GS 559 Winter 2010

Lecture 11 Sequence Motifs

Larry Ruzzo

New Web Soon(but old links should redirect): http://www.cs.washington.edu/homes/ruzzo/courses/gs559/10wi

Who Am I?

Prof. Computer Science & Engineering Adjunct Prof., Genome Sciences Joint Member, FHCRC

Main research interest: noncoding RNA

http://www.cs.washington.edu/homes/ruzzo ruzzo@uw.edu 554 CSE, 543-6298

Office Hours: Mondays 2:30-3:20, or **by appt**

Outline

Bioinformatics: Sequence Motifs Sequence Logos Weight Matrix Models (WMMs) aka Position Specific Scoring Matrices (PSSMs, possums) aka 0th order Markov models Construction, statistics, uses Programming: Regular expressions

Motif: "a recurring salient thematic element"

Motif: "a recurring salient thematic element"

Sequence Motifs

Motif: "a recurring salient thematic element"

E.g., structural motifs in proteins (zinc finger, H-T-H, leucine zipper, ... are various DNA binding motifs)

E.g., the DNA sequence motifs to which these proteins bind - e.g., one leucine zipper dimer might bind (with varying affinities) to 10s or 100s or 1000s of similar sequences

E. coli Promoters

"TATA Box" ~ 10bp upstream of transcription start How to define it? TACGAT ТААААТ Consensus is TATAAT TATACT BUT all differ from it GATAAT Allow k mismatches? TATGAT Equally weighted? TATGTT Wildcards like R,Y? ({A,G}, {C,T}, resp.)

E. coli Promoters

"TATA Box" - consensus TATAAT ~10bp upstream of transcription start Not exact: of 168 studied (mid 80's) nearly all had 2/3 of TAxyzT - 80-90% had all 3 -50% agreed in each of x,y,z - no perfect match (Other common features at -35, etc.)

TATA Box Frequencies

Frequencies									
pos base	1	2	3	4	5	6			
Α	2	94	26	59	50	1			
С	9	2	14	13	20	3			
G	10	1	16	15	13	0			
Т	79	3	44	13	17	96			

Frequency \Rightarrow Scores: log₂ (freq/background)

(For convenience, scores multiplied by 10, then rounded)

pos base	1	2	3	4	5	6
А	-36	19	1	12	10	-46
С	-15	-36	-8	-9	-3	-31
G	-13	-46	-6	-7	-9	-46
Т	17	-31	8	-9	-6	19

Scores

Stormo, Ann. Rev. Biophys. Biophys Chem, 17, 1988, 241-263

Scanning for TATA

Score Distribution (Simulated)

Weight Matrices: Thermodynamics

Experiments show ~80% correlation of (log likelihood) weight matrix scores to measured binding energy of RNA polymerase to variations on TATAAT consensus [Stormo & Fields]

What's best WMM?

Given, say, 168 sequences $s_1, s_2, ..., s_k$ of length 6, assumed to be generated at random according to a WMM defined by 6 x (4-1) parameters θ , what's the best θ ?

Answer: count frequencies per position.

More justification next time, but if you saw 900 Heads in 1000 coin flips, you'd perhaps estimate P(Heads) = 900/1000

Pseudocounts

Freq/count of $0 \Rightarrow -\infty$ score; a problem?

Certain that a given residue *never* occurs in a given position? Then $-\infty$ just right.

Else, it may be a small-sample artifact

Typical fix: add a *pseudocount* to each observed count—small constant (e.g., .5, I)

Sounds *ad hoc*; there is a Bayesian justification Influence fades with more data

How-to Questions

Given aligned motif instances, build model?

Frequency counts (above, maybe w/ pseudocounts)

Given a model, find (probable) instances

Scanning, as above

Given unaligned strings thought to contain a motif, find it? (e.g., upstream regions of co-expressed genes)

Hard ... maybe another lecture.

WMM Summary

- Weight Matrix Model (aka Position Specific Scoring Matrix, PSSM, "possum", 0th order Markov models)
- Simple statistical model assuming independence between adjacent positions
- To build: align, count (+ pseudocount) letter frequency per position, log likelihood ratio to background
- To scan: add per position scores, compare to threshold, slide
- Databases & tools: Transfac, Jaspar, MEME/MAST, ...