Genome 559: Introduction to Statistical and Computational Genomics

> Lecture I 5a Multiple Sequence Alignment Larry Ruzzo

> > I

Multiple Alignment: Motivations

Common structure, function, or origin may be only weakly reflected in sequence; multiple comparisons may highlight weak signal

Major uses

represent protein, RNA families represent & identify conserved seq features "whole genome" alignments

Ribosomal Protein LIOE

Q5E940 BOVIN	MPREDRATWKSNYFLKIIQLLDDYPKCFIYGADNYGSKQMQQIRMSLRGK-AVYLMGKNTMMRKAIRGHLENNPALE	76
RLA0 HUMAN	MPREDRATWKSNYFLKIIQLLDDYPKCFIYGADNYGSKQMQQIRMSLRGK-AVYLMGKNTMMRKAIRGHLENNPALE	76
RLA0 MOUSE	MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76
RLAO RAT	MPREDRATWKSNYFLKIIQLLDDYPKCFIYGADNYGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76
RLAO CHICK	MPREDRATWKSNYFMKIIQLLDDYPKCFVVGADNVGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENNPALE	76
RLA0 RANSY	MPREDRATWKSNYFLKIIQLLDDYPKCFIYGADNYGSKQMQQIRMSLRGK-AVYLMGKNTMMRKAIRGHLENNSALE	76
Q7ZUG3 BRARE	MPREDRATWKSNYFLKIIQLLDDYPKCFIYGADNYGSKQMQTIRLSLRGK-AVYLMGKNTMMRKAIRGHLENNPALE	76
RLA0 ICTPU	MPREDRATWKSNYFLKIIQLLNDYPKCFIYGADNYGSKQMQTIRLSLRGK-AIVLMGKNTMMRKAIRGHLENNPALE	76
RLA0 DROME	MVRENKAAWKAQYFIKVVELFDEFPKCFIVGADNVGSKQMQNIRTSLRGL-AVVLMGKNTMMRKAIRGHLENNPQLE	76
RLA0 DICDI	MSGAG-SKRKKLFIEKATKLFTTYDKMIVAEADFVGSSQLQKIRKSIRGI-GAVLMGKKTMIRKVIRDLADSKPELD	75
Q54LP0 DICDI	MSGAG-SKRKNVFIEKATKLFTTYDKMIVAEADFVGSSQLQKIRKSIRGI-GAVLMGKKTMIRKVIRDLADSKPELD	75
RLA0 ⁻ PLAF8	MAKLSKQQK <mark>K</mark> QMYIEKLSSLIQQ <mark>Y</mark> SKILIVHVDNVGSNQMASVRKSLRGK-ATILMGKNTRIRTALKKNLQAVPQIE	76
RLA0_SULAC	MIGLAVTTTKKIAKWKVDEVAELTEKLKTHKTIIIANIEGFPADKLHEIRKKLRGK-ADIKVTKNNLFNIALKNAGYDTK	79
RLA0 SULTO	MRIMAVITQERKIAKWKIEEVKELEQKLREYHTIIIANIEGFPADKLHDIRKKMRGM-AEIKVTKNTLFGIAAKNAGLDVS	80
RLA0_SULSO	MKRLALALKQRKVASW <mark>K</mark> LEEVKELT <mark>ELIKNSNTILIGNLEGFP</mark> ADKLHEI <mark>R</mark> KKL <mark>RG</mark> K-ATIKVTKNTLFKIAAKNAGIDIE	80
RLA0 AERPE	MSVVSLVGQMYKREK <mark>PIP</mark> EWKTLMLRELEELFSKHRVVLFADLTGTPTFVVQRVRKKLWKK-YPMMVAKKRIILRAMKAAGLELDDN	86
RLA0_PYRAE	-MMLAIGKRRYVRTRQ <mark>YP</mark> ARKVKIVSEATELLQKYPYVFLFDLHGLS <mark>S</mark> RILHEYRYRLRRY-GVIKIIKPTLFKIAFTKVYGGIPAE	85
RLA0 METAC	MAEERHHTEHIPQWKKDEIENIKELIQSHKVFGMVGIEGILATKMQKIRRDLKDV-AVLKVSRNTLTERALNQLGETIP	78
RLA0 METMA	MAEERHHTEHIPQWKKDEIENIKELIQSHKVFGMVRIEGILATKIQKIRRDLKDV-AVLKVSRNTLTERALNQLGESIP	78
RLA0_ARCFU	MAAVR <mark>G</mark> S PPEYK VRAVEEIKRMISSK <mark>P</mark> VVAIVSFRNV <mark>P</mark> A <mark>GQMQ</mark> KI <mark>R</mark> REF <mark>RG</mark> K-AEIKVVKNTLLERALDALGGDYL	75
RLA0_METKA	MAVKAK <mark>GQPP</mark> SGYE <mark>P</mark> KVAEWKRREVKELKELMDEYENVGLVDLEGIPAPQLQEIRAKLRERDTIIRMSRNTLMRIALEEKLDER <mark>P</mark> ELE	88
RLA0_METTH	MAHVAEWKKKEVQELHDLIK <mark>GY</mark> EVV <mark>G</mark> IANLADI <mark>P</mark> ARQL <mark>Q</mark> KM <mark>R</mark> QTL <mark>R</mark> DS-ALI <mark>RMS</mark> KKTLISLALEKAGRELENVD	74
RLA0 METTL	MITAESEHKIAPWKIEEVNKLKELLKNGQIVALVDMMEVPARQLQEIRDKIR-GTMTLKMSRNTLIERAIKEVAEETGNPEFA	82
RLA0_METVA	––––––MIDAKSEHKIAPWKIEEVNALKELLKSANVIALIDMMEVPAVQLQEIRDKIR–DQMTLKMSRNTLIKRAVEEVAEETGNPEFA	82
RLA0_METJA	METKVKAHVA <mark>PWK</mark> IEEVKTLK <mark>GLIKSKPVVAIVDMMDVPAPQLQ</mark> EIRDKIR-DKVKLRMSRNTLIIRALKEAAEELNNPKLA	81
RLA0_PYRAB	MAHVAEWKKKEVEELANLIKSYPVIALVDVSSMPAYPLSQMRRLIROGLLRVSRNTLIELAIKKAAQELGKPELE	77
RLA0_PYRHO	MAHVAEWKKKEVEELAKLIKSYPVIALVDVSSMPAYPLSQMRRLIROGLLRVSRNTLIELAIKKAAKELGKPELE	77
RLA0_PYRFU	MAHVAEWKKKEVEELANLIKSYPVVALVDVSSMPAYPLSQMRRLIRENNGLLRVSRNTLIELAIKKVAQELGKPELE	77
RLA0_PYRKO	MAHVAEWKKKEVEELANIIKSYPVIALVDVAGVPAYPLSKMRDKLR-GKALLRVSRNTLIELAIKRAAQELGQPELE	76
RLA0_HALMA	MSAESERKTET I <mark>P</mark> EWKQEEVDAIVEMIESYESVGVVNIAGIPSRQLQDMRRDLHGT-AELRVSRNTLLERALDDVDDGLE	79
RLA0_HALVO	MSESEVRQTEVI <mark>P</mark> QWKREEVDELVDFIESYESVGVVGVAGIPSRQLQSMRRELHGS-AAVRMSRNTLVNRALDEVNDGFE	79
RLA0_HALSA	MSAEEQRTTEEVPEWKRQEVAELVDLLETYDSVGVVNVTGIPSKQLQDMRRGLHGQ-AALRMSRNTLLVRALEEAGDGLD	79
RLA0_THEAC	MKEVSQQKKELVNEITQRIKASRSVAIVDIAGIRIRQIQDIRGKNRGK-INLKVIKKILLFKALENLGDEKLS	72
RLA0_THEVO	MRKIN <mark>P</mark> KKKEIVSELAQDITKSKAVAIVDIKGVRTRQMQDIRAKNRDK-VKIKVVKKTLLFKALDSINDEKLT	72
RLA0_PICTO	MTE <mark>PAQWK</mark> IDFVKNLENE INSRKVAAIVSIKGLRNNEFQKIRNSIRDK-ARIKVSRARLLRLAIENTGKNNIV	72
ruler	$1. \dots . 10 \dots . 20 \dots . 30 \dots . 40 \dots . 50 \dots . 60 \dots . 70 \dots . 80 \dots . 90$	

First 90 Residues, Human to Archaea

Alignment of 7 globins.

Helix	AAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBBCCCCCCCC
HBA_HUMAN	VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHF
HBB_HUMAN	VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTORFFESF
MYG_PHYCA	VLSEGEWQLVLHVWAKVEADVAGHGODILIRLFKSHPETLEKFDRF
GLB3_CHITP	LSADQISTVQASFDKVKGDPVGILYAVFKADPSIMAKFTOF
GLB5_PETMA	PIVDTGSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTPAAOEFFPKF
LGB2_LUPLU	GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAPAAKDLFS-F
GLB1_GLYDI	GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPOMAAVFG-F
Consensus	Ls vaWkv g.L.f.P.F
Helix	DDDDDDDEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
HBA_HUMAN	-DLSHGSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL-
HBB_HUMAN	GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL-
MYG_PHYCA	KHLKTEAEMKASEDLKKHGVTVLTALGAILKKK-GHHEAELKPLAQSHATKH-
GLB3_CHITP	AG-KDLESIKGTAPFETHANRIVGFFSKIIGELPNIEADVNTFVASHKPRG-
GLB5_PETMA	ŘGLTTADQLKKSADVRWHAERIINAVNDAVASMDDTEKMSMKLRDLSGKHAKSF-
LGB2_LUPLU	LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-
GLB1_GLYDI	SGASDPGVAALGAKVLAQIGVAVSHLGDEGKMVAQMKAVGVRHKGYGN
Consensus	. t v Hg kv. a a l d . a l. l H .
Helix	FFGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
HBA_HUMAN	-RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR
HBB_HUMAN	-HVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH
MYG_PHYCA	-KIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
GLB3_CHITP	VTHDQLNNFRAGFVSYMKAHTDFA-GAEAAWGATLDTFFGMIFSKM
GLB5_PETMA	-QVDPQYFKVLAAVIADTVAAGDAGFEKLMSMICILLRSAY
LGB2_LUPLU	VADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA
GLB1_GLYDI	KHIKAQYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLQS
Consensus	v. f l f . aa. k l sky

Human, whale, midge, lamprey, lupin, bloodworm.

A-H mark 8 alpha helices. Consensus line: upper case = 6/7, lower = 4/7, dot=3/7.

Multiple Alignments: Key Issues Scoring: How to evaluate a proposed alignment

Computational demands:

How to do it in reasonable time

Multiple Alignment Scoring

A Key Issue

Varying goals, methods (& controversy)

Ideal is perhaps phylogenetic, position specific, but typically too slow, too many parameters

Most methods assume independence between columns, so you can score them separately (Very inappropriate for RNA alignments, e.g.)

Multiple Alignment Scoring within one column

Two common ways:

- I. Min Entropy if you assume a star phylogeny with long branches, positions in one column are independent and a proper probabilistic model reduces to per-column entropy (akin to last week). Intuitively sensible; favors alignments with less in-column variability
- 2. SP score: <u>Sum of Pairs</u> E.g., use BLOSUM62 score between all pairs of sequences

It is not theoretically justifiable, but is easy, not terrible

Optimal SP Alignment via DP

k sequences of length n

 $(n+1) \times (n+1) \times \cdots \times (n+1)$ k-dim array

Max of 2^{k} -I neighbors per cell; $(n+I)^{k}$ cells

Time: at least (2n)^k Want n, k 10's to 100's

Unlikely to do dramatically better – it's "NP-hard" Wang & Jiang, '94 E.g., n = 100 10^{6} ops/sec <u>k</u> Time 2 40 ms 3 8 sec 4 .5 hr 5 100 hrs 6 2 years Common Heuristic: Progressive Alignment

Pick a "guide tree"

phylogeny is ideal, but expensive

quicker alternative: get pairwise alignment scores, convert to distances, use, e.g., "neighbor joining"

Work up tree, leaves to root, doing pairwise alignments

(Many implementations, many variants, e.g. ClustalW)

Aligning Alignments

Except at leaves, progressive alignment is aligning two alignments or a sequence to an alignment Key in pairwise alignment is scoring "x aligns with y" Now x, y are *columns* in the input alignments. Score? Convenience of SP score is that you just score each letter in x vs each letter in y, say via BLOSUM62 Usual issues with gaps Now run usual pairwise DP alignment at each step

Progressive Alignment

BLOSUM 62

	Α	R	Ν	D	С	Q	Е	G	Н	Ι	L	Κ	Μ	F	Ρ	S	Т	W	Υ	V
Α	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-1	-2	-1	1	0	-3	-2	0
R	-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2	-3
Ν	-2	0	6	1	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2	-3
D	-2	-2	1	6	-3	0	2	-1	-1	-3	-4	-1	-3	-3	-1	0	-1	-4	-3	-3
С	0	-3	-3	-3	9	-3	-4	-3	-3	-1	-1	-3	-1	-2	-3	-1	-1	-2	-2	-1
Q	-1	1	0	0	-3	5	2	-2	0	-3	-2	1	0	-3	-1	0	-1	-2	-1	-2
Е	-1	0	0	2	-4	2	5	-2	0	-3	-3	1	-2	-3	-1	0	-1	-3	-2	-2
G	0	-2	0	-1	-3	-2	-2	6	-2	-4	-4	-2	-3	-3	-2	0	-2	-2	-3	-3
н	-2	0	1	-1	-3	0	0	-2	8	-3	-3	-1	-2	-1	-2	-1	-2	-2	2	-3
Ι	-1	-3	-3	-3	-1	-3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4	-2	2	0	-3	-2	-1	-2	-1	1
К	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5	-1	-3	-1	0	-1	-3	-2	-2
Μ	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	0	-2	-1	-1	-1	-1	1
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6	-4	-2	-2	1	3	-1
Ρ	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	-1	-1	-4	-3	-2
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4	1	-3	-2	-2
Т	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5	-2	-2	0
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11	2	-3
Υ	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	-1
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4

Summary

Very important problem

Scoring is very difficult to get right

Fast, exact solutions appear impossible (even with simple scoring schemes)

Many heuristics have been tried

Useful methods like ClustalW are available

Still an open field

e.g., "genome scale" and RNA especially challenging

Iterative Pairwise Alignment (More Detail)

align some pair

while not done

Pick an unaligned string "near" some aligned one(s) Align with the profile of the previously aligned group Resulting new spaces inserted in all

Many variants

Summarizing a Multiple Alignment

A *profile* of a multiple alignment gives letter frequencies per column

		col I	col 2	col 3
a b a	а	50%	25%	50%
a b -	b	0%	75%	0%
- b a	С	25%	0%	0%
c a -	_	25%	0%	50%

Alternatively, use log likelihood ratios

$$p_i(a) = fraction of a's in col i$$

 $p(a) = fraction of a's overall log $p_i(a)/p(a)$$

Aligning to a Phylogenetic Tree

Given a tree with a sequence at each leaf, assign labels to internal nodes so as to

minimize $\Sigma_{\text{edges (i,j)}} D(S_i,S_j)$

[Note: NOT SP score]

Also NP-Complete

Poly time approximation within 2 x possible; better with more time (PTAS)

Multiple Sequence Alignment

Defn: An *alignment* of $S_1, S_2, ..., S_k$, is a set of strings $S'_1, S'_2, ..., S'_k$, (with spaces) s.t. (1) $|S'_1| = |S'_2| = ... = |S'_k|$, and (2) removing all spaces leaves $S_1, S_2, ..., S_k$ a c b c d b a c - - b c d b c a d b d - c a d b - d a c a b c d a c a - b c d -

Multiple Alignment Scoring

Varying goals

Varying methods (& controversy)

3 examples:

Consensus string; sum distances to it Align to (evolutionary) tree; sum edges SP score: Sum of <u>Pairs</u>

NP-Complete Problems

- A problem X is NP-Complete if
- (I) it's in NP, and
- (2) a poly time algorithm for X would give a poly time algorithm for *all* problems in NP
- Thousands known; superficially very different
- algebra, geometry, cs, bio, ...

Smart Money betting against P = NP