
Genome 559
Intro to Statistical and

Computational Genomics

Lecture 14b:
Classes and Objects, Part 1

Larry Ruzzo

What is a class ?

What is an object?

Why use them?

How to define and use them

Classes and Objects

Keep related data together
Keep functions connected to the data they work on
Example:

A “Date” class could keep the day and month together

It could offer functions such as “add a number to a date”

Could be done without classes, but classes conveniently
organize it all, e.g., avoiding errors such as

Setting month to “Jamuary”

Copying the month without the associated day

14 days after Feb 18 probably shouldn’t be Feb 32

Plus Biopython and many other tools use them extensively

Why use classes

mystring = "ATCCGCG"

print mystring.find("C")

2! position of first "C"

print mystring.count("C")

3 number of "C"s

print math.pi

3.1415926535897931

Using Objects
(Surprise: you’ve been doing so all along)

objects object attributes:
count is a function;
pi is a number

As an example, we’ll build a simple “Date” class:
A date consists of a month and a day

We will also provide a function to add a number to a date

A useful date class would need
more data (year?)

more functions (subtract two dates?)

more error checking

but this is a start. See the “datetime” library module...

Defining a new class

A very very simple “Date” class

class Date(object):
 “Dates => day,month.”

mydate = Date()
mydate.day = 15
mydate.mon = "Jan"
print mydate
<__main__.Date instance at 0x1005380e0>
print mydate.day, mydate.mon
15 Jan
yourdate = mydate

A class definition

Creates a class instance

Creates/initializes attributes

Copies a class instance

Every class is a subclass of another,
and “object” is a generic choice...

Hmmm... Not so useful

That’s completely legal

Copying the whole thing at once is handy

But otherwise, that’s not so useful

E.g., still possible to forget to include both a day
and a month

Try again...

Continuing “Date” example

class Date(object):
 “Dates => day,month.”
 def _ _init_ _(self, day, month):
 self.day = day
 self.mon = month

mydate = Date(15,"Jan")
print mydate
<__main__.Date instance at 0x1005380e0>
print mydate.day, mydate.mon
15 Jan

Special names

That’s better, but...

Special function “_ _init_ _” is called whenever a Date
object instance is created. (A class constructor.)

It makes sure the object is properly initialized. In this
case, every Date object will contain day and month
attributes. Special name “self” lets it access the object
in question no matter what the caller named it.

But printing is still clumsy.

Try again ...

class Date(object):
 “Dates => day,month.”
 def _ _init_ _(self, day, month) :
 self.day = day
 self.mon = month
 def printdate(self)
 print self.day, self.mon

mydate = Date(15,"Jan")
mydate.printdate()
15 Jan

Continuing “Date” example

Magic first arguments:
 __init__ defined w/ 3 args; called w/ 2;
 printdate defined w/ 1 arg; called w/ 0.
mydate passed in both cases, so function
knows on which object it is to act.

Class Declarations - Summary

The class statement defines a new class

Inside the class (note the colon and indentation), the special
name _ _init_ _ is the class constructor – called whenever a new
instance of the class is created, to initialize it

The special name “self” means the current object of that class

Variables named self.something are instance variables of the class

Every instance of the class will have all instance variables defined
in the constructor

E.g., this class has instance variables “day” and “mon”. (Spelling it
out as “month” is better, I’m just saving space on the slides...)

(object):

Practice Problem 3
• Copy the class definition into your program file

• Add a new class function add(self, numdays)

• Its net effect should be to change the Date object appropriately
(not, e.g., print the new date)

• You may assume that “numdays” is a positive integer.

• Use the dictionary to find the number of days in a month, and
the nextmonth function (if needed) to advance to the next
month

• Note that if the number added is large, you may need to advance
more than one month. (Hint: try a while loop...)

Practice: Step 1 solution

daysinmonth = {
"Jan":31,
"Feb":28,
"Mar":31,
"Apr":30,
"May":31,
"Jun":30,
"Jul":31,
"Aug":31,
"Sep":30,
"Oct":31,
"Nov":30,
"Dec":31
}

Practice: step 2 solution

It could also be done with 12 if statements
but in general, simpler is better

def nextmonth(thismonth):
monthlist = ["Jan","Feb","Mar",

 "Apr","May","Jun",
 "Jul","Aug","Sep",
 "Oct","Nov","Dec",
 "Jan"]

for index in range(len(monthlist)) :
if (monthlist[index] == thismonth) :
return monthlist[index + 1]

print "Illegal month", thismonth
alt: return monthlist[monthlist.index(thismonth)+1]

Q: What’s returned if illegal?

Practice step 2, alternate solution A

use a dictionary to hold the
“next month” mapping

def nextmonth(thismonth):
nextmonthdict = {
"Jan":"Feb", "Feb":"Mar", "May":"Apr",
"Apr":"May", "May":"Jun", "Jun":"Jul",
"Jul":"Aug", "Aug":"Sep", "Sep":"Oct",
"Oct":"Nov", "Nov":"Dec", "Dec":"Jan"}

if thismonth in nextmonthdict :
return nextmonthdict[thismonth]

else :
print "Illegal month", thismonth

Practice step 2, alternate solution B

A handy nerd trick: “a%b” (read “a mod b”)
means the remainder when a is divided
by b. E.g., (0%12,%12, ..., 11%12) ==
(0,1,...,11), but 12%12 == 0, so Dec + 1
wraps around to Jan again; sweet!

def nextmonth(thismonth):
monthlist = ["Jan","Feb","Mar",

"Apr","May","Jun",
"Jul","Aug","Sep",
"Oct","Nov","Dec"]

for index in range(len(monthlist)) :
if (monthlist[index] == thismonth) :
return monthlist[(index + 1) % 12]

print "Illegal month", thismonth

Practice step 3 solution

class Date:
 def _ _init_ _(self, day, month) :
 self.day = day
 self.mon = month
 def printUS(self) :
 print self.mon, self.day
 def printUK(self) :
 print self.day, self.mon
 def add(self, numdays) :
 self.day = self.day + numdays
 while self.day > daysinmonth[self.mon] :
 self.day = self.day-daysinmonth[self.mon]
 self.mon = nextmonth(self.mon)

Q: where could/should daysinmonth & nextmonth() go?

date.add() changes its argument

Calling mybirthday.add(8) changes mybirthday
Maybe .increment() would be a better name
Perhaps even better: return a new date object:

def addnew(self, numdays) :
 newmonth = self.mon
 newday = self.day + numdays
 while newday > daysinmonth[newmonth] :
 newday = newday - daysinmonth[newmonth]
 newmonth = nextmonth(newmonth)
 return Date(newday,newmonth) Make a new

“Date” object

Using date.addnew()
>>> mybirthday = Date(6,"July")
>>> mybirthday.printUS()

July 6

>>> party = mybirthday.addnew(4)
>>> party.printUS()

July 10

>>> mybirthday.printUS()

July 6

