
Back to Basics
for APCS Success

Stuart Reges, Principal Lecturer
University of Washington

Hélène Martin, CS teacher
Garfield High School

Selective Timeline
 1984: AP/CS first offered in Pascal
 1998-1999: AP/CS switches to C++
 2001-2002: Dot com crash, CS enrollments plummet
 2002: OOPSLA “Resolved: Objects have Failed”
 2003-2004: AP/CS switches to Java
 2005: SIGCSE “Resolved: Objects Early has Failed”
 2011: CMU and Berkeley switch CS1 to Python
 2011: Stuart Reges assures nervous teachers that

AP/CS in Java is a fantastic course

More personal timeline
 2000: “Conservatively Radical Java in CS1”: objects

early through scaffolding
 2004: Stuart hired by UW to fix intro with a plan to

teach procedural Java
 2005: Resolved: Objects Early has Failed
 2006: first edition of Building Java Programs
 2011: 4 textbooks with “objects late” in title, 3rd

edition of Building Java Programs

UW Results

Course Principles
 Traditional procedural approach (back to

basics): drawing on past wisdom
 Updated to use features of Java: using

objects early, graphics (DrawingPanel)
 Core of the course: challenging assignments

many of which are nifty or practical
 Concrete practice problems to build

programming skills: section problems, labs,
exams, PracticeIt

 Lots of support: army of undergraduate TAs,
programming lab support

Why I’m sold
 “I've never come across a textbook that layers

ideas so strategically and ingeniously well. The
ideas are presented in an order and in a manner
that made it impossible for me to get lost or bored.

[...] It taught so well, I couldn't wait to get my hands
on problem after problem. This book made me
crave problem solving and writing clean,
inventive, non-redundant, well-commented code.”

 - Amazon review
 Applies to methodology; book is a nice-to-have!

6

2009-2010
 First offering of APCS in the district
 26 students enrolled, 17 took AP test

2010-2011
 Advanced section for 25 students
 2 sections for students new to programming
 32% women overall (37% in new sections)

Garfield course structure
 1/4 lecture, group work without computers

 In-class time for experimenting
 Programming projects written from scratch
 Little to no homework

 Bi-weekly paper and pencil quizzes
 No real mention of AP test until February

Students know OOP
 January: writing classes as object blueprints

 Sophisticated Gridworld projects
 15-puzzle
 snake game
 ant farm

 Heavily OO final projects

 AP report mean for OO multiple choice: 6.4,
4.9 nationally; group mean close to 7 on FRQ

Assertions: verifying
mental models

 public static void mystery(int x, int y) {
 int z = 0;
 // Point A

 while (x >= y) {
 // Point B
 x = x - y;
 z++;

 if (x != y) {
 // Point C
 z = z * 2;
 }
 // Point D

 }
 // Point E
 System.out.println(z);
 }

x < y x == y z == 0

Point A

Point B

Point C

Point D

Point E

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

Assertions: verifying
mental models

 public static void mystery(int x, int y) {
 int z = 0;
 // Point A

 while (x >= y) {
 // Point B
 x = x - y;
 z++;

 if (x != y) {
 // Point C
 z = z * 2;
 }
 // Point D

 }
 // Point E
 System.out.println(z);
 }

x < y x == y z == 0

Point A SOMETIMES SOMETIMES ALWAYS

Point B NEVER SOMETIMES SOMETIMES

Point C SOMETIMES NEVER NEVER

Point D SOMETIMES SOMETIMES NEVER

Point E ALWAYS NEVER SOMETIMES

Which of the following assertions are
true at which point(s) in the code?
Choose ALWAYS, NEVER, or SOMETIMES.

Reasoning about assertions
 Right after a variable is initialized, its value is known:

 int x = 3;
 // is x > 0? ALWAYS

 In general you know nothing about parameters' values:
 public static void mystery(int a, int b) {
 // is a == 10? SOMETIMES

 But inside an if, while, etc., you may know something:
 public static void mystery(int a, int b) {
 if (a < 0) {
 // is a == 10? NEVER
 ...
 }
 } 13

Assertions and loops
 At the start of a loop's body, the loop's test must be true:

 while (y < 10) {
 // is y < 10? ALWAYS
 ...
 }

 After a loop, the loop's test must be false:
 while (y < 10) {
 ...
 }
 // is y < 10? NEVER

 Inside a loop's body, the loop's test may become false:
 while (y < 10) {
 y++;
 // is y < 10? SOMETIMES
 } 14

“Sometimes”
 Things that cause a variable's value to be unknown:

 reading from a Scanner

 choosing a random value
 a parameter's initial value to a method

15

Transition to OOP

16

Modeling earthquakes
 Given a file of cities' (x, y) coordinates,

which begins with the number of cities:
 6
 50 20
 90 60
 10 72
 74 98
 5 136
 150 91

 Write a program to draw the cities on a DrawingPanel, then model an
earthquake by turning affected cities red:

 Epicenter x? 100
 Epicenter y? 100
 Affected radius? 75

public void print() {
 // this code can see p2's x and
y
}

Point objects w/ method
 Each Point object has its own copy of the print method, which

operates on that object's state:

 Point p1 = new Point();
 p1.x = 7;
 p1.y = 2;

 Point p2 = new Point();
 p2.x = 4;
 p2.y = 3;

 p1.print();
 p2.print();

public void print() {
 // this code can see p1's x and
y
}

x 7 y 2

p2

p1

x 4 y 3

Why encapsulation?
 Abstraction between object and clients
 Protects object from unwanted access

 Example: Can't fraudulently increase an Account's
balance.

 Can change the class implementation later
 Example: Point could be rewritten in polar

coordinates (r, θ) with the same methods.

 Can constrain objects' state (invariants)
 Example: Only allow Accounts with non-negative

balance.
 Example: Only allow Dates with a month from 1-12.

19

