which have that person’s life as their primary
subject. Such extractors become inaccurate when applied to
a page which compares the lives of several people — even if
the person in question is one of those mentioned.

To ensure extraction quality, it is crucial to carefully se-
lect which content is to be processed by K2’s extractors. We
viewed this task as an information retrieval problem, and
solved it in the following steps: K2 generates a set of queries
and utilizes a general Web search engine, namely Google, to
identify a set of pages which are likely to contain the desired
information. The top-k pages are then downloaded, and the



0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(a) Irish Newspaper

Irish newspaper (20)
Newspaper (1559)

Baseline
Retraining
Shrinkage
Shrink−retrain

0 0.1 0.2 0.3 0.4 0.5 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(d) Writer

Writer (2213)
Person (1201)
Sci−fi writer (36)

Baseline
Retraining
Shrinkage
Shrink−retrain

Figure 2: Used in isolation, retraining enables a modest but marked improvement in recall. And combining retraining with shrinkage yields
substantially improved extractors with dramatic improvements to precision in the sparse Irish Newspaper domain (only 20 infoboxes) and
improved recall in both domains. Note that Irish Newspaper used shrinkage from the paper Newspaper class (1559 infoboxes), while Writer
used shrinkage from both a parent and a child class.

text on each page is split into sentences, which K2 processes
in turn. Finally, each extraction is weighted using a combi-
nation of factors which we will explain shortly.

Choosing Search Engine Queries: The first step is ensur-
ing that the search engine returns highly relevant pages. A
simple approach is to use the article title as a query. Sup-
pose we are interested in finding the birth date of Andrew
Murray, a writer, whose Wikipedia page is titled “Andrew
Murray (minister)”. Wikipedia uses information in paren-
theses to resolve ambiguities, but K2 removes it to increase
recall. To improve result relevance, quotes are placed around
the remaining string, here ‘‘andrew murray’’.

Although such a query might retrieve many pages about
Murray, it is possible that none of the top k contains the at-
tribute value in question. K2 therefore runs several more re-
strictive queries which contain additional keywords to better
target the search.

One such query is the quoted article title followed by
the attribute name, as in ‘‘andrew murray’’ birth
date. While this increases the chance that a returned page
contains the desired information, it also greatly reduces re-
call, because the terms ‘birth date’ might not actually appear
on a relevant page. For example, consider the sentence “An-
drew Murray was born in 1828.”.

But note that K2 has already computed a list of predi-
cates which are indicative of each attribute (e.g. ‘was born
in’ for the birth date), as explained in our section on retrain-
ing. Thus, K2 generates appropriate queries for each predi-
cate, which combines the quoted title with these predicates.
The combined results of all queries (title only, title and at-
tribute name, as well as title and any attribute predicate) are
retrieved for further processing.

Weighing Extractions: Pages which do not contain the pre-
processed article title, here ‘Andrew Murray’, are discarded.
Then, formatting commands and scripts are removed, and
sentences in the remaining text are identified.

Since most sentences are still irrelevant, running Kylin’s
extractors on these directly would result in many false pos-
itives. Recall that unlike Wikipedia’s articles, web pages
often compare multiple related concepts, and so we would

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(a) Irish Newspaper

Irish newspaper (20)
Newspaper (1559)

Ex. Confidence
Google Rank
Sentence Dis.
Combination

Figure 3: When applying K2 to Web pages, the CRF extractor’s
confidence is a poor choice for scoring competing extractions of the
same attribute. By factoring in IR features, performance improves
substantially.

like to capture the likeliness that a sentence or extraction is
relevant to a concept. A variety of features may be indicative
of content relevance, but K2 uses two in particular:
• The number of sentences δs between the current sentence

and the closest sentence containing the (preprocessed) ti-
tle of the article.

• The rank of the page δr on Google’s results lists returned
in response to our queries.
Each retrieved sentence is processed by Kylin’s extrac-

tors, and for each extraction a combined score is computed.
This score takes into account both factors δs and δr as well
as the confidence δc reported by Kylin’s extractors. The
combined score is obtained in the following way: First, each
of the three parameters δs, δr, δc is normalized by applying a
linear mapping into the intervals [αs, 1], [αr, 1], and [αc, 1]
respectively, where 1 corresponds to the optimal value and
αs, αr, and αc are user-defined parameters. With δ∗s , δ∗r , and
δ∗c denoting the normalized weights, the combined score is
then obtained as scoreweb := δ∗s ∗ δ∗r ∗ δ∗c .

Combining Wikipedia and Web Extractions: Finally, K2
combines extraction results from Wikipedia and Web pages.
Extractions from Wikipedia are ranked by extractor confi-
dence scorewiki := δc and extractions from the Web by



scoreweb as defined above. But what is the overall best ex-
traction? We expect that extractions from Wikipedia tend
to be more precise (a given Wikipedia article is known to
be relevant, of high quality, and of consistent structure for
which Kylin’s extractors have been trained), but fewer.

K2 applies a simple normalization and always returns the
extraction with highest score. To be able to balance the
weight of one extractor versus the other, K2 adjusts the score
of extractions from the Web to 1 − (1 − scoreweb)λ, where
λ is a new parameter. If λ = 0, extractions from the Web are
not considered, and if λ = 1, scorewiki and scoreweb are
compared directly.

Web Experiments: In our experiments we investigated 1)
how to best weigh extractions from the Web, and 2) if our
techniques for combining extractions from Wikipedia and
Web pages improve recall while maintaining precision.

We assume that there exists some correct value for each
attribute contained in the infobox template for an article and
define recall to be the proportion of correct attribute values
relative to all attributes. Note that most infoboxes in Wiki-
pedia do not provide a value for each attribute contained in
the corresponding infobox template. For example, the at-
tribute “spouse” does not make sense for people who are
not married, and “death date” for people who are still alive.
Therefore, our recall estimates are conservative, but enable
a relative comparison of our proposed techniques.

For all experiments, we queried Google for the top-100
pages containing the article title, and the top-10 pages con-
taining the article title and the attribute name or any associ-
ated predicate. Each new extraction — for which no ground
truth existed in Wikipedia — was manually verified for cor-
rectness by visiting the source page.

In our first series of experiments (Figure 3), we used
Shrink-Retrain — the best extractors trained on Wikipedia
— and applied different weighting functions to select the
best extraction for an attribute. The CRF extractor’s reported
confidence performed poorly in isolation. Giving priority to
extractions from pages at a higher position in Google’s re-
turned result lists and resolving ties by confidence, yielded
a substantial improvement. Similarly, we tried giving pri-
ority to extractions which were fewer sentences apart from
the occurrence of the Wikipedia article title on a page, again
resolving ties by extractor confidence. The large improve-
ments in precision and recall (as highlighted in Figure 3)
show that much of the returned text is irrelevant, but can be
re-weighted using simple heuristics. Finally, we were inter-
ested if a weighted combination of these factors would lead
to synergies. We set αs = .1, αr = .7, αc = .9, so that
each factor was roughly weighted by our observed improve-
ment (results were not sensitive to minor variations). On all
datasets, performance was comparable or better than the best
factor taken in isolation.

In our second series of experiments (Figure 4), we com-
bined extractions from Wikipedia and the Web. In both
cases, we applied the Shrink-Retrain extractor, but scored
extractions from the Web using the weighted factor combi-
nation with λ = .4. The results, shown in Figure 4, show
large improvements in recall at higher precision for the pop-
ular “Writer” (42%) dataset, and at moderately reduced pre-

cision for the sparse “Irish Newspaper” dataset. The area
under the curve was substantially expanded in both cases, by
58% and 15% respectively. Compared to the original base-
line system, the area has expanded 93% and 771% respec-
tively. On the “Baseball Stadium” and “Performer” classes,
the area has expanded 91% and 102% respectively.

In future work, we would like to automatically optimize
the parameters αs, αr, αc, λ based on comparing the extrac-
tions with values in the infobox.

Related Work
In the preceding sections we have discussed how our work
relates to co-training. In this section, we discuss the broader
context of previous work on unsupervised information ex-
traction and other Wikipedia-based systems.

Unsupervised Information Extraction: Since the Web
is large and highly heterogeneous, unsupervised and self-
super-vised learning is necessary for scaling. Several
systems of this form have been proposed. SNOW-
BALL (Agichtein & Gravano 2000) iteratively generates ex-
traction patterns based on occurrences of known tuples in
documents to extract new tuples from plain texts. MUL-
DER (Kwok, Etzioni, & Weld 2001) and AskMSR (Brill,
Dumais, & Banko 2002) use the Web to answer questions,
exploiting the fact that most important facts are stated mul-
tiple times in different ways, which licenses the use of sim-
ple syntactic processing. Instead of utilizing redundancy,
K2 exploits Wikipedia’s unique structure and the presence
of user-tagged data to train machine learners. Patwardhan
et al. proposed a decoupled information extraction system
by first creating a self-trained relevant sentence classifier
to identify relevant regions, and using a semantic affinity
measure to automatically learn domain-relevant extraction
patterns (Patwardhan & Riloff 2007). K2 uses the similar
idea of decoupling when applying extractors to the general
Web. However, K2 uses IR-based techniques to select rele-
vant sentences and trains CRF extractors.

Other Wikipedia-Based Systems: Bunescu and Pasca uti-
lized Wikipedia to detect and disambiguate named entities in
open domain documents (Bunescu & Pasca 2006). Ponzetto
et al. derived a large scale taxonomy based on the Wiki-
pedia category system by identifying the IS-A relationships
among category tags (Ponzetto & Strube 2007). Auer and
Lehmann developed the DBpedia (Auer & Lehmann 2007)
system which extracts information from existing infoboxes
within articles and encapsulate them in a semantic form for
query. In contrast, K2 populates infoboxes with new at-
tribute values. Suchanek et al. implement the YAGO sys-
tem (Suchanek, Kasneci, & Weikum 2007) which extends
WordNet using facts extracted from Wikipedia’s category
tags. But in contrast to K2, which can learn to extract values
for any attribute, YAGO only extracts values for a limited
number of predefined relations.

Conclusion
Wu and Weld’s Kylin system demonstrated the ability to
perform self-supervised information extraction from Wiki-
pedia (Wu & Weld 2007). While Kylin achieved high preci-
sion and reasonable recall on popular infobox classes, most



0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(a) Irish Newspaper

Irish newspaper (20)
Newspaper (1559)

Baseline
Shrink−retrain
Shrink−retrain−Web

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

Pr
ec

isi
on

(d) Writer

Writer (2213)
Person (1201)
Sci−fi writer (36)

Baseline
Shrink−retrain
Shrink−retrain−Web

Figure 4: Combining Kylin’s extractions from Wikipedia and the Web yields a substantial improvement in recall without compromising
precision. Already, shrink-retrain improved recall over the original Kylin system, here the baseline, but the combination of extractions from
Wikipedia and the Web, shrink-retrain-Web, performs even better. Note that recall is substantially improved, even for the Writer class, which
has many infoboxes (2213) for training.

classes (i.e., 82%) provide fewer than 100 training exam-
ples; on these classes, Kylin’s performance is unacceptable.

This paper describes the K2 system, which extends Kylin
by supplementing Wikipedia extractions with those from the
Web. There are two keys to effective (self-supervised) Web
extraction: 1) careful filtering to ensure that only the best
sentences are considered for extraction and 2) a novel re-
training technique which generates more robust extractors.
While these techniques are useful individually, their combi-
nation is synergistic (Figure 4):
• Precision is modestly improved in most classes, with

larger gains if sparsity is extreme (“Irish Newspaper”).
• Recall sees extraordinary improvement with gains from

0.06% to 0.49% (a factor of 8.4) in extremely sparse
classes such as “Irish Newspaper.” Even though the
“Writer” class is populated with over 2000 infoboxes, its
recall improves from 18% to 32% (a factor of 1.77) at
equivalent levels of precision.

• Calculating the area under the precision / recall curve also
demonstrates substantial improvement, with an improve-
ment factor of 16.71, 2.02, 1.91, and 1.93 for “Irish News-
paper,” “Performer,” “Baseball Stadium,” and “Writer,”
respectively.
Much remains to be done. For example, we wish to extend

our retraining technique to full cotraining. There are ways
to better integrate extraction of Web content with that of Wi-
kipedia, ranging from improved querying policies to DIRT-
style analysis of extraction patterns (Lin & Pantel 2001).

References
Agichtein, E., and Gravano, L. 2000. Snowball: Extracting rela-
tions from large plain-text collections. In Proceedings of the Fifth
ACM International Conference on Digital Libraries.
Auer, S., and Lehmann, J. 2007. What have Innsbruck and
Leipzig in common? Extracting semantics from wiki content. In
ESWC07.
Banko, M.; Cafarella, M. J.; Soderland, S.; Broadhead, M.; and
Etzioni, O. 2007. Open information extraction from the Web. In
Proceedings of IJCAI07.
Blum, A., and Mitchell, T. 1998. Combining Labeled and Unla-
beled Data with Co-Training. In Proceedings of the 11th Annual
Conference on Computational Learning Theory, 92–100.

Brill, E.; Dumais, S.; and Banko, M. 2002. An analysis
of the AskMSR question-answering system. In Proceedings of
EMNLP02.
Bunescu, R., and Pasca, M. 2006. Using encyclopedic knowledge
for named entity disambiguation. In Proceedings of EACL06.
Etzioni, O.; Cafarella, M.; Downey, D.; Kok, S.; Popescu, A.;
Shaked, T.; Soderland, S.; Weld, D.; and Yates, A. 2005. Unsu-
pervised named-entity extraction from the Web: An experimental
study. Artificial Intelligence 165(1):91–134.
Giles, J. 2005. Internet encyclopaedias go head to head. Nature
438:900–901.
Kwok, C. T.; Etzioni, O.; and Weld, D. 2001. Scaling question
answering to the Web. ACM Transactions on Information Systems
(TOIS) 19(3):242–262.
Lafferty, J.; McCallum, A.; and Pereira, F. 2001. Conditional
random fields: Probabilistic models for segmenting and labeling
sequence data. In Proceedings of WWW01.
Lin, D., and Pantel, P. 2001. DIRT @SBT@discovery of infer-
ence rules from text. In Knowledge Discovery and Data Mining,
323–328.
McCallum, A. K.; Rosenfeld, R.; Mitchell, T. M.; and Ng, A. Y.
1998. Improving text classification by shrinkage in a hierarchy
of classes. In Shavlik, J. W., ed., Proceedings of ICML-98, 15th
International Conference on Machine Learning, 359–367. Madi-
son, US: Morgan Kaufmann Publishers, San Francisco, US.
Nigam, K.; Lafferty, J.; and McCallum, A. 1999. Using maxi-
mum entropy for text classification. In Proceedings of Workshop
on Machine Learning for Information Filtering, IJCAI99.
Patwardhan, S., and Riloff, E. 2007. Effective information ex-
traction with semantic affinity patterns and relevant regions. In
Proceedings of the 2007 Conference on Empirical Methods in
Natural Language Processing (EMNLP-07.
Ponzetto, S. P., and Strube, M. 2007. Deriving a large scale
taxonomy from wikipedia. In Proceedings of AAAI07.
Suchanek, F. M.; Kasneci, G.; and Weikum, G. 2007. Yago: A
core of semantic knowledge - unifying WordNet and Wikipedia.
In Proceedings of WWW07.
Wu, F., and Weld, D. 2007. Autonomouslly semantifying wiki-
pedia. In Proceedings of CIKM07.
Wu, F., and Weld, D. 2008. Automatically refining the wikipedia
infobox ontology. In Proceedings of WWW08.


