Genome 559

Lecture 13a, 2/16/10 Larry Ruzzo

A little more about motif models

Motifs III – Outline

Statistical justification for frequency counts Relative Entropy Another example

Frequencies						
pos base	1	2	3	4	5	6
Α	2	94	26	59	50	1
С	9	2	14	13	20	3
G	10	1	16	15	13	0
Т	79	3	44	13	17	96

Frequency \Rightarrow Scores: log₂ (freq/background)

(For convenience, scores multiplied by 10, then rounded)

pos base	1	2	3	4	5	6
А	-36	19	1	12	10	-46
С	-15	-36	-8	-9	-3	-31
G	-13	-46	-6	-7	-9	-46
Т	17	-31	8	-9	-6	19

Scores

What's best WMM?

Given, say, 168 sequences $s_1, s_2, ..., s_k$ of length 6, assumed to be generated at random according to a WMM defined by 6 x (4-1) parameters θ , what's the best θ ?

Answer: count frequencies per position.

Analogously, if you saw 900 Heads in 1000 coin flips, you'd perhaps estimate P(Heads) = 900/1000

Why is this sensible?

Parameter Estimation

Assuming sample $x_1, x_2, ..., x_n$ is from a parametric distribution $f(x|\theta)$, estimate θ .

E.g.:

 $x_1, x_2, ..., x_5$ is HHHTH, estimate $\theta = \text{prob}(H)$

Likelihood

- $\begin{array}{l} \mathsf{P}(\mathsf{x} \mid \boldsymbol{\theta}): \ \mathsf{Probability} \ \mathsf{of} \ \mathsf{event} \ \mathsf{x} \ \mathsf{given} \ \mathsf{model} \ \boldsymbol{\theta} \\ \mathsf{Viewed} \ \mathsf{as} \ \mathsf{a} \ \mathsf{function} \ \mathsf{of} \ \mathsf{x} \ (\mathsf{fixed} \ \boldsymbol{\theta}), \ \mathsf{it's} \ \mathsf{a} \ \mathit{probability} \\ \mathsf{E.g.}, \ \Sigma_{\mathsf{x}} \ \mathsf{P}(\mathsf{x} \mid \boldsymbol{\theta}) = \ \mathsf{I} \end{array}$
- Viewed as a function of θ (fixed x), it's a likelihood E.g., $\Sigma_{\theta} P(x \mid \theta)$ can be anything; relative values of interest. E.g., if θ = prob of heads in a sequence of coin flips then P(HHTTH | .6) > P(HHTTH | .5), I.e., event HHHTTH is more likely when θ = .6 than θ = .5
 - And what θ make HHHTH most likely?

Maximum Likelihood Parameter Estimation

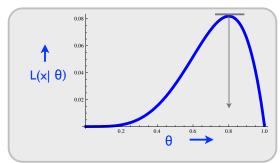
One (of many) approaches to param. est. Likelihood of (indp) observations $x_1, x_2, ..., x_n$

$$L(x_1, x_2, \dots, x_n \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta)$$

As a function of θ , what θ maximizes the likelihood of the data actually observed. Typical approaches:

Numerical MCMC Analytical $-\frac{\partial}{\partial\theta}L(\vec{x} \mid \theta) = 0$ EM, etc.

Example I



n coin flips, $x_1, x_2, ..., x_n$; n_0 tails, n_1 heads, $n_0 + n_1 = n$; $\theta = \text{probability of heads}$ $L(x_1, x_2, \dots, x_n \mid \theta) = (1 - \theta)^{n_0} \theta^{n_1}$ $\log L(x_1, x_2, \dots, x_n \mid \theta) = n_0 \log(1 - \theta) + n_1 \log \theta$ $\frac{\partial}{\partial \theta} \log L(x_1, x_2, \dots, x_n \mid \theta) = \frac{-n_0}{1-\theta} + \frac{n_1}{\theta}$ Observed fraction of Setting to zero and solving: successes in sample is

$$\hat{\theta} = \frac{n_1}{n}$$

MLE of success probability in population

(Also verify it's max, not min, & not better on boundary)

Example 11

n letters, $x_1, x_2, ..., x_n$ drawn at random from a (perhaps biased) pool of A, C, G, T, $n_A + n_C + n_G + n_T = n$; $\theta = (\theta_A, \theta_C, \theta_G, \theta_T)$ proportion of each nucleotide.

Math is a bit messier, but result is similar to coins

$$\hat{\boldsymbol{\Theta}} = (n_A/n, n_C/n, n_G/n, n_T/n)$$

Observed fraction of nucleotides in sample is MLE of nucleotide probabilities in population

What's best WMM?

Given, say, 168 sequences $s_1, s_2, ..., s_k$ of length 6, assumed to be generated at random according to a WMM defined by 6 x (4-1) parameters θ , what's the best θ ?

Answer: MLE = position specific frequencies

Pseudocounts

Freq/count of $0 \Rightarrow -\infty$ score; a problem?

Certain that a given residue *never* occurs in a given position? Then $-\infty$ just right.

Else, it may be a small-sample artifact

Typical fix: add a *pseudocount* to each observed count—small constant (e.g., .5, I)

Sounds *ad hoc*; there is a Bayesian justification Influence fades with more data

"Similarity" of Distributions: Relative Entropy

AKA Kullback-Liebler Distance/Divergence, AKA Information Content

Given distributions P, Q

$$H(P||Q) = \sum_{x \in \Omega} P(x) \log \frac{P(x)}{Q(x)} \ge \mathbf{0}$$

Notes:

Let
$$P(x)\log\frac{P(x)}{Q(x)} = 0$$
 if $P(x) = 0$ [since $\lim_{y \to 0} y\log y = 0$]

Undefined if 0 = Q(x) < P(x)

WMM: How "Informative"? Mean score of site vs bkg?

For any fixed length sequence x, let P(x) = Prob. of x according to WMM Q(x) = Prob. of x according to background

Relative Entropy:

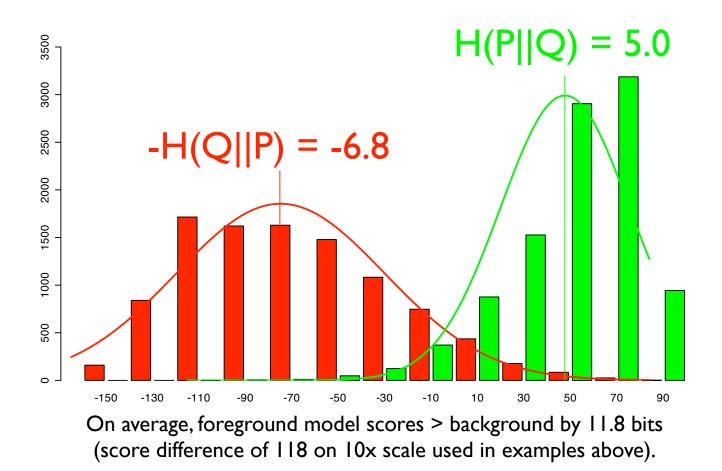
$$H(P||Q) = \sum_{x \in \Omega} P(x) \log_2 \frac{P(x)}{Q(x)}$$

H(P||Q) is expected log likelihood score of a sequence randomly chosen from WMM; -H(Q||P) is expected score of Background

-H(Q||P)

H(P||Q)

WMM Scores vs Relative Entropy



Calculating H & H per Column

For WMM, based on the assumption of independence between columns:

 $H(P||Q) = \sum_{i} H(P_i||Q_i)$

where Pi and Qi are the WMM/background distributions for column i.

Questions

Which columns of my motif are most informative/uninformative?

How wide is my motif, really?

Per-column relative entropy gives a quantitative way to look at such questions

Another WMM example

8 Sequences: ATG ATG ATG ATG ATG GTG GTG GTG TTG

Freq.	Col I	Col 2	Col 3
Α	0.625	0	0
C	0	0	0
G	0.250	0	I
Т	0.125		0

Log-Likelih	ood Ratio:
$\log_2 \frac{f_{x_i,i}}{f_{x_i}},$	$f_{x_i} = \frac{1}{4}$

LLR	Col I	Col 2	Col 3
А	1.32	-8	-∞
С	-8	-8	-∞
G	0	-8	2.00
Т	-1.00	2.00	-∞

Non-uniform Background

- E. coli DNA approximately 25% A, C, G, T
- *M. jannaschi* 68% A-T, 32% G-C

LLR from previous example, assuming

$$f_A = f_T = 3/8$$

 $f_C = f_G = 1/8$

LLR	Col I	Col 2	Col 3
Α	0.74	-8	-∞
С	-8	-8	-∞
G	1.00	-∞	3.00
Т	-1.58	1.42	-∞

e.g., G in col 3 is 8 x more likely via WMM than background, so (\log_2) score = 3 (bits).

WMM Example, cont.

Freq.	Col I	Col 2	Col 3
A	0.625	0	0
C	0	0	0
G	0.250	0	Ι
Т	0.125		0

Uniform

LLR	Col I	Col 2	Col 3		
A	1.32	- 8	-8		
С	-∞	-8	-8		
G	0	-∞	2.00		
Т	-1.00	2.00	-∞		

Non-uniform

LLR	Col I	Col 2	Col 3
А	0.74	-∞	-∞
С	-∞	-∞	-∞
G	1.00	-∞	3.00
Т	-1.58	I.42	-∞

19

WMM Example, cont.

Freq.	Col I	Col 2	Col 3
A	0.625	0	0
С	0	0	0
G	0.250	0	Ι
Т	0.125	I	0

Uniform

<u> </u>				
LLR	Col I	Col 2	Col 3	
A	1.32	-∞	-∞	
С	-8	-8	-∞	
G	0	-∞	2.00	
Т	-1.00	2.00	-∞	
RelEnt	0.70	2.00	2.00	4.70

Non-uniform

LLR	Col I	Col 2	Col 3	
Α	0.74	-∞	-8	
С	-∞	-∞	-8	
G	1.00	-∞	3.00	
Т	-1.58	I.42	-∞	
RelEnt	0.51	1.42	3.00	4.93

20

Today's Summary

It's important to account for background

Log likelihood scoring naturally does: log(freq/background freq)

Relative Entropy measures "dissimilarity" of two distributions; "information content"; average score difference between foreground & background. Full motif & per column

Motif Summary

Motif description/recognition fits a simple statistical framework

Frequency counts give MLE parameters

Scoring is log likelihood ratio hypothesis testing

Scores are interpretable

Log likelihood scoring naturally accounts for background (which is important):

log(foreground freq/background freq)

Broadly useful approaches - not just for motifs