
sorting

Genome 559: Introduction to Statistical
and Computational Genomics

Prof. James H. Thomas

Review

• Functions - take arguments and (usually) return a
value.

• Use to organize and clarify your code, reduce code
duplication.

What a function does

things happen

stuff goes in (arguments)

other stuff comes out (return)

Other than the arguments and the return, everything else inside the
function is invisible outside the function (variables assigned, etc.).

A close analogy is the mathematical function

2 xy x e

y is the
return value

x is an
argument

the function itself

•The function doesn't need to have a return (it just runs
"off the end" of the code block).

• It might instead do something to one of the arguments.

• For example: if the argument is a list, the function could
sort the list.

Functions can modify argument contents

def listSort(argList):

argList.sort()

myList = [3,2,1]

listSort(myList)

print myList

[1,2,3]

end of
function

the list was sorted
by the function

Sorting

• Typically applied to lists of things.

• Input order of things can be anything.

• Output order is determined by the type of sort.

>>> myList = ['Curly', 'Moe', 'Larry']

>>> print myList

['Curly', 'Moe', 'Larry']

>>> myList.sort()

>>> print myList

['Curly', 'Larry', 'Moe']

(by default this is a lexicographical sort because the
things in the list are strings)

Sorting defaults

String sorts - ascending order, with all capital letters before all
small letters.

myList = ['a', 'A', 'c', 'C', 'b', 'B']

myList.sort()

print myList

['A', 'B', 'C', 'a', 'b', 'c']

Number sorts - ascending order.

myList = [3.2, 1.2, 7.1, -12.3]

myList.sort()

print myList

[-12.3, 1.2, 3.2, 7.1]

(FYI - under the hood, Python uses an algorithm called mergesort, which is fast, memory
efficient, and stable. Stable means that the order of two equal elements in the source remain
in the same order in the sorted output, which is very handy under some circumstances.)

What if we want to sort something else?

What if we want a different sort order?

We write a comparison function and provide it to the sort function:

myList.sort(myComparisonFunction)

The sorting algorithm is done for us - all we need to provide is a
simple comparison rule in the form of a function.

Comparison function

• Always takes 2 arguments

• Returns -1 if first argument should appear earlier in sort

• Returns 1 if first argument should appear later in sort

• Returns 0 if they are tied

def myComparison(a, b):

if a > b:

return -1

elif a < b:

return 1

else:

return 0

assuming a and b are
numbers, what kind of
sort would this give?

myList = [3.2, 1.2, 7.1, -12.3]

myList.sort(myComparison)

print myList

[7.1, 3.2, 1.2, -12.3]

def myComparison(a, b):

if a > b:

return -1

elif a < b:

return 1

else:

return 0

descending numeric sort

You can write a simple comparison function to
sort ANYTHING in any way you want.

>>> len(myLOL)

3

>>> print len(myLOL[0]), len(myLOL[1]), len(myLOL[2])

1 97 28

>>> myLOL.sort(myLOLComparison)

>>> print len(myLOL[0]), len(myLOL[1]), len(myLOL[2])

97 28 1

myListOfLists

What kind of comparison
function is this?

def myLOLComparison(a, b):

if len(a) > len(b):

return -1

elif len(a) < len(b):

return 1

else:

return 0

It specifies a descending sort based
on the length of the elements:

Sample problem #1

• Write a function that compares two strings ignoring
upper/lower case

• Return -1 if the first string should come earlier

• Return 1 if the first string should come later

• Return 0 if they are tied

e.g. comparing "JIM" and "jIm" should return 0
comparing "Jim" and "larry" should return -1

Solution #1

def caselessCompare(a, b):

a = a.lower()

b = b.lower()

if a < b:

return -1

elif a > b:

return 1

else:

return 0

or convert to uppercase

Save your function "caselessCompare" in a file called
"util.py" (in your current working directory).

You can now import this file as a module:

import util (note the absence of ".py")

… and use any functions in it as usual for modules, e.g.:

myList.sort(util.caselessCompare)

Sample problem #2

Write a program that:

- Reads the contents of a file
- Separates the contents into words
- Sorts the words using YOUR comparison function as saved and

imported from your module
- Prints the sorted words

Try it out on the file "sonnet.txt", linked from the course web site.

Solution #2

import sys

filename = sys.argv[1]

file = open(filename,"r")

filestring = file.read() # whole file into one string

file.close()

wordlist = filestring.split() # split into words

import util # import my new module

wordlist.sort(util.caselessCompare) # sort

for word in wordlist:

print word

Challenge problems

1) Modify the previous program so that each word is
printed only once (hint - don't try to modify the word
list in place).

2) Modify your comparison function so that it sorts on the
length of words, rather than their alphabetical order.

3) Modify the way that you split into words to account for
the punctuation marks ,.' (I removed them from the
sonnet to keep things simple)

Challenge solution 1

import sys

filename = sys.argv[1]

file = open(filename,"r")

filestring = file.read()

file.close()

wordlist = filestring.split()

import util

wordlist.sort(util.caselessCompare)

print wordlist[0]

for index in range(1,len(wordlist)):

if it's a new word, print it

if wordlist[index] != wordlist[index-1]:

print wordlist[index]

Alternative challenge solution 1

import sys

filename = sys.argv[1]

file = open(filename,"r")

filestring = file.read()

file.close()

wordlist = filestring.split()

tempDict = {}

for word in wordlist:

tempDict[word] = "foo"

uniquewords = tempDict.keys()\

import util

uniquewords.sort(util.caselessCompare)

for word in uniquewords:

print word

uses the fact that each key
can appear only once (it

doesn't matter what the
value is - they aren't used

(it would be slightly better to have the values in your dictionary be an empty string or
None in order to save memory; recall that None is Pythonese for null or nothing)

Challenge solution 2
def lengthCompare(a, b):

lenA = len(a)

lenB = len(b)

if lenA < lenB:

return -1

elif lenA > lenB:

return 1

else:

return 0

it may be slightly faster
to do these length
calculations once

def lengthCompare(a, b):

if len(a) < len(b):

return -1

elif len(a) > len(b):

return 1

else:

return 0

or

Challenge solution 3

filestring = filestring.replace("\'", "").replace(",", "").replace(".", "")

wordlist = filestring.split()

etc.

