Genome 559

Intro to Statistical and
Computational Genomics

Lecture 14b:
Classes and Obijects, Part |
Larry Ruzzo

\'A%
\'A%
\'A%

Classes and Objects

hat is a class ?

hat is an object!?

ny use them!?

How to define and use them

A class is a defined data type

e Built-in classes in Python include string and dictionary

e A class defines the kinds of data and functions that are available

An object is an instance (example) of a class

e For example:

— string is a class
— mystring = "AGGCGT" creates an object of class string

e You can only have one class named “string”

e You can have many objects which all belong to class string:

— mystring = "AGGCGT"
— yourstring = " Fred”

e The string class provides many useful functions which all string objects
can use

e mystring.upper(), yourstring.split(), etc.

Why use classes

Keep related data together
Keep functions connected to the data they work on

Example:

A “Date” class could keep the day and month together

It could offer functions such as “add a nhumber to a date”
Could be done without classes, but classes conveniently
organize it all, e.g., avoiding errors such as

Setting month to “Jamuary”

Copying the month without the associated day

|4 days after Feb 18 probably shouldn’t be Feb 32

Plus Biopython and many other tools use them extensively

Using Objects
(Surprise: you’ve been doing so all along)

mystring = "ATCCGCG"
print mystring.find("C")

2 < position of first "C"

print mystring.count("C")

3 < number of "C"s

objects object attributes:
count is a function;

print math.pi pi is 2 number

3.1415926535897931

Defining a new class

As an example, we’'ll build a simple “Date” class:
A date consists of a month and a day

We will also provide a function to add a number to a date

A useful date class would need
more data (year?)
more functions (subtract two dates?)

more error checking

but this is a start. See the “datetime” library module...

A very very simple “Date” class

Every class is a subclass of another,
and “object” is a generic choice...

class Date(object):

A class definition
“Dates => day,month.” class definitio

mydate = Date() Creates a class instance
mydate.day = 15

mydate.mon = "Jan
print mydate

< mailn_.Date instance at 0x1005380e0>
print mydate.day, mydate.mon

15 Jan

yourdate = mydate Copies a class instance

| Creates/initializes attributes

Hmmm... Not so useful

That’s completely legal

Copying the whole thing at once is handy

But otherwise, that’s not so useful

E.g., still possible to forget to include both a day
and a month

Try again...

Continuing “Date” example

class Date(object):
“Dates => day,month.”
def 1init (self, day, month):
self.day = day
self.mon = month Special names
mydate = Date(1l5,"Jan")
print mydate
< main .Date instance at 0x1005380e0>
print mydate.day, mydate.mon
15 Jan

That’s better, but...

Special function® _init__ " is called whenever a Date

object instance is created. (A class constructor.)

It makes sure the object is properly initialized. In this
case, every Date object will contain day and month
attributes. Special name “self” lets it access the object
in question no matter what the caller named it.

But printing is still clumsy.

Try again ...

Continuing “Date” example

class Date(object):
“Dates => day,month.”
def 1init (self, day, month) :
self.day = day
self.mon = mont
def printdate(self
print self.day, self.mon

mydate = Date@LQLiiiE\\ |
mydate . printdate ({) Magic first arguments:

__init__ defined w/ 3 args; called w/ 2;
15 Jan printdate defined w/ | arg; called w/ 0.
mydate passed in both cases, so function

knows on which object it is to act.

Class Declarations - Summary

The class statement defines a new class

Inside the class (note the colon and indentation), the special
name __init__ is the class constructor — called whenever a new
instance of the class is created, to initialize it

The special name “self” means the current object of that class
Variables named self.something are instance variables of the class

Every instance of the class will have all instance variables defined
in the constructor

E.g., this class has instance variables “day” and “mon”. (Spelling it
out as “month” is better, I'm just saving space on the slides...)

More features of our class

All functions in a class start with “self’ as an argument

e printdate(self) is a straightforward function
e [t prints the object’s day and month

e __init__ is a special function that is run whenever an object of this
class is created

e We use it to give the new object its values

e Almost all classes will want an init function

A fancier date class

class date (object):
def __init__(self, day, month)
self .myday = day
self .mymonth = month
def printUS(self)
print self.mymonth, self.myday
def printUK(self)

print self.myday, self.mymonth

mydate = date(15,"January")
mydate.printUK ()

15 January

mydate .printUS()

January 15

Adding a number to a date

e We would like a function on our date class that allows us to add a
number to a date

e This is fairly tricky; we'll build it in stages

e Rules:

— Try adding the number to the day

— If this goes past the end of a month, advance to the next month
— lgnore the leap year problem

Practice problem 1

e Create and fill up a dictionary:

— Key is name of month
— Entry is number of days in month

Practice problem 2

e Write a function nextmonth ()
e Argument: name of a month

e Return value: name of the next month

— If it receives “July” it should return “August”
— If it receives “December” it should return “January”

e You can do this with a big if statement, but there are easier ways

e (Hint: make a list of months with an extra “January” at the end)

Practice Problem 3

* Copy the class definition into your program file
* Add a new class function add(self, numdays)

* Its net effect should be to change the Date object appropriately
(not, e.g., print the new date)

* You may assume that “numdays” is a positive integer.

* Use the dictionary to find the number of days in a month, and
the nextmonth function (if needed) to advance to the next
month

* Note that if the number added is large, you may need to advance
more than one month. (Hint: try a while loop...)

Use your new date class

e Create an object of your date class, containing a date:
e birthday = date(6, "July")

e Try adding various numbers to it:

birthday.printUS()
July 6
birthday.add(8)
birthday.printUS()
July 14
birthday.add(30)
birthday.printUS()
August 13

Practice: Step | solution

daysinmonth = {

"Jan
"Feb"
"Mar"
"Apr
"May
"Jun
"Jul"
"Aug"
"Sep
"Oct"
"Nov
"Dec

: 31,
:28,
: 31,
: 30,
: 31,
: 30,
: 31,
: 31,
: 30,
: 31,
: 30,
: 31

Practice: step 2 solution

It could also be done with 12 if statements
but in general, simpler is better

def nextmonth(thismonth):
monthlist = ["Jan","Feb", "Mar",
"Apr", "May", "Jun",
"Jul", "Aug", "Sep",
"Oct", "Nov", "Dec",

" Janll]
for index in range(len(monthlist)) :
if (monthlist[index] == thismonth)

return monthlist[index + 1]
print "Illegal month", thismonth
alt: return monthlist[monthlist.index(thismonth)+1]

Q: What'’s returned if illegal?

Practice step 2, alternate solution A

use a dictionary to hold the
“next month” mapping

def nextmonth(thismonth):
nextmonthdict = {

n Jan n : n Feb" , n Febll : "Mar n , "May n : "Apr n ,
n Apr n : n May n , n May n : n Jun n , n Jun n : n Jul n ,
IIJulH:HAugH, IIAugII :"Sep", Ilsepll: "Oct",

"Oct":"Nov", "Nov":"Dec", "Dec":"Jan"}
if thismonth in nextmonthdict :

return nextmonthdict[thismonth]
else

print "Illegal month", thismonth

Practice step 2, alternate solution B

A handy nerd trick: “a%$b” (read “a mod b")
means the remainder when a is divided

by b. E.g., (0%12,%12, ..., 11%12) ==

(0,1,...,11), but 12%12 == 0, so Dec + 1 \\
wraps around to Jan again; sweet!

def nextmonth(thismonth):
monthlist = ["Jan","Feb", "Mar",
"Apr","May", "Jun",
"Jul", "Aug", "Sep",
"Oct", "Nov", "Dec"]
for index in range(len(monthlist)) :
if (monthlist[index] == thismonth)
return monthlist[(index + 1) % 12]
print "Illegal month", thismonth

Practice step 3 solution

class Date:
def init (self, day, month)
self.day = day
self.mon = month
def printUS(self)
print self.mon, self.day
def printUK(self)
print self.day, self.mon
def add(self, numdays)
self.day = self.day + numdays
while self.day > daysinmonth[self.mon]
self.day = self.day-daysinmonth[self.mon]
self.mon = nextmonth(self.mon)

Q: where could/should daysinmonth & nextmonth () go!

date.add () changes its argument

Calling mybirthday.add(8) changes mybirthday
Maybe .increment () would be a better name
Perhaps even better: return a new date object:

def addnew(self, numdays)
newmonth = self.mon
newday = self.day + numdays
while newday > daysinmonth[newmonth]
newday = newday - daysinmonth[newmonth]
newmonth = nextmonth(newmonth)
return Date(newday,newmonth) <€<—

Make a new
“Date” object

Using date.addnew()
>>> mybirthday = Date(6,"July")
>>> mybirthday.printUS()

July 6

>>> party = mybirthday.addnew(4)
>>> party.printUS()

July 10
>>> mybirthday.printUS()
July 6

