Genome 559

Lecture 13a, 2/16/10
Larry Ruzzo
A little more about motif models

Motifs III - Outline

Statistical justification for frequency counts
Relative Entropy
Another example

Frequencies

pase	1	2	3	4	5	6
A	2	94	26	59	50	1
C	9	2	14	13	20	3
G	10	1	16	15	13	0
T	79	3	44	13	17	96

Frequency \Rightarrow Scores: $\log _{2}$ (freq/background)

base	1	2	3	4	5	6
base	-36	19	1	12	10	-46
C	-15	-36	-8	-9	-3	-31
G	-13	-46	-6	-7	-9	-46
T	17	-31	8	-9	-6	19

What's best WMM?

Given, say, 168 sequences $s_{1}, s_{2}, \ldots, s_{k}$ of length 6, assumed to be generated at random according to a WMM defined by $6 \times(4-I)$ parameters θ, what's the best θ ?

Answer: count frequencies per position.
Analogously, if you saw 900 Heads in 1000 coin flips, you'd perhaps estimate $P($ Heads $)=900 / 1000$

Why is this sensible?

Parameter Estimation

Assuming sample $x_{1}, x_{2}, \ldots, x_{n}$ is from a parametric distribution $f(x \mid \theta)$, estimate θ.

[^0]
Likelihood

$P(x \mid \theta)$: Probability of event x given model θ
Viewed as a function of x (fixed θ), it's a probability

$$
\text { E.g., } \Sigma_{x} P(x \mid \theta)=1
$$

Viewed as a function of θ (fixed x), it's a likelihood
E.g., $\Sigma_{\theta} \mathrm{P}(\mathrm{x} \mid \theta)$ can be anything; relative values of interest.
E.g., if $\theta=$ prob of heads in a sequence of coin flips then P(HHHTH | .6) > P(HHHTH | .5),
I.e., event HHHTH is more likely when $\theta=.6$ than $\theta=.5$

And what θ make HHHTH most likely?

Maximum Likelihood Parameter Estimation

One (of many) approaches to param. est.
Likelihood of (indp) observations $x_{n}, x_{2}, \ldots, x_{n}$

$$
L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=\prod_{i=1} f\left(x_{i} \mid \theta\right)
$$

As a function of θ, what θ maximizes the likelihood of the data actually observed. Typical approaches:

Numerical
MCMC
Analytical - $\frac{\partial}{\partial \theta} L(\vec{x} \mid \theta)=0$ EM, etc.

Example I

n coin flips, $x_{1}, x_{2}, \ldots, x_{n} ; n_{0}$ tails, n, heads, $n_{0}+n_{l}=n ; \theta=$ probability of heads

$$
L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=(1-\theta)^{n_{0}} \theta^{n_{1}}
$$

$$
\log L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=n_{0} \log (1-\theta)+n_{1} \log \theta
$$

$\frac{\partial}{\partial \theta} \log L\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=\frac{-n_{0}}{1-\theta}+\frac{n_{1}}{\theta}$
Setting to zero and solving:

$$
\hat{\theta}=\frac{n_{1}}{n}
$$

Observed fraction of successes in sample is MLE of success
probability in population
(Also verify it's max, not min, \& not better on boundary)

Example II

n letters, $x_{1}, x_{2}, \ldots, x_{n}$ drawn at random from a (perhaps biased) pool of A, C, G, T, $\quad n_{A}+n_{C}+n_{G}+n_{T}=n$; $\theta=\left(\theta_{A}, \theta_{C}, \theta_{G}, \theta_{T}\right)$ proportion of each nucleotide.

Math is a bit messier, but result is similar to coins

$$
\hat{\theta}=\left(n_{A} / n, n_{C} / n, n_{G} / n, n_{T} / n\right)
$$

Observed fraction of nucleotides in sample is MLE of nucleotide probabilities in population

What's best WMM?

Given, say, 168 sequences $s_{\mathrm{l}}, s_{2}, \ldots, s_{k}$ of length 6, assumed to be generated at random according to a WMM defined by $6 \times(4-I)$ parameters θ, what's the best θ ?

Answer:
MLE $=$ position specific frequencies

Pseudocounts

Freq/count of $0 \Rightarrow-\infty$ score; a problem?
Certain that a given residue never occurs in a given position? Then $-\infty$ just right.
Else, it may be a small-sample artifact
Typical fix: add a pseudocount to each observed count-small constant (e.g., .5, I)
Sounds ad hoc; there is a Bayesian justification Influence fades with more data

"Similarity" of Distributions: Relative Entropy

AKA Kullback-Liebler Distance/Divergence, AKA Information Content

Given distributions P, Q

$$
H(P \| Q)=\sum_{x \in \Omega} P(x) \log \frac{P(x)}{Q(x)} \geq 0
$$

Notes:

$$
\begin{aligned}
& \text { Let } P(x) \log \frac{P(x)}{Q(x)}=0 \text { if } P(x)=0\left[\text { since } \lim _{y \rightarrow 0} y \log y=0\right] \\
& \text { Undefined if } 0=Q(x)<P(x)
\end{aligned}
$$

WMM: How "Informative"? Mean score of site vs bkg?

For any fixed length sequence x, let $P(x)=$ Prob. of x according to WMM $Q(x)=$ Prob. of x according to background Relative Entropy:

$$
H(P \| Q)=\sum_{x \in \Omega} P(x) \log _{2} \frac{P(x)}{Q(x)}
$$

$H(P \| Q)$ is expected log likelihood score of a sequence randomly chosen from WMM; $-H(Q \| P)$ is expected score of Background

WMM Scores vs Relative Entropy

On average, foreground model scores > background by II. 8 bits (score difference of II8 on I0x scale used in examples above).

Calculating H \& H per Column

For WMM, based on the assumption of independence between columns:

$$
H(P \| Q)=\sum_{i} H\left(P_{i} \| Q_{i}\right)
$$

where Pi and Qi are the $\mathrm{WMM} /$ background distributions for column i.

Questions

Which columns of my motif are most informative/uninformative?

How wide is my motif, really?
Per-column relative entropy gives a quantitative way to look at such questions

Another WMM example

8 Sequences:
ATG
ATG
ATG
ATG
ATG
GTG
GTG
TTG
Log-Likelihood Ratio:

$$
\log _{2} \frac{f_{x_{i}, i}}{f_{x_{i}}}, f_{x_{i}}=\frac{1}{4}
$$

Freq.	Col I	Col 2	Col 3
A	0.625	0	0
C	0	0	0
G	0.250	0	1
T	0.125	1	0

LLR	Col 1	Col 2	Col 3
A	1.32	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	0	$-\infty$	2.00
T	-1.00	2.00	$-\infty$

Non-uniform Background

- E. coli - DNA approximately $25 \% \mathrm{~A}, \mathrm{C}, \mathrm{G}, \mathrm{T}$
- M. jannaschi - 68\% A-T, 32\% G-C

LLR from previous example, assuming

$$
\begin{aligned}
& f_{A}=f_{T}=3 / 8 \\
& f_{C}=f_{G}=1 / 8
\end{aligned}
$$

LLR	Col I	Col 2	Col 3
A	0.74	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	1.00	$-\infty$	3.00
T	-1.58	1.42	$-\infty$

e.g., G in col 3 is $8 \times$ more likely via WMM than background, so $\left(\log _{2}\right)$ score $=3$ (bits).

WMM Example, cont.

Freq.	Col I	Col 2	Col 3
A	0.625	0	0
C	0	0	0
G	0.250	0	I
T	0.125	I	0

Uniform

LLR	Col I	Col 2	Col 3
A	1.32	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	0	$-\infty$	2.00
T	-1.00	2.00	$-\infty$

Non-uniform

LLR	Col I	Col 2	Col 3
A	0.74	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	1.00	$-\infty$	3.00
T	-1.58	1.42	$-\infty$

WMM Example, cont.

Freq.	Col I	Col 2	Col 3
A	0.625	0	0
C	0	0	0
G	0.250	0	1
T	0.125	1	0

Uniform			
LLR Col I Col 2 Col 3 A I.32 $-\infty$ $-\infty$ C $-\infty$ $-\infty$ $-\infty$ G 0 $-\infty$ 2.00 T -1.00 2.00 $-\infty$ RelEnt 0.70 2.00 2.00	4.70		

LLR	Col I	Col 2	Col 3
A	0.74	$-\infty$	$-\infty$
C	$-\infty$	$-\infty$	$-\infty$
G	1.00	$-\infty$	3.00
T	-1.58	1.42	$-\infty$
RelEnt	0.51	1.42	3.00

Today's Summary

It's important to account for background
Log likelihood scoring naturally does: \log (freq/background freq)

Relative Entropy measures "dissimilarity" of two distributions;"information content"; average score difference between foreground \& background. Full motif \& per column

Motif Summary

Motif description/recognition fits a simple statistical framework

Frequency counts give MLE parameters
Scoring is log likelihood ratio hypothesis testing
Scores are interpretable
Log likelihood scoring naturally accounts for background (which is important):

Broadly useful approaches - not just for motifs

[^0]: E.g.:
 $x_{1}, x_{2}, \ldots, x_{5}$ is HHHTH, estimate $\theta=\operatorname{prob}(H)$

