
Regular Expressions, II
Lecture 12b
Larry Ruzzo

Outline

• Some efficiency tidbits
• More regular expressions & pattern matching

Time and Memory
Efficiency

Avoid premature optimization; get a working
solution, even if big & slow

yes, wrong answers might as well be fast, but...

Simple tricks may suffice
e.g., one line or one chromosome at a time

Measure, don’t guess
even professionals are notoriously bad at predicting
the bottlenecks

Then attack the bottleneck; “80-20 rule”

How to measure space?
>>> dir('')

['__add__', …, '__sizeof__', … 'split', …, 'strip', …]

>>> help(''.__sizeof__)

Help on built-in function __sizeof__:

__sizeof__(...)

 S.__sizeof__() -> size of S in memory, in bytes

>>> (''.__sizeof__(),'a'.__sizeof__(),'ab'.__sizeof__())

(40, 41, 42)

>>> dir()

['__builtins__', '__doc__', ..., 'fh', 'x', 'y', ‘z’]

>>>

Strings Again

’abc\n’
”abc\n”
’’’abc
’’’
r’abc\n’

a b c newline

a b c \ n

}

Only Skin Deep
>>> 'ab'
'ab'
>>> "ab"
'ab'
>>> '''ab'''
'ab'
>>> r'ab'
'ab'
>>> r"ab"
'ab'
>>> r'''ab
... '''
'ab\n'
>>> 'ab' == "ab" == '''ab''' == r'ab' == r"ab"
True

These are external, not
internal, differences,
hopefully convenient
for data entry.
Internally, a string is a
string.

6

Regular Expressions
• A language for simple patterns, based on 4 simple
primitives
• match single letters
• this OR that
• this FOLLOWED BY that
• this REPEATED 0 or more times

• A specific syntax (fussy, and varies among pgms...)
• A library of utilities to deal with them
• Key features: Search, replace, dissect

RegExprs in Python

http://docs.python.org/library/re.html

Simple RegExpr Testing

>>> import re
>>> str1 = 'what foot or hand fell fastest'
>>> re.findall(r'f[a-z]*', str1)
['foot', 'fell', 'fastest']

>>> str2 = "I lack e's successor"
>>> re.findall(r'f[a-z]*',str2)
[]

Returns list of all matching substrings.

Definitely
recommend trying
this with examples
to follow, & more

Exercise: change it to find strings
starting with f and ending with t

Exercise: In honor of the
winter Olympics, “-ski-ing”
Download & save war_and_peace.txt

Write py program to read it line-by-line, use
re.findall to see whether current line contains
one or more proper names ending in “...ski”;
print each (but don’t
print [])

 Mine begins:

['Bolkonski']
['Bolkonski']
['Bolkonski']
['Bolkonski']
['Bolkonski']
['Razumovski']
['Razumovski']
['Bolkonski']
['Spasski']
...
['Nesvitski', 'Nesvitski']

-ski solution

import re

fh = open('war_and_peace.txt')
for line in fh:
! hits=re.findall('[A-Z][a-z]*ski',line)
! if hits != []:
! ! print hits

RegExpr Syntax

They’re strings

Most punctuation is special; needs to be
escaped by backslash (e.g., “\.” instead of “.”) to
get non-special behavior

So, “raw” string literals (r’C:\new.txt’) are
generally recommended for regexprs

Unless you double your backslashes judiciously

RegExpr Semantics, 1
Characters

RexExprs are patterns; they “match” sequences
of characters

Patterns “Match” Text

Pattern: TAT(A.|.A)T [a-z][a-z0-9]*

Text: RATATaAT TAT! count1

RegExpr Semantics, 1
Characters

RexExprs are patterns; they “match” sequences
of characters

Letters, digits (& escaped punctuation like ‘\.’)
match only themselves, just once

r’TATAAT’ ‘ACGTTATAATGGTATAAT’

RegExpr Semantics, 2
Character Groups

Character groups [abc], [a-zA-Z], [^0-9] also
match single characters, any of the characters
in the group.

r’T[AG][^GC].T’‘ACGTTGTAATGGTATnCT’

Matching one of several alternatives

• Square brackets mean that any of the listed characters will do

• [ab] means either ”a” or ”b”

• You can also give a range:

• [a-d] means ”a” ”b” ”c” or ”d”

• Negation: caret means ”not”

[^a-d] # anything but a, b, c or d

8

Matching any of a set of individual letters

letter group shortcuts
. (just a dot) matches any letter (except newline)

\s spaces [\t\n\r\f\v]

\d digits [0-9]

\w “word” chars [a-zA-Z0-9_]

\S non-spaces [^ \t\n\r\f\v]

\D non-digits [^0-9]

\W non-word chars [^a-zA-Z0-9_]

(but LOCALE, UNICODE matter)

RegExpr Semantics, 3:
Concatenation, Or, Grouping

You can group subexpressions with parens

If R, S are RegExprs, then

RS matches the concatenation of strings
matched by R, S individually

R | S matches the union – either R or S

r’TAT(A.|.A)T’ ’TATCATGTATACTCCTATCCT’

r’(A|G)(A|G)’ matches any of AA AG GA GG

?

RegExpr Semantics, 4
Repetition

If R is a RegExpr, then
R* matches 0 or more consecutive strings

(independently) matching R
R+ 1 or more
R{n} exactly n
R{m,n} any number between m and n, inclusive
R? 0 or 1

Beware precedence (* > concat > |)

r’TAT(A.|.A)*T’‘TATCATGTATACTATCACTATT’
?

RegExprs in Python

By default
Case sensitive, line-oriented (\n treated specially)
Matching is generally “greedy”: Finds longest
version of earliest starting match

Next “findall()” match will not overlap

r".+\.py" "Two files: hw3.py and upper.py."

r"\w+\.py" "Two files: hw3.py and UPPER.py."

Python Mechanics

re.match(pat, str)
matches only at front of string

re.search(pat,str)
matches anywhere in string

re.findall(pat,str)
finds all (nonoverlapping) matches

Many others (split, substitute,...)

Return
“match”
objects

Returns list
of strings

“Match” Objects
Retain info about exactly where the pattern matched, and how.

Of special note, if your pattern contains parenthesized groups, you can
see what, if anything, matched each group, within the context of the
overall match.

str= 'My birthdate is 09/03/1988'
pat = r'[bB]irth.* (\d{2})/(\d{2})/(\d{4})'
match = re.match(pat,str)
match.groups()
('09', '03', '1988')

Many more options; see Python docs...

“digit” ≡ [0-9]

Compile: assemble, e.g. a report, from various sources
mypat = re.compile(pattern[,flags])

Preprocess the pattern to make pattern matching fast.
Useful if your code will do repeated searches with the
same pattern. (Optional flags can modify defaults, e.g.
case-sensitive matching, etc.)

Then use:
mypat.{match,search,findall,...}(string)

Pattern Objects &
“Compile”

Exercise 3

Suppose “filenames” are upper or lower case
letters or digits, starting with a letter, followed
by a period (“.”) followed by a 3 character
extension (again alphanumeric). Scan a list of
lines or a file, and print all “filenames” in it,
without their extensions. Hint: use paren
groups.

Solution 3

import sys
import re

filehandle = open(sys.argv[1],"r")
filecontents = filehandle.read()
myrule = re.compile(
 r"([a-zA-Z][a-zA-Z0-9]*)\.[a-zA-Z0-9]{3}")
#Finds skidoo.bar amidst 23skidoo.barber; ok?
match = myrule.findall(filecontents)
print match

Basics of regexp construction

• Letters and numbers match themselves

• Normally case sensitive

• Watch out for punctuation–most of it has special meanings!

7

Wild cards

• ”.” means ”any character”

• If you really mean ”.” you must use a backslash

• WARNING:

– backslash is special in Python strings
– It’s special again in regexps
– This means you need too many backslashes
– We will use ”raw strings” instead
– Raw strings look like r"ATCGGC"

9

Using . and backslash

• To match file names like ”hw3.pdf” and ”hw5.txt”:

hw.\....

10

Zero or more copies

• The asterisk repeats the previous character 0 or more times

• ”ca*t” matches ”ct”, ”cat”, ”caat”, ”caaat” etc.

• The plus sign repeats the previous character 1 or more times

• ”ca+t” matches ”cat”, ”caat” etc. but not ”ct”

11

Repeats

• Braces are a more detailed way to indicate repeats

• A{1,3} means at least one and no more than three A’s

• A{4,4} means exactly four A’s

12

simple testing

>>> import re

>>> string = 'what foot or hand fell fastest'

>>> re.findall(r'f[a-z]*', string)
['foot', 'fell', 'fastest']

Practice problem 1

• Write a regexp that will match any string that starts with ”hum” and
ends with ”001” with any number of characters, including none, in
between

• (Hint: consider both ”.” and ”*”)

13

Practice problem 2

• Write a regexp that will match any Python (.py) file.

• There must be at least one character before the ”.”

• ”.py” is not a legal Python file name

• (Imagine the problems if you imported it!)

14

All of these objects! What can they do?

Functions offered by a Pattern object:

• match()–does it match the beginning of my string? Returns None or a
match object

• search()–does it match anywhere in my string? Returns None or a
match object

• findall()–does it match anywhere in my string? Returns a list of
strings (or an empty list)

• Note that findall() does NOT return a Match object!

17

All of these objects! What can they do?

Functions offered by a Match object:

• group()–return the string that matched
group()–the whole string
group(1)–the substring matching 1st parenthesized sub-pattern
group(1,3)–tuple of substrings matching 1st and 3rd parenthesized
sub-patterns

• start()–return the starting position of the match

• end()–return the ending position of the match

• span()–return (start,end) as a tuple

18

A practical example

Does this string contain a legal Python filename?

import re

myrule = re.compile(r".+\.py")

mystring = "This contains two files, hw3.py and uppercase.py."

mymatch = myrule.search(mystring)

print mymatch.group()

This contains two files, hw3.py and uppercase.py

not what I expected! Why?

19

Matching is greedy

• My regexp matches ”hw3.py”

• Unfortunately it also matches ”This contains two files, hw3.py”

• And it even matches ”This contains two files, hw3.py and uppercase.py”

• Python will choose the longest match

• I could break my file into words first

• Or I could specify that no spaces are allowed in my match

20

A practical example

Does this string contain a legal Python filename?

import re

myrule = re.compile(r"[^]+\.py")

mystring = "This contains two files, hw3.py and uppercase.py."

mymatch = myrule.search(mystring)

print mymatch.group()

hw3.py

allmymatches = myrule.findall(mystring)

print allmymatches

[’hw3.py’,’uppercase.py’]

21

Practice problem 3

• Create a regexp which detects legal Microsoft Word file names

• The file name must end with ”.doc” or ”.DOC”

• There must be at least one character before the dot.

• We will assume there are no spaces in the names

• Print out a list of all the legal file names you find

• Test it on testre.txt (on the web site)

22

More challenge? or
“.docx” or “.DOCX”

Practice problem 4

• Create a regexp which detects legal Microsoft Word file names that do
not contain any numerals (0 through 9)

• Print out the start location of the first such filename you encounter

• Test it on testre.txt

23

Practice problem

• Create a regexp which detects legal Microsoft Word file names that do
not contain any numerals (0 through 9)

• Print out the “base name”, i.e., the file name after stripping of the .doc
extension, of each such filename you encounter. Hint: use parenthesized
sub patterns.

• Test it on testre.txt

24

Practice problem 1 solution

Write a regexp that will match any string that starts with ”hum” and ends
with ”001” with any number of characters, including none, in between

myrule = re.compile(r"hum.*001")

25

Practice problem 2 solution

Write a regexp that will match any Python (.py) file.

myrule = re.compile(r".+\.py")

if you want to find filenames embedded in a bigger

string, better is:

myrule = re.compile(r"[^]+\.py")

this version does not allow whitespace in file names

26

Practice problem 3 solution

Create a regexp which detects legal Microsoft Word file names, and use it
to make a list of them

import sys

import re

filename = sys.argv[1]

filehandle = open(filename,"r")

filecontents = filehandle.read()

myrule = re.compile(r"[^]+\.[dD][oO][cC]")

matchlist = myrule.findall(filecontents)

print matchlist

27

Practice problem 4 solution

Create a regexp which detects legal Microsoft Word file names which do
not contain any numerals, and print the location of the first such filename
you encounter

import sys

import re

filename = sys.argv[1]

filehandle = open(filename,"r")

filecontents = filehandle.read()

myrule = re.compile(r"[^ 0-9]+\.[dD][oO][cC]")

match = myrule.search(filecontents)

print match.start()

28

Regular expressions summary

• The re module lets us use regular expressions

• These are fast ways to search for complicated strings

• They are not essential to using Python, but are very useful

• File format conversion uses them a lot

• Compiling a regexp produces a Pattern object which can then be used
to search

• Searching produces a Match object which can then be asked for
information about the match

29

