Genome 559

Lecture 12a, 2/11/10 Larry Ruzzo

A little more about motif models

Your Feedback

- Most seemed happy
- Plurality think pace is about right (but significant spread of opinions)
- More and more complex examples?
- Memory efficiency? General strategies?

Motifs II – Outline

Quick review of motifs and WMM/PSSM Statistical justification for log ratios Statistical justification for frequency counts Another example

TATA Box Frequencies

Frequencies													
pos base	1	2	3	4	5	6	Frequency \Rightarrow Scores:					•	
Α	2	94	26	59	50	1	log ₂ (freq/background))		
С	9	2	14	13	20	3							
G	10	1	16	15	13	0							
Т	79	3	44	13	17	96	Scores						
					pos base	1	2	3	4	5	6		
(For convenience.						Α	-36	19	1	12	10	-46	
scores multiplied by 10, then rounded)					С	-15	-36	-8	-9	-3	-31		
					G	-13	-46	-6	-7	-9	-46		
					Т	17	-31	8	-9	-6	19		

Weight Matrices: Thermodynamics

Experiments show ~80% correlation of (log likelihood) weight matrix scores to measured binding energy of RNA polymerase to variations on TATAAT consensus [Stormo & Fields]

Justification?

Kinda sensible, kinda works Is there a less *ad hoc* view?

One such framework:

Statistical Hypothesis Testing:

Is this sequence more like my "TATA" model or more like my "everything else" model

Hypothesis Testing: A Very Simple Example

Given: A coin, either fair (p(H)=1/2) or biased (p(H)=2/3)Decide: which

How? Flip it 5 times. Suppose outcome D = HHHTH Null Model/Null Hypothesis $M_0: p(H)=1/2$

Alternative Model/Alt Hypothesis $M_1: p(H)=2/3$

Likelihoods:

 $P(D \mid M_0) = (1/2) (1/2) (1/2) (1/2) (1/2) = 1/32$ $P(D \mid M_1) = (2/3) (2/3) (2/3) (1/3) (2/3) = 16/243$

Likelihood Ratio:
$$\frac{p(D \mid M_1)}{p(D \mid M_0)} = \frac{16/243}{1/32} = \frac{512}{243} \approx 2.1$$

I.e., alt model is $\approx 2.1 \text{ x}$ more likely than null model, given data

Hypothesis Testing, II

Log of likelihood ratio is equivalent, often more convenient

add logs instead of multiplying...

"Likelihood Ratio Tests": reject null if LLR > threshold

LLR > 0 disfavors null, but higher threshold gives stronger evidence against, i.e., shifts false positive/false negative rates

Neyman-Pearson Theorem: For a given error rate, LRT is as good a test as any (subject to some fine print).

Weight Matrices: Statistics

Assume:

 $f_{b,i}$ = frequency of base *b* in position *i* in TATA f_b = frequency of base *b* in all sequences Log likelihood ratio, given S = B₁B₂...B₆:

$$\log\left(\frac{P(S|\text{"tata"})}{P(S|\text{"non-tata"})}\right) = \log\frac{\prod_{i=1}^{6} f_{B_{i},i}}{\prod_{i=1}^{6} f_{B_{i}}} = \sum_{i=1}^{6} \log\frac{f_{B_{i},i}}{f_{B_{i}}}$$
Assumes independence

Interpretation of Scores

A probabilistic interpretation of WMM scores: if score = $10 \log_2$ (ratio)

then

 $ratio = 2^{score/10}$

E.g., score $+30 \Rightarrow 2^{30/10} = 2^3 = 8$ times more likely under the WMM model than under the null model. E.g., $-40 \Rightarrow 2^{-4} = 16x$ more likely under the null.

But treat this cautiously; model is approximate

Score Distribution (Simulated)

What's best WMM?

Given, say, 168 sequences $s_1, s_2, ..., s_k$ of length 6, assumed to be generated at random according to a WMM defined by 6 x (4-1) parameters θ , what's the best θ ?

Answer: count frequencies per position.

Analogously, if you saw 900 Heads in 1000 coin flips, you'd perhaps estimate P(Heads) = 900/1000

Why is this sensible?

Parameter Estimation

Assuming sample $x_1, x_2, ..., x_n$ is from a parametric distribution $f(x|\theta)$, estimate θ .

E.g.:

 $x_1, x_2, ..., x_5$ is HHHTH, estimate $\theta = \text{prob}(H)$

Likelihood

P(x | θ): Probability of event x given model θ Viewed as a function of x (fixed θ), it's a *probability* E.g., $\Sigma_x P(x | \theta) = 1$

Viewed as a function of θ (fixed x), it's a likelihood E.g., $\Sigma_{\theta} P(x \mid \theta)$ can be anything; relative values of interest. E.g., if θ = prob of heads in a sequence of coin flips then P(HHHTH | .6) > P(HHHTH | .5), I.e., event HHHTH is more likely when θ = .6 than θ = .5

And what θ make HHHTH most likely?

Maximum Likelihood Parameter Estimation

One (of many) approaches to param. est. Likelihood of (indp) observations $x_1, x_2, ..., x_n$

$$L(x_1, x_2, \dots, x_n \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta)$$

As a function of θ , what θ maximizes the likelihood of the data actually observed. Typical approaches:

Numerical MCMC Analytical $-\frac{\partial}{\partial\theta}L(\vec{x} \mid \theta) = 0$ etc. $\int_{(x \mid \theta)} \int_{(x \mid \theta)} \int_$

Example I

n coin flips, $x_1, x_2, ..., x_n$; n_0 tails, n_1 heads, $n_0 + n_1 = n$; θ = probability of heads

$$L(x_1, x_2, \dots, x_n \mid \theta) = (1 - \theta)^{n_0} \theta^{n_1}$$

 $\log L(x_1, x_2, \dots, x_n \mid \theta) = n_0 \log(1 - \theta) + n_1 \log \theta$

 $\frac{\partial}{\partial \theta} \log L(x_1, x_2, \dots, x_n \mid \theta) = \frac{-n_0}{1-\theta} + \frac{n_1}{\theta}$

Setting to zero and solving:

$$\hat{\theta} = \frac{n_1}{n}$$

Observed fraction of successes in sample is MLE of success probability in population

(Also verify it's max, not min, & not better on boundary)

Example 11

n letters, $x_1, x_2, ..., x_n$ drawn at random from a (perhaps biased) pool of A, C, G, T, $n_A + n_C + n_G + n_T = n$; $\theta = (\theta_A, \theta_C, \theta_G, \theta_T)$ proportion of each nucleotide.

Math is a bit messier, but result is similar to coins

$$\hat{\Theta} = (n_A/n, n_C/n, n_G/n, n_T/n)$$

Observed fraction of nucleotides in sample is MLE of nucleotide probabilities in population

Pseudocounts

Freq/count of $0 \Rightarrow -\infty$ score; a problem?

Certain that a given residue *never* occurs in a given position? Then $-\infty$ just right.

Else, it may be a small-sample artifact

Typical fix: add a *pseudocount* to each observed count—small constant (e.g., .5, I)

Sounds *ad hoc*; there is a Bayesian justification Influence fades with more data

What's best WMM?

Given, say, 168 sequences $s_1, s_2, ..., s_k$ of length 6, assumed to be generated at random according to a WMM defined by 6 x (4-1) parameters θ , what's the best θ ?

E.g., what's MLE for θ given data $s_1, s_2, ..., s_k$?

Answer: count frequencies per position.

Another WMM example

8 Sequences: ATG ATG ATG ATG ATG GTG GTG GTG TTG

Freq.	Col I	Col 2	Col 3
Α	0.625	0	0
С	0	0	0
G	0.250	0	I
Т	0.125	Ι	0

LLR	Col I	Col 2	Col 3
Α	1.32	-8	-8
С	-8	-8	-8
G	0	-8	2.00
Т	-1.00	2.00	-∞

Log-Likelihood Ratio:

$$\log_2 \frac{f_{x_i,i}}{f_{x_i}}, \ f_{x_i} = \frac{1}{4}$$

Non-uniform Background

- E. coli DNA approximately 25% A, C, G, T
- *M. jannaschi* 68% A-T, 32% G-C

LLR from previous example, assuming

$$f_A = f_T = 3/8$$

 $f_C = f_G = 1/8$

LLR	Col I	Col 2	Col 3
Α	0.74	-8	-8
С	-∞	-8	-8
G	1.00	-8	3.00
Т	-1.58	1.42	-8

e.g., G in col 3 is 8 x more likely via WMM than background, so (\log_2) score = 3 (bits).

WMM Example, cont.

Freq.	Col I	Col 2	Col 3
Α	0.625	0	0
С	0	0	0
G	0.250	0	Ι
Т	0.125		0

Uniform

LLR	Col I	Col 2	Col 3
A	1.32	-8	-8
С	-∞	-∞	-8
G	0	-∞	2.00
Т	-1.00	2.00	-8

Non-uniform

LLR	Col I	Col 2	Col 3
Α	0.74	-8	-8
С	-∞	-∞	-∞
G	1.00	-∞	3.00
Т	-1.58	1.42	-∞

Summary

Motif description/recognition fits a simple statistical framework

Frequency counts give MLE parameters Scoring is log likelihood ratio hypothesis testing Scores are interpretable

Log likelihood scoring naturally accounts for background (which is important):

log(foreground freq/background freq)

These approaches broadly useful