Genome 559

Lecture $12 \mathrm{a}, 2 / \mathrm{II} / \mathrm{IO}$
Larry Ruzzo
A little more about motif models

Your Feedback

- Most seemed happy
- Plurality think pace is about right (but significant spread of opinions)
- More and more complex examples?
- Memory efficiency? General strategies?

Motifs II - Outline

Quick review of motifs and WMM/PSSM
Statistical justification for log ratios
Statistical justification for frequency counts
Another example

TATA Box Frequencies

pos base	1	2	3	4	5	6
A	2	94	26	59	50	1
C	9	2	14	13	20	3
G	10	1	16	15	13	0
T	79	3	44	13	17	96

Sequence

http://weblogo. berkeley.edu

Frequencies

pase	1	2	3	4	5	6
A	2	94	26	59	50	1
C	9	2	14	13	20	3
G	10	1	16	15	13	0
T	79	3	44	13	17	96

Frequency \Rightarrow Scores: $\log _{2}$ (freq/background)
(For convenience, scores multiplied by 10 , then rounded)

base	1	2	3	4	5	6
base	-36	19	1	12	10	-46
C	-15	-36	-8	-9	-3	-31
G	-13	-46	-6	-7	-9	-46
T	17	-31	8	-9	-6	19

Scanning for TATA

Scanning for TATA

Weight Matrices: Thermodynamics

Experiments show $\sim 80 \%$ correlation of (log likelihood) weight matrix scores to measured binding energy of RNA polymerase to variations on TATAAT consensus
[Stormo \& Fields]

Justification?

Kinda sensible, kinda works
Is there a less ad hoc view?
One such framework:

Statistical Hypothesis Testing:

Is this sequence more like my "TATA" model or more like my "everything else" model

Hypothesis Testing: A Very Simple Example

Given: A coin, either fair $(p(H)=I / 2)$ or biased $(p(H)=2 / 3)$ Decide: which
How? Flip it 5 times. Suppose outcome D $=$ HHHTH
Null Model/Null Hypothesis $M_{0}: p(H)=I / 2$
Alternative Model/Alt Hypothesis $M_{1}: p(H)=2 / 3$
Likelihoods:

$$
\begin{aligned}
& P\left(D \mid M_{0}\right)=(I / 2)(I / 2)(I / 2)(I / 2)(I / 2)=1 / 32 \\
& P\left(D \mid M_{1}\right)=(2 / 3)(2 / 3)(2 / 3)(1 / 3)(2 / 3)=16 / 243
\end{aligned}
$$

Likelihood Ratio: $\quad \frac{p\left(D \mid M_{1}\right)}{p\left(D \mid M_{0}\right)}=\frac{16 / 243}{1 / 32}=\frac{512}{243} \approx 2.1$
l.e., alt model is ≈ 2. $1 \times$ more likely than null model, given data

Hypothesis Testing, II

Log of likelihood ratio is equivalent, often more convenient
add logs instead of multiplying...
"Likelihood Ratio Tests": reject null if LLR > threshold
LLR > 0 disfavors null, but higher threshold gives stronger evidence against, i.e., shifts false positive/false negative rates

Neyman-Pearson Theorem: For a given error rate, LRT is as good a test as any (subject to some fine print).

Weight Matrices: Statistics

Assume:

$$
\begin{aligned}
& f_{b, i}=\text { frequency of base } b \text { in position } i \text { in TATA } \\
& f_{b}=\text { frequency of base } b \text { in all sequences }
\end{aligned}
$$

Log likelihood ratio, given $S=B_{1} B_{2} \ldots B_{6}$:

$$
\begin{aligned}
& \log \left(\frac{P(S \mid \text { "tata" })}{P(S \mid \text { "non-tata" })}\right)=\log \frac{\prod_{i=1}^{6} f_{B_{i}, i}}{\prod_{i=1}^{6} f_{B_{i}}}=\sum_{i=1}^{6} \log \frac{f_{B_{i}, i}}{f_{B_{i}}} \\
& \text { Assumes } \rightarrow \text { score }
\end{aligned}
$$

Interpretation of Scores

A probabilistic interpretation of WMM scores: if

$$
\text { score }=10 \log _{2} \text { (ratio) }
$$

then

$$
\text { ratio }=2^{\text {score/lo }}
$$

E.g., score $+30 \Rightarrow 2^{30 / 10}=2^{3}=8$ times more likely under the WMM model than under the null model. E.g., $-40 \Rightarrow 2^{-4}=16 \times$ more likely under the null.

But treat this cautiously; model is approximate

Score Distribution

(Simulated)

What's best WMM?

Given, say, 168 sequences $s_{1}, s_{2}, \ldots, s_{k}$ of length 6, assumed to be generated at random according to a WMM defined by $6 \times(4-I)$ parameters θ, what's the best θ ?

Answer: count frequencies per position.
Analogously, if you saw 900 Heads in 1000 coin flips, you'd perhaps estimate $P($ Heads $)=900 / 1000$

Why is this sensible?

Parameter Estimation

Assuming sample $x_{1}, x_{2}, \ldots, x_{n}$ is from a parametric distribution $f(x \mid \theta)$, estimate θ.

E.g.:
$x_{1}, x_{2}, \ldots, x_{5}$ is HHHTH, estimate $\theta=\operatorname{prob}(H)$

Likelihood

$P(x \mid \theta)$: Probability of event x given model θ
Viewed as a function of x (fixed θ), it's a probability
E.g., $\Sigma_{x} P(x \mid \theta)=1$

Viewed as a function of θ (fixed x), it's a likelihood
E.g., $\Sigma_{\theta} \mathrm{P}(\mathrm{x} \mid \theta)$ can be anything; relative values of interest.
E.g., if $\theta=$ prob of heads in a sequence of coin flips then P(HHHTH | .6) > P(HHHTH | .5),
I.e., event HHHTH is more likely when $\theta=.6$ than $\theta=.5$

And what θ make HHHTH most likely?

Maximum Likelihood Parameter Estimation

One (of many) approaches to param. est.
Likelihood of (indp) observations $x_{n}, x_{2}, \ldots, x_{n}$

$$
L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1} f\left(x_{i} \mid \theta\right)
$$

As a function of θ, what θ maximizes the likelihood of the data actually observed. Typical approaches:

Numerical
MCMC
Analytical - $\frac{\partial}{\partial \theta} L(\vec{x} \mid \theta)=0$ etc.

Example I

n coin flips, $x_{1}, x_{2}, \ldots, x_{n} ; n_{0}$ tails, n, heads, $n_{0}+n_{1}=n$; $\theta=$ probability of heads

$$
\begin{aligned}
L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right) & =(1-\theta)^{n_{0}} \theta^{n_{1}} \\
\log L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right) & =n_{0} \log (1-\theta)+n_{1} \log \theta \\
\frac{\partial}{\partial \theta} \log L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right) & =\frac{-n_{0}}{1-\theta}+\frac{n_{1}}{\theta}
\end{aligned}
$$

Setting to zero and solving:

$$
\hat{\theta}=\frac{n_{1}}{n}
$$

Observed fraction of successes in sample is MLE of success
probability in population
(Also verify it's max, not min, \& not better on boundary)

Example II

n letters, $x_{1}, x_{2}, \ldots, x_{n}$ drawn at random from a (perhaps biased) pool of A, C, G, T, $\quad n_{A}+n_{C}+n_{G}+n_{T}=n$; $\theta=\left(\theta_{A}, \theta_{C}, \theta_{G}, \theta_{T}\right)$ proportion of each nucleotide.

Math is a bit messier, but result is similar to coins

$$
\hat{\theta}=\left(n_{A} / n, n_{C} / n, n_{G} / n, n_{T} / n\right)
$$

Observed fraction of nucleotides in sample is MLE of nucleotide
probabilities in population

Pseudocounts

Freq/count of $0 \Rightarrow-\infty$ score; a problem?
Certain that a given residue never occurs in a given position? Then $-\infty$ just right.
Else, it may be a small-sample artifact
Typical fix: add a pseudocount to each observed count-small constant (e.g., .5, I)
Sounds ad hoc; there is a Bayesian justification Influence fades with more data

What's best WMM?

Given, say, 168 sequences $s_{l}, s_{2}, \ldots, s_{k}$ of length 6, assumed to be generated at random according to a WMM defined by $6 \times(4-I)$ parameters θ, what's the best θ ?
E.g., what's MLE for θ given data $s_{1}, s_{2}, \ldots, s_{k}$?

Answer: count frequencies per position.

Another WMM example

8 Sequences:
ATG
ATG
ATG
ATG
ATG
GTG
GTG
TTG
Log-Likelihood Ratio:

$$
\log _{2} \frac{f_{x_{i}, i}}{f_{x_{i}}}, f_{x_{i}}=\frac{1}{4}
$$

Freq.	Col I	Col 2	Col 3
A	0.625	0	0
C	0	0	0
G	0.250	0	1
T	0.125	1	0

LLR	Col 1	Col 2	Col 3
A	1.32	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	0	$-\infty$	2.00
T	-1.00	2.00	$-\infty$

Non-uniform Background

- E. coli - DNA approximately $25 \% \mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$
- M. jannaschi - 68\% A-T, 32\% G-C

LLR from previous example, assuming

$$
\begin{aligned}
& f_{A}=f_{T}=3 / 8 \\
& f_{C}=f_{G}=1 / 8
\end{aligned}
$$

LLR	Col I	Col 2	Col 3
A	0.74	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	1.00	$-\infty$	3.00
T	-1.58	1.42	$-\infty$

e.g., G in col 3 is $8 \times$ more likely via WMM than background, so $\left(\log _{2}\right)$ score $=3$ (bits).

WMM Example, cont.

Freq.	Col I	Col 2	Col 3
A	0.625	0	0
C	0	0	0
G	0.250	0	1
T	0.125	1	0

Uniform

LLR	Col I	Col 2	Col 3
A	I.32	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	0	$-\infty$	2.00
T	-1.00	2.00	$-\infty$

Non-uniform

LLR	Col I	Col 2	Col 3
A	0.74	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	1.00	$-\infty$	3.00
T	-1.58	1.42	$-\infty$

Summary

Motif description/recognition fits a simple statistical framework

Frequency counts give MLE parameters
Scoring is log likelihood ratio hypothesis testing
Scores are interpretable
Log likelihood scoring naturally accounts for background (which is important):
$\log (f o r e g r o u n d ~ f r e q / b a c k g r o u n d ~ f r e q) ~$
These approaches broadly useful

