Day 3 5 slide synopsis of last lecture

Covariance Models (CMs) represent conserved RNA sequence/structure motifs

They allow accurate search

But

- a) search is slow
- b) model construction is laborious

56

But Slov (the "inside" algorithm)							
$S_{ij}^{y} = 1$	$\max_{\pi} \log P(x)$	x_{ij} generated starting in	state y via path π)				
	$\max_{z}[S_{i+1,j-1}^{z}]$	$_{1} + \log T_{yz} + \log E_{x_{i},x_{j}}^{y}$]	match pair				
	$\max_{z}[S_{i+1,j}^{z}]$	$+\log T_{yz} + \log E_{x_i}^y$	match/insert left				
$S_{ij}^y = \langle$	$\max_{z}[S_{i,j-1}^{z}]$	$+\log T_{yz} + \log E_{x_j}^y$]	match/insert right				
	$\max_{z}[S_{i,j}^{z}]$	$+\log T_{yz}$]	delete				
	$\max_{i < k \le j} [S_{i,k}^{y}]$	${k \choose k} + S_{k+1,j}^{y_{right}}$]	bifurcation				
Time O(qn ³), q states, seq len n compare: O(qn) for profile HMM 59							

Ex d-made am Family

Jane	IRE
(hand-curated):	
MSA "seed alignment"	Hom.s Hom.s
SS cons	Hom.s
Score Thresh T	Hom.s
	Hom.s
Window Len W	Hom.s
0	Hom.s
Output:	Hom.s
CM	Cav.r
CH	Mus.m
scan results & "full	Mus.m
	Mus.m
alignment	Rat.r

IRE (partial seed alignment):									
-									
Hom.sap.	GUUCCI	JGCUUCA	ACAGUGU	UUGGAU	GGAAC				
Hom.sap.	UUUCU	UC.UUCA	ACAGUGU	UUGGAU	GGAAC				
Hom.sap.	UUUCCI	UGUUUCA	ACAGUGO	UUGGA .	GGAAC				
Hom.sap.	UUUAU	CAGUG	ACAGAGU	UCACU.	AUAAA				
Hom.sap.	UCUCU	UGCUUCA	ACAGUGU	UUGGAU	GGAAC				
Hom.sap.	AUUAU	CGGGA	ACAGUGU	uuccc.	AUAAU				
Hom.sap.	UCUUG	CUUCA	ACAGUGU	UUGGAC	GGAAG				
Hom.sap.	UGUAU	C GGAG	ACAGUGA	UCUCC.	AUAUG				
Hom.sap.	AUUAU	C GGAA	GCAGUGO	CUUCC .	AUAAU				
Cav.por.	UCUCC	UGCUUCA	ACAGUGO	UUGGAC	GGAGC				
Mus.mus.	UAUAU	C GGAG	ACAGUGA	UCUCC.	AUAUG				
Mus.mus.	UUUCC	UGCUUCA	ACAGUGO	UUGAAC	GGAAC				
Mus.mus.	GUACU	UGCUUCA	ACAGUGU	UUGAAC	GGAAC				
Rat.nor.	UAUAU	C GGAG	ACAGUGA	CCUCC.	AUAUG				
Rat.nor.	UAUCU	UGCUUCA	ACAGUGU	UUGGAC	GGAAC				
SS_cons	<<<<<	<<<<	<mark><</mark> .	>>>>.	>60>>>				

Today's Goals

Faster Search Infernal & RaveNnA Automated Model-building CMfinder

Homology search

Sequence-based Smith-Waterman

> FASTA BLAST

Sharp decline in sensitivity at ~60-70% identity

So, use structure, too

M. tuberculosis

(and 19 more species)

(and 19 more species)

BLAST-based

Impact of RNA homology search

64

(and 42 more species)

66

69

CM-based

65

Zasha Weinberg & W.L. Ruzzo Recomb '04, ISMB '04, Bioinfo '06

RaveNnA: Genome Scale **RNA** Search

Typically 100x speedup over raw CM, w/ no loss in accuracy: Drop structure from CM to create a (faster) HMM Use that to pre-filter sequence; Discard parts where, provably, CM score < threshold; Actually run CM on the rest (the promising parts) Assignment of HMM transition/emission scores is key (a large convex optimization problem)

Weinberg & Ruzzo, Bioinformatics, 2004, 2006

CM's are good, but slow

Covariance Model

Key difference of CM vs HMM: Pair states emit paired symbols, corresponding to base-paired nucleotides; 16 emission probabilities here.

72

Oversimplified CM (for pedagogical purposes only)

73

Key Issue: 25 scores \rightarrow 10 CM HMM A C G U) A) C G A A C G U C G U P R L → U

Need: log Viterbi scores $CM \leq HMM$

75

 $\mathsf{P}_{\mathsf{A}\mathsf{A}} \leq \mathsf{L}_{\mathsf{A}} + \mathsf{R}_{\mathsf{A}}$ $P_{AC} \le L_A + R_C$ $\mathsf{P}_{\mathsf{A}\mathsf{G}} \leq \mathsf{L}_{\mathsf{A}} + \mathsf{R}_{\mathsf{G}}$ $\mathsf{P}_{\mathsf{AU}} \leq \mathsf{L}_{\mathsf{A}} + \mathsf{R}_{\mathsf{U}}$ $\mathsf{P}_{\mathsf{A}-} \leq \mathsf{L}_{\mathsf{A}} + \mathsf{R}_{-}$

Any scores satisfying the linear inequalities give rigorous filtering

Proof:

- CM Viterbi path score
- ≤ "corresponding" HMM path score
- ≤ Viterbi HMM path score (even if it does not correspond to any CM path)

Some scores filter better

Assignment of scores/ "probabilities"

Convex optimization problem Constraints: enforce rigorous property Objective function: filter as aggressively as possible Problem sizes: 1000-10000 variables 10000-100000 inequality constraints

83

"Convex" Optimization

Convex: local max = global max; simple "hill climbing" works Nonconvex: can be many local maxima, ≪ global max; "hill-climbing" fails

Estimated Filtering Efficiency (139 Rfam 4.0 families)

	Filtering fraction	# families (compact)	# families (expanded)			
_	< 10-4	105	110	∼100x		
eve .	10-4 - 10-2	8	17	speedup		
brea	.0110	11	3			
u	.1025	2	2			
	.2599	6	4			
	.99 - 1.0	7	3			

Averages 283 times faster than CM

85

Results: new ncRNAs (?)

Name	# Known	# New
	(BLAST + CM)	(rigorous filter + CM)
Pyrococcus snoRNA	57	123
Iron response element	201	121
Histone 3' element	1004	102*
Retron msr	11	48
Hammerhead I	167	26
Hammerhead III	251	13
U6 snRNA	1462	2
U7 snRNA	312	1
cobalamin riboswitch	170	7
13 other families	5-1107	0
		87

Heuristic Filters

Rigorous filters optimized for worst case Possible to trade improved speed for small loss in sensitivity?

Yes – profile HMMs as before, but optimized for average case

Often 10x faster, modest loss in sensitivity

Software

Ravenna implements both rigorous and heuristic filters

Infernal (engine behind Rfam) implements heuristic filters and some other accelerations

E,g., dynamic "banding" of dynamic programming matrix based on the insight that large deviations from consensus length must have low scores.

107

CM Search Summary

Still slower than we might like, but dramatic speedup over raw CM is possible with:

No loss in sensitivity (provably), or Even faster with modest (and estimable) loss in sensitivity

RNA Motif Discovery

CM's are great, but where do they come from?

An approach: comparative genomics

Search for motifs with common secondary structure in a set of functionally related sequences.

Challenges

Three related tasks Locate the motif regions. Align the motif instances. Predict the consensus secondary structure. Motif search space is huge! Motif location space, alignment space, structure space.

115

RNA Motif Discovery

Typical problem: given a 10-20 unaligned sequences of 1-10kb, most of which contain instances of one RNA motif of 100-200bp -- find it.

Example: 5' UTRs of orthologous glycine cleavage genes from γ-proteobacteria

Example: corresponding introns of orthogolous vertebrate genes

117

108

Approaches

Align-First: Align sequences, then look for common structure

Fold-First: Predict structures, then try to align them

Joint: Do both together

Pitfall for sequence-alignmentfirst approach

Structural conservation ≠ Sequence conservation Alignment without structure information is unreliable

Augment without structure mormation is unread

CLUSTALW alignment of SECIS elements with flanking regions
GGATCATTGCARGAGCAGGTG ACTGCACATA TGARGGCCTGTACTGAAGACMCAA GCTGTTAGTACAGACC CTTTCTTGGCMGCTCGTTGTACCTCTTGGAAAACCTCAA
AGGTITGCATTAATGAGGATTACACMGAAAACCTTT-GTTAAGGGTTGTGTGCGATCTOCTAATTGGCAAMITTTTAAAATATTCTTACAGAAGAGTTCCATTTAAGAATGTICGTGTATAG
ASTOTOCOGATIGATAACTACTGACGAAAGAGTCATCGACTCAGTYACTGGTTOGATGTAGTCACATTAGTTTOCCTCTCCCCATCTTTGTCTCCCCTGGCAAGGAGAATATGCGGGGAGACATGATGCTGAGA
TOGACTGATAGGTA-GCCATGGCTICATCTGTCATGTCTGCTTCTITTTATATTTGTGTATGGTCACAGGTGTAAA-GTTCCCACAGCTGTGACTTGATTTTAA-AAATGTCGGAAG
TAAACTCGACCGGGGGGGAATTGCTGATTACGA-TXAACCACTGATTCCTGGGTCGCTCCTTCGTGGCCGTCGTCGGTTCCATTTATCAACTATAGCTCCAATACATAGCTACAGGTTTT
ABATTCTCSCTATATGACGATGCAMTCTCAAATGT-TCATTGCTGCCATTTGATGAAAACAGTTTTGTGTGCACCTGATTGCHGAATTTTGTTTACCTGCTCATTTTTTCATTGAAAACACCACTTCTCAG
GGGGGGGGGTTGGATGGATGGACCGACCCACTCCGACTCTGCAG <mark>GTGTT</mark> TGCAAATGACGACCGATTTRGAAATGGTCTCACGGCCAAAAACTCGTGTCCGACGCCAAAAACTCGTGTCCGACGCCAAAAACTCGTGTCCGACGCCAAAAACTCGTGTCCGACGCCAAAAACTCGTGTCCGACGCCAAAAACTCGTGTCCGACGCCAAAAACTCGTGTCCGACGCCAAAAACTCGTGTCCGACGCCAAAAACTCGTGTCCGACGCCAAAAACTCGTGTCCGACGCCGC
TTCTCCCAGTGTCTACTTGATGACAGAGAGAGAGAGAGAG
CAAACTGATGGATA-GCCATTGGTATTCATCTATTTTAACTCTGTGTCTTTACATATTTGTTTATGATGGCCACGGCCAAA-GTACACACGGCTGTGACTTGATTCAAAA-GAAA-G
TGAGCANCTTGTCT-GATGACTGGGAAAGGAGGACCTGCAACCATCTGACTTGGTCTCTGTTAATGACGTCTCCCCTCTAA-ACCC-CATTAAGGACTGGGAGGAGGCAGA-GCAAGCCTCMGA
GATTACTGGCTGCACTCTGGGGGGCGSTTCTTCCATGATGGTGTTTCCTCTAAATTTGCACGGAGAAAACACCTGATTCCCAGGAGA-ATCCCCTCAGATGGGCGCTGGTCCCATTCCCATCCCGATGCCCCTGATTCCCAGATGGCGCCTGGTCCCATCCCGATGCCCATCCCGATGCCCCTGATTCCCAGATGGCGCCTGGTCCCATCCCGATGCCCCTGATTCCCAGATGGCGCCTGGTCCCATCCCGATGCCCCTGATTCCCAGATGGCGCCTGGTCCCATCCCGATGCCCGATGCCCCGATGCCCCTGATTCCCAGATGCGCGCCGGTGCCCCTGGTCCCACGGCGCGCGC
MGACCAGGCAAGACAACTGTGAGC-GCGATGGCCGTGTACCCCAGGTCAGGGGGGGGTGTCTCTA TGAAGGAGGGGCC GAAGCCCTTGTG3GGGGCCCCCCAGAGCCCCCTGAGCCCCCTGAGCCCCCTGAGCCCCCTGAGCCCCCCCC

same-colored boxes should be aligned

Approaches

Align-first: align sequences, then look for common structure

Fold-first: Predict structures, then try to align them

single-seq struct prediction only ~ 60% accurate; exacerbated by flanking seq; no biologicallyvalidated model for structural alignment

Joint: Do both together

Sankoff – good but slow Heuristic

125

CMFinder

Simultaneous alignment, folding & motif description Yao, Weinberg & Ruzzo, *Bioinformatics*, 2006

Applications: ncRNA discovery in prokaryotes and vertebrates

Key issue in both cases is exploiting prior knowledge to focus on promising data

Application I: Prokaryotes

A Computational Pipeline for High Throughput Discovery of *cis*-Regulatory Noncoding RNA in Prokaryotes.

Yao, Barrick, Weinberg, Neph, Breaker, Tompa and Ruzzo. PLoS Computational Biology. 3(7): e126, July 6, 2007.

Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline.

Weinberg, Barrick, Yao, Roth, Kim, Gore, Wang, Lee, Block, Sudarsan, Neph, Tompa, Ruzzo and Breaker. *Nucl. Acids Res.*, July 2007 35: 4809-4819.

Predicting New *cis*-Regulatory RNA Elements

Goal:

Given unaligned UTRs of coexpressed or orthologous genes, find common structural motifs

Difficulties:

Low sequence similarity: alignment difficult

- Varying flanking sequence
- Motif missing from some input genes

Use the Right Data; Do Genome Scale Search

147

Right Data: Why/How

We can recognize, say, 5-10 good examples amidst 20 extraneous ones (but not 5 in 200 or 2000) of length 1k or 10k (but not 100k)

Regulators often near regulatees (protein coding genes), which are usually recognizable cross-species So, find similar genes ("homologs"), look at adjacent DNA

(Not strategy used in vertebrates - 1000x larger genomes)

150

Genome Scale Search: Why

Many riboswitches, e.g., are present in ~5 copies per genome

In most close relatives

More examples give better model, hence even more examples, fewer errors

More examples give more clues to function - critical for wet lab verification

But inclusion of non-examples can degrade motif...

151

Approach

Get bacterial genomes

For each gene, get 10-30 close orthologs (CDD)

Find most promising genes, based on conserved sequence motifs (Footprinter)

From those, find structural motifs (CMfinder)

Genome-wide search for more instances (Ravenna)

Expert analyses (Breaker Lab, Yale)

152

Table I: Motifs that correspond to Rfam families

	Rank		Score	#				CDD	Rfam
RAV	CMF	FP		RAV	CMF	ID	Gene	Descriptio n	
0	43	107	3400	367	11	9904	llvB	Thiamine pyrophosphate-requiring enzymes	RF00230 T-box
1	10	344	3115	96	22	13174	COG3859	Predicted membrane protein	RF00059 THI
2	77	1284	2376	112	6	11125	MetH	Methionine synthase I specific DNA methylase	RF00162 S_box
3	0	5	2327	30	26	9991	COG0116	Predicted N6-adenine-specific DNA methylase	RF00011 RNaseP bact b
4	6	66	2228	49	18	4383	DHBP	3,4-dihydroxy-2-butanone 4-phosphate synthase	RF00050 RFN
7	145	952	1429	51	7	10390	GuaA	GMP synthase	RF00167 Purine
8	17	108	1322	29	13	10732	GcvP	Glycine cleavage system protein P	RF00504 Glycine
9	37	749	1235	28	7	24631	DUF149	Uncharacterised BCR, YbaB family COG0718	RF00169 SRP_bact
10	123	1358	1222	36	6	10986	CbiB	Cobalamin biosynthesis protein CobD/CbiB	RF00174 Cobalamin
20	137	1133	899	32	7	9895	LysA	Diaminopimelate decarboxylase	RF00168 Lysine
21	36	141	896	22	10	10727	TerC	Membrane protein TerC	RF00080 yybP-ykoY
39	202	684	664	25	5	11945	MgtE	Mg/Co/Ni transporter MgtE	RF00380 ykoK
40	26	74	645	19	18	10323	GImS	Glucosamine 6-phosphate synthetase	RF00234 glmS
53	208	192	561	21	5	10892	OpuBB	ABC-type proline/glycine betaine transport systems	RF00005 tRNA ¹
122	99	239	413	10	7	11784	EmrE	Membrane transporters of cations and cationic drug	RF00442 ykkC-yxkD
255	392	281	268	8	6	10272	COG0398	Uncharacterized conserved protein	RF00023 tmRNA

Table 1: Motifs that correspond to Rfam families. "Rank": the three columns show ranks for refined motif clusters after genome scans ("RAN"), CMfinder motifs before genome scans ("CMF"), and FootPrinter results ("FP"). We used the same ranking scheme for RAV and CMF. "Score"

	Membership			Overlap			Structure			
		#	Sn	Sp	nt	Sn	Sp	bp	Sn	Sp
RF00174	Cobalamin	183	0.74 ¹	0.97	152	0.75	0.85	20	0.60	0.77
RF00504	Glycine	92	0.56 ¹	0.96	94	0.94	0.68	17	0.84	0.82
RF00234	glmS	34	0.92	1.00	100	0.54	1.00	27	0.96	0.97
RF00168	Lysine	80	0.82	0.98	111	0.61	0.68	26	0.76	0.87
RF00167	Purine	86	0.86	0.93	83	0.83	0.55	17	0.90	0.95
RF00050	RFN	133	0.98	0.99	139	0.96	1.00	12	0.66	0.65
RF00011	RNaseP_bact_b	144	0.99	0.99	194	0.53	1.00	38	0.72	0.78
RF00162	S_box	208	0.95	0.97	110	1.00	0.69	23	0.91	0.78
RF00169	SRP_bact	177	0.92	0.95	99	1.00	0.65	25	0.89	0.81
RF00230	T-box	453	0.96	0.61	187	0.77	1.00	5	0.32	0.38
RF00059	THI	326	0.89	1.00	99	0.91	0.69	13	0.56	0.74
RF00442	ykkC-yxkD	19	0.90	0.53	99	0.94	0.81	18	0.94	0.68
RF00380	ykoK	49	0.92	1.00	125	0.75	1.00	27	0.80	0.95
RF00080	yybP-ykoY	41	0.32	0.89	100	0.78	0.90	18	0.63	0.66
mean		145	0.84	0.91	121	0.81	0.82	21	0.75	0.77
median		113	0.91	0.97	105	0.81	0.83	19	0.78	0.78

Tbl 2: Prediction accuracy compared to prokaryotic subset of Rfam full alignments. Membership: # of seqs in overlap between our predictions and Rfam's, the sensitivity (Sn) and specificity (Sp) of our membership predictions. Overlap: the avg len of overlap between our predictions and Rfam's (nt), the fractional lengths of the overlapped region in Rfam's predictions (Sn) and in ours (Sp). Structure: the avg # of correctly predicted canonical base pairs (in overlapped regions) in the secondary structure (bp), and sensitivity and specificity of our predictions. 'After 2nd RaveNnA scan, membership Sn of Glycine, Cobalamin increpsed to 76% and 98% resp., Glycine Sp unchanged, but Cobalamin Sp dropped to 84%.

	Rank	#	CDD	Gene: Description	Annotation
F	6	69	28178	DHOase IIa: Dihydroorotase	PyrR attenuator [22]
5	15	33	10097	RpIL: Ribosomal protein L7/L1	L10 r-protein leader; see Supp
<u> </u>	19	36	10234	RpsF: Ribosomal protein S6	S6 r-protein leader
Ŕ	22	32	10897	COG1179: Dinucleotide-utilizing enzymes	6S RNA [25]
_	27	27	9926	RpsJ: Ribosomal protein S10	S10 r-protein leader; see Supp
_ <u>−</u> .	29	11	15150	Resolvase: N terminal domain	
	31	31	10164	InfC: Translation initiation factor 3	IF-3 r-protein leader; see Supp
2	41	26	10393	RpsD: Ribosomal protein S4 and related proteins	S4 r-protein leader; see Supp [30]
=	44	30	10332	GroL: Chaperonin GroEL	HrcA DNA binding site [46]
ັ	46	33	25629	Ribosomal L21p: Ribosomal prokaryotic L21 protein	L21 r-protein leader; see Supp
4	50	11	5638	Cad: Cadmium resistance transporter	[47]
¥	51	19	9965	RpIB: Ribosomal protein L2	S10 r-protein leader
2	55	7	26270	RNA pol Rpb2 1: RNA polymerase beta subunit	
<u> </u>	69	9	13148	COG3830: ACT domain-containing protein	
S	72	28	4174	Ribosomal S2: Ribosomal protein S2	S2 r-protein leader
5 H	74	9	9924	RpsG: Ribosomal protein S7	S12 r-protein leader
Ħ	86	6	12328	COG2984: ABC-type uncharacterized transport system	
Ĕ	88	19	24072	CtsR: Firmicutes transcriptional repressor of class III	CtsR DNA binding site [48]
	100	21	23019	Formyl trans N: Formyl transferase	
D	103	8	9916	PurE: Phosphoribosylcarboxyaminoimidazole	
Ē	117	5	13411	COG4129: Predicted membrane protein	
·=	120	10	10075	RpIO: Ribosomal protein L15	L15 r-protein leader
÷	121	9	10132	RpmJ: Ribosomal protein L36	IF-1 r-protein leader
3	129	4	23962	Cna B: Cna protein B-type domain	
2	130	9	25424	Ribosomal S12: Ribosomal protein S12	S12 r-protein leader
_	131	9	16769	Ribosomal L4: Ribosomal protein L4/L1 family	L3 r-protein leader
5	136	.7	10610	COG0742: N6-adenine-specific methylase	yibH putative RNA motif [4]
'≝`	140	12	8892	Pencillinase R: Penicillinase repressor	Blal, Mecl DNA binding site [49]
	157	25	24415	Ribosomal S9: Ribosomal protein S9/S16	L13 r-protein leader; Fig 3
2.2	160	27	1790	Ribosomai L19: Ribosomai protein L19	L19 r-protein leader; Fig. 2
က	164	6	9932	GapA: Giyceraidenyde-3-phosphate denydrogenase/erythrose	
d)	1/4	8	13849	COG4708: Predicted membrane protein	
	176	7	10199	COG0325: Predicted enzyme with a TIM-barrel fold	100
H	182	9	10207	Rpmr. Ribosomai protein L32	L32 I-protein leader
Ě	187	11	2/850	LDH: L-lactate denydrogenases	172
	190	11	10094	CspR: Predicted rRNA methylase	FF 0
	194	9	10353	FusA: Translation elongation factors	EF-G r-protein leader

New Riboswitches (all lab-verified)

- SAM IV (S-adenosyl methionine)
- SAH (S-adenosyl homocystein)
- MOCO (Molybdenum Cofactor)
- PreQI II (queuosine precursor)
- GEMM (cyclic di-GMP)

ncRNA discovery in Vertebrates

Comparative genomics beyond sequence based alignments: RNA structures in the ENCODE regions

Torarinsson, Yao, Wiklund, Bramsen, Hansen, Kjems, Tommerup, Ruzzo and Gorodkin.

Genome Research, Feb 2008, 18(2):242-251 PMID: 18096747

ncRNA discovery in Vertebrates

Natural approach : Align, Fold, Score Previous studies focus on highly conserved

regions (Washietl, Pedersen et al. 2007)

Evofold (Pedersen et al. 2006) RNAz (Washietl et al. 2005)

We explore regions with weak sequence conservation, where alignments aren't trustworthy Thousands of candidates

Thousands more

201

204

CMfinder Search in Vertebrates

Extract ENCODE Multiz alignments Remove exons, most conserved elements. 56017 blocks, 8.7M bps.

Apply CMfinder to both strands.

10,106 predictions, 6,587 clusters. High false positive rate, but still suggests 1000's of RNAs.

(We've applied CMfinder to whole human genome: many 100's of CPU years. Analysis in progress.)

202

Trust 17-way

alignment for

detailed

alignment

orthology, not for

Overlap with known transcripts

Input regions include only one known ncRNA hsa-mir-483, and we found it.

40% intergenetic, 60% overlap with protein coding gene

Sense	Antisense	Both	Intron	5'UTR	3'UTR
1332	1721	884	3274	551	89
(33.8%)	(43.7%)	(22.5%)	(83.1%)	(14%)	(2.3%)

Overlap w/ Indel Purified Segments

IPS presumed to signal purifying selection Majority (64%) of candidates have >45% G+C Strong P-value for their overlap w/ IPS

G+C	data	Р	N	Expected	Observed	P-value	%
0-35	igs	0.062	380	23	24.5	0.430	5.8%
35-40	igs	0.082	742	61	70.5	0.103	11.3%
40-45	igs	0.082	1216	99	129.5	0.00079	18.5%
45-50	igs	0.079	1377	109	162.5	5.16E-08	20.9%
50-100	igs	0.070	2866	200	358.5	2.70E-31	43.5%
all	igs	0.075	6581	491	747.5	1.54E-33	100.0%

206

Comparison with Evofold, RNAz

Small overlap (w/ highly significant p-values) emphasizes complementarity Strong association with "Indel purified segments" - I.e., apparently under selection Strong association with known genes 208

Alignment Matters

The or	iginal MULTIZ alignment without flanking	regions.	RNAz	Score: ().132 (no R	NA)
Human	GGTCACTTCAAAGAGGGCTT-GTGGGGGCTGTGAAACCA	AGAGGT	CTTAA	CAGTATG	CCAAAAACTG	AAGTI
Chimp	GGACATTTCAATGCGGGCTC-ATGGGGGCTGTGAAGCCA	AGAGCT	ATTAA	CACTATG	ACCAAGGACTG	AAATI
Cow	GGTCATTTCAAAGAGGGCTT-ATGAGACCAAAACCG	GGAGCT	CTTAA	TGCTGTG	ACCAAAGATTG	AAGTI
Dog	GGTCATTTCAAAGAGGGCTTTGTGGAACTAAAACCA	AGGGCT	CTTAA	CTCTGTG	ACCAAATATTA	GAGTI
Rabbit	GATCATTTCAAAGAGGGTTT-GTGGTGCTGTGAAGTCA	AGAACT	CTTAA	CTGTATG	CCAAAGATTA	AAGTI
Rhesus	GGTCACTTCAAAGAGGGCTT-GTGGGGGCTGTGAAACCA	AGAGGTAG	GTCTTAA	CAGTATA	ACCAAAGACTG	AAGT
Str	(((((()))))	••))))•••	•••)))•••))))))	(
						-
The lo	cal CMfinder re-alignment of the MULTIZ	block. RI	VAZ SC	ore: 0.70)9 (RNA)	
Human	GGTCACTTCAAAGAGGGCTT-GTGGGGGCTGTGAAA-CC	AAGI	AGGTCTI	AACAGTA	IGACCAAAAA C	TGAAC
Chimp	GGACATTTCAATGCGGGCTC-ATGGGGCTGT-GAAGCC	AAGI	AGCTATI	AACACTA	IGACCAAGGAC	TGAA
Cow	GGTCATTTCAAAGAGGGCTT-ATGAGACCAAAA-CC	GGG1	AGCTCTI	AATGCTG	IGACCAAAGAT	TGAAC
Dog	GGTCATTTCAAAGAGGGCTTTGTGGAACTAAAA-CC	AAG(JGCTCTI	AACTCTG	IGACCAAATAT	TAGAC
Rabbit	GATCATTTCAAAGAGGGTTT-GTGGTGCTGT-GAAGTC	AAGI	AACTCTI	AACTGTA	IGCCCAAAGAT	TAAAC
Rhesus	GGTCACTTCAAAGAGGGGCTT-GTGGGGGCTGTGAAA-CC	AGAGG-T	AGGTCTI	AACAGTA	TAACCAAAGAC	TGAAC
Str	(((((())))))))))))))))))	

Realignment

10 of 11 top (differentially) expressed

Vertebrate Summary

Lots of structurally conserved ncRNA Functional significance often unclear But high rate of confirmed tissue-specific expression in (small) set of top candidates in humans BIG CPU demands... Still need for further methods development & application

ncRNA Summary

ncRNA is a "hot" topic

For family homology modeling: CMs Training & search like HMM (but slower) Dramatic acceleration possible Automated model construction possible New computational methods yield new discoveries *Many open problems*

221

Thanks!