
Regular Expressions
Lecture 11b
Larry Ruzzo

Outline

• Some string tidbits
• Regular expressions and pattern matching

Strings Again

’abc’
”abc”
’’’abc’’’
r’abc’

a b c

Strings Again

’abc\n’
”abc\n”
’’’abc
’’’
r’abc\n’

a b c newline

a b c \ n

}

Why so many?

’ vs ” lets you put the other kind inside

’’’ lets you run across many lines

all 3 let you show “invisible” characters (via \n, \t, etc.)

r’...’ (raw strings) can’t do invisible stuff, but avoid problems
with backslash

open(’C:\new\text.dat’) vs

open(’C:\\new\\text.dat’) vs

open(r’C:\new\text.dat’)

RegExprs are
Widespread

• shell file name patterns (limited)
• unix utility “grep” and relatives

• try “man grep” in terminal window
• perl
• TextWrangler →
•Python

Patterns in Text
• Pattern-matching is frequently useful

• Identifier: A letter followed by >= 0 letters or digits.

 count1 number2go, not 4runner

• TATA box: TATxyT where x or y is A

 TATAAT TATAgT TATcAT, not TATCCT

• Number: >=1 digit, optional decimal point, exponent.
 3.14 6.02E+23, not 127.0.0.1

Regular Expressions
• A language for simple patterns, based on 4 simple
primitives
• match single letters
• this OR that
• this FOLLOWED BY that
• this REPEATED 0 or more times

• A specific syntax (fussy, and varies among pgms...)
• A library of utilities to deal with them
• Key features: Search, replace, dissect

Regular Expressions
• Do you absolutely need them in Python?
• No, everthing they do, you could do yourself
• BUT pattern-matching is widely needed,
tedious and error-prone. RegExprs give you a
flexible, systematic, compact, automatic way to
do it. A common language for specifications.

• In truth, it’s still somewhat error-prone, but in
a different way.

Examples
(details later)

• Identifier: letter followed by ≥0 letters or digits.
 [a-z][a-z0-9]* i count1 number2go

• TATA box: TATxyT where x or y is A
 TAT(A.|.A)T TATAAT TATAgT TATcAT

• Number: one or more digits with optional
decimal point, exponent.
 \d+\.?\d*(E[+-]?\d+)? 3.14 6.02E+23

Motivating example

5

Another Example

Repressed binding sites in regular Python

assume we have a genome sequence in string variable myDNA
for index in range(0,len(myDNA)-20) :
if (myDNA[index] == "A" or myDNA[index] == "G") and

(myDNA[index+1] == "A" or myDNA[index+1] == "G") and
(myDNA[index+2] == "A" or myDNA[index+2] == "G") and
(myDNA[index+3] == "C") and
(myDNA[index+4] == "C") and

and on and on!
(myDNA[index+19] == "C" or myDNA[index+19] == "T") :

print "Match found at ",index
break

6

re.findall(r"[AG]{3,3}CATG[TC]{4,4}[AG]{2,2}C[AT]TG[CT][CG][TC]", myDNA)

Motivating example

5

Example

RegExprs in Python

http://docs.python.org/library/re.html

Simple RegExpr Testing

>>> import re
>>> str1 = 'what foot or hand fell fastest'
>>> re.findall(r'f[a-z]*', str1)
['foot', 'fell', 'fastest']

>>> str2 = "I lack e's successor"
>>> re.findall(r'f[a-z]*',str2)
[]

Returns list of all matching substrings.

Definitely
recommend trying
this with examples
to follow, & more

Exercise: change it to find strings
starting with f and ending with t

Exercise: In honor of the
winter Olympics, “-ski-ing”

• download & save war_and_peace.txt
• write py program to read it line-by-line, use
re.findall to see whether current line contains
one or more proper names ending in “...ski”;
print each.

• mine begins:

['Bolkonski']
['Bolkonski']
['Bolkonski']
['Bolkonski']
['Bolkonski']
['Razumovski']
['Razumovski']
['Bolkonski']
['Spasski']
...
['Nesvitski', 'Nesvitski']

RegExpr Syntax

They’re strings

Most punctuation is special; needs to be
escaped by backslash (e.g., “\.” instead of “.”) to
get non-special behavior

So, “raw” string literals (r’C:\new\.txt’) are
generally recommended for regexprs

Unless you double your backslashes judiciously

Patterns “Match” Text

Pattern: TAT(A.|.A)T [a-z][a-z0-9]*

Text: RATATaAT TAT! count1

RegExpr Semantics, 1
Characters

RexExprs are patterns; they “match” sequences
of characters

Letters, digits (& escaped punctuation like ‘\.’)
match only themselves, just once

r’TATAAT’ ‘ACGTTATAATGGTATAAT’

RegExpr Semantics, 2
Character Groups

Character groups [abc], [a-zA-Z], [^0-9] also
match single characters, any of the characters
in the group.

Shortcuts (2 of many):

. – (just a dot) matches any letter (except newline)
\s ≡ [\n\t\r\f\v] (“s” for “space”)

r’T[AG]T[^GC].T’‘ACGTTGTAATGGTATnCT’

Matching one of several alternatives

• Square brackets mean that any of the listed characters will do

• [ab] means either ”a” or ”b”

• You can also give a range:

• [a-d] means ”a” ”b” ”c” or ”d”

• Negation: caret means ”not”

[^a-d] # anything but a, b, c or d

8

RegExpr Semantics, 3:
Concatenation, Or, Grouping

You can group subexpressions with parens

If R, S are RegExprs, then

RS matches the concatenation of strings matched
by R, S individually

R | S matches the union–either R or S

r’TAT(A.|.A)T’’TATCATGTATACTCCTATCCT’
?

RegExpr Semantics, 4
Repetition

If R is a RegExpr, then
R* matches 0 or more consecutive strings

(independently) matching R
R+ 1 or more
R{n} exactly n
R{m,n} any number between m and n, inclusive
R? 0 or 1

Beware precedence (* > concat > |)

r’TAT(A.|.A)*T’‘TATCATGTATACTATCACTATT’
?

RegExprs in Python

By default
Case sensitive, line-oriented (\n treated specially)

Matching is generally “greedy”
Finds longest version of earliest starting match

Next “findall()” match will not overlap

r".+\.py" "Two files: hw3.py and upper.py."

r"\w+\.py" "Two files: hw3.py and UPPER.py."

Exercise 3

Suppose “filenames” are upper or lower case
letters or digits, starting with a letter, followed
by a period (“.”) followed by a 3 character
extension (again alphanumeric). Scan a list of
lines or a file, and print all “filenames” in it,
without their extensions. Hint: use paren
groups.

Solution 3

import sys
import re
filename = sys.argv[1]
filehandle = open(filename,"r")
filecontents = filehandle.read()
myrule = re.compile(
 r"([a-zA-Z][a-zA-Z0-9]*)\.[a-zA-Z0-9]{3}")
#Finds skidoo.bar amidst 23skidoo.barber; ok?
match = myrule.findall(filecontents)
print match

Basics of regexp construction

• Letters and numbers match themselves

• Normally case sensitive

• Watch out for punctuation–most of it has special meanings!

7

Wild cards

• ”.” means ”any character”

• If you really mean ”.” you must use a backslash

• WARNING:

– backslash is special in Python strings
– It’s special again in regexps
– This means you need too many backslashes
– We will use ”raw strings” instead
– Raw strings look like r"ATCGGC"

9

Using . and backslash

• To match file names like ”hw3.pdf” and ”hw5.txt”:

hw.\....

10

Zero or more copies

• The asterisk repeats the previous character 0 or more times

• ”ca*t” matches ”ct”, ”cat”, ”caat”, ”caaat” etc.

• The plus sign repeats the previous character 1 or more times

• ”ca+t” matches ”cat”, ”caat” etc. but not ”ct”

11

Repeats

• Braces are a more detailed way to indicate repeats

• A{1,3} means at least one and no more than three A’s

• A{4,4} means exactly four A’s

12

simple testing

>>> import re

>>> string = 'what foot or hand fell fastest'

>>> re.findall(r'f[a-z]*', string)
['foot', 'fell', 'fastest']

Practice problem 1

• Write a regexp that will match any string that starts with ”hum” and
ends with ”001” with any number of characters, including none, in
between

• (Hint: consider both ”.” and ”*”)

13

Practice problem 2

• Write a regexp that will match any Python (.py) file.

• There must be at least one character before the ”.”

• ”.py” is not a legal Python file name

• (Imagine the problems if you imported it!)

14

Using the regexp

First, compile it:

import re

myrule = re.compile(r".+\.py")

print myrule

<_sre.SRE_Pattern object at 0xb7e3e5c0>

The result of compile is a Pattern object which represents your regexp

15

Using the regexp

Next, use it:

mymatch = myrule.search(myDNA)

print mymatch

None

mymatch = myrule.search(someotherDNA)

print mymatch

<_sre.SRE_Match object at 0xb7df9170>

The result of match is a Match object which represents the result.

16

All of these objects! What can they do?

Functions offered by a Pattern object:

• match()–does it match the beginning of my string? Returns None or a
match object

• search()–does it match anywhere in my string? Returns None or a
match object

• findall()–does it match anywhere in my string? Returns a list of
strings (or an empty list)

• Note that findall() does NOT return a Match object!

17

All of these objects! What can they do?

Functions offered by a Match object:

• group()–return the string that matched
group()–the whole string
group(1)–the substring matching 1st parenthesized sub-pattern
group(1,3)–tuple of substrings matching 1st and 3rd parenthesized
sub-patterns

• start()–return the starting position of the match

• end()–return the ending position of the match

• span()–return (start,end) as a tuple

18

A practical example

Does this string contain a legal Python filename?

import re

myrule = re.compile(r".+\.py")

mystring = "This contains two files, hw3.py and uppercase.py."

mymatch = myrule.search(mystring)

print mymatch.group()

This contains two files, hw3.py and uppercase.py

not what I expected! Why?

19

Matching is greedy

• My regexp matches ”hw3.py”

• Unfortunately it also matches ”This contains two files, hw3.py”

• And it even matches ”This contains two files, hw3.py and uppercase.py”

• Python will choose the longest match

• I could break my file into words first

• Or I could specify that no spaces are allowed in my match

20

A practical example

Does this string contain a legal Python filename?

import re

myrule = re.compile(r"[^]+\.py")

mystring = "This contains two files, hw3.py and uppercase.py."

mymatch = myrule.search(mystring)

print mymatch.group()

hw3.py

allmymatches = myrule.findall(mystring)

print allmymatches

[’hw3.py’,’uppercase.py’]

21

Practice problem 3

• Create a regexp which detects legal Microsoft Word file names

• The file name must end with ”.doc” or ”.DOC”

• There must be at least one character before the dot.

• We will assume there are no spaces in the names

• Print out a list of all the legal file names you find

• Test it on testre.txt (on the web site)

22

Practice problem 4

• Create a regexp which detects legal Microsoft Word file names that do
not contain any numerals (0 through 9)

• Print out the start location of the first such filename you encounter

• Test it on testre.txt

23

Practice problem

• Create a regexp which detects legal Microsoft Word file names that do
not contain any numerals (0 through 9)

• Print out the “base name”, i.e., the file name after stripping of the .doc
extension, of each such filename you encounter. Hint: use parenthesized
sub patterns.

• Test it on testre.txt

24

Practice problem 1 solution

Write a regexp that will match any string that starts with ”hum” and ends
with ”001” with any number of characters, including none, in between

myrule = re.compile(r"hum.*001")

25

Practice problem 2 solution

Write a regexp that will match any Python (.py) file.

myrule = re.compile(r".+\.py")

if you want to find filenames embedded in a bigger

string, better is:

myrule = re.compile(r"[^]+\.py")

this version does not allow whitespace in file names

26

Practice problem 3 solution

Create a regexp which detects legal Microsoft Word file names, and use it
to make a list of them

import sys

import re

filename = sys.argv[1]

filehandle = open(filename,"r")

filecontents = filehandle.read()

myrule = re.compile(r"[^]+\.[dD][oO][cC]")

matchlist = myrule.findall(filecontents)

print matchlist

27

Practice problem 4 solution

Create a regexp which detects legal Microsoft Word file names which do
not contain any numerals, and print the location of the first such filename
you encounter

import sys

import re

filename = sys.argv[1]

filehandle = open(filename,"r")

filecontents = filehandle.read()

myrule = re.compile(r"[^ 0-9]+\.[dD][oO][cC]")

match = myrule.search(filecontents)

print match.start()

28

Regular expressions summary

• The re module lets us use regular expressions

• These are fast ways to search for complicated strings

• They are not essential to using Python, but are very useful

• File format conversion uses them a lot

• Compiling a regexp produces a Pattern object which can then be used
to search

• Searching produces a Match object which can then be asked for
information about the match

29

