Genome 559:
 Introduction to Statistical and Computational Genomics

Lecturel5a
Multiple Sequence Alignment
Larry Ruzzo

Multiple Alignment: Motivations

Common structure, function, or origin may be only weakly reflected in sequence; multiple comparisons may highlight weak signal
Major uses
represent protein, RNA families
represent \& identify conserved seq features
"whole genome" alignments

Ribosomal Protein LIOE

Abstract

Q5E940_BOVIN ----------MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENN--PALE RLAO-HUMAN RLAO-MOUSE RL馬0 RAT RLA0_CHICK RLAO RANSY Q7ZUG3 BRARE RLA0_ICTPU RLA0 ${ }^{-}$DROME RLA0 DICDI Q54LP0 ${ }^{-}$DICDI RLA0-PLAF8 RLA0 SULAC RLA0 SULTO RLAO-SULSO RLAO AERPE RLA0 PYRAE RLAO ${ }^{-}$METAC RLAO-METMA RLA0 ARCFU RLAO-METKA RLAO METTH RLA0 METTL RLAO ${ }^{-}$METVA RLAO METJA RLA0 PYRAB RLAO_PYRHO RLA0-PYRFU RLA0 PYRKO RLA0 ${ }^{-}$HALMA RLAO_HALVO RLAO HALSA RLA0 ${ }^{-}$THEAC RLAO-THEVO RLAO PICTO ruler \qquad ---------MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMS LRGK-AVVLMGKNTMMRKAIRGHLENN--PALE-----------MSGAG-SKRKNVFIEKATKLFTTYDKMIVAEADFVGSSQLQKIRKS IRGI-GAVLMGKKTMIRKVIRDLADSK--PELD$---------M A K L S K Q Q K K Q M Y I E K L S S L I Q Q Y S K I L I V H V D N V G S N Q M A S V R K S L R G K-A T I L M G K N T R I R T A L K K N L Q A V--P Q I E$-----MIGLAVTTTKKIAKWKVDEVAELTEKLKTHKTIIIANIEGFPADKLHE IRKKLRGK-ADIKVTKNNLFNIALKNAG-----YDTK$----M R I M A V I T Q E R K I A K W K I E E V K E L E Q K L R E Y H T I I I A N I E G F P A D K L H D I R K K M R G M-A E I K V T K N T L F G I A A K N A G-----L D V S$$---M K R L A L A L K Q R K V A S W K L E E V K E L T E L I K N S N T I L I G N L E G F P A D K L H E I R K K L R G K-A T I K V T K N T L F K I A A K N A G-----I D I E ~$MSVVSLVGQMYKREKPIPEWKTLMLRELEELFSKHRVVLFADLTGTPTFVVQRVRKKLWKK-YPMMVAKKRIILRAMKAAGLE---LDDN-MMLAIGKRRYVRTRQYPARKVKIVSEATELLQKYPYVFLFDLHGLSSRILHEYRYRLRRY-GVIKIIKPTLFKIAFTKVYGG---IPAE------MAEERHHT EHIPQWKKDE IENIKELIQSHKVFGMVGIEGILATKMQKIRRDLKDV-AVLKVSRNTLTERALNQLG-----ETIP- - - - - -MAEERHHT EHIPQWKKDEIENIKELIQSHKVFGMVRIEGILATKIQKIRRDLKDV-AVLKVSRNTLTERALNQLG-----ESIP------MAAVRGS---PPEYKVRAVEEIKRMISSKPVVAIVSFRNVPAGQMQKIRREFRGK-AEIKVVKNTLLERALDALG-----GDYLMAVKAKGQPPSGYEPKVAEWKRREVKELKELMDEYENVGLVDLEGIPAPQLQEIRAKLRERDTIIRMSRNTLMRIALEEKLDER--PELE-------------MAHVAEWKKKEVQELHDLIKGYEVVGIANLADIPARQLQKMRQTLRDS-ALIRMSKKTLISLALEKAGREL--ENVD- - - - - - MITAESE HKIAPWKIEEVNKLKELLKNGQIVALVDMMEVPARQLQEIRDKIR-GTMTLKMSRNTLIERAIKEVAEETGNPEFA-------MIDAKSE HKIAPWKIE EVNALKELLKSANVIAL IDMMEVPAVQLQEIRDKIR-DQMTLKMSRNTLIKRAVEEVAEETGNPEFA--------METKVKAHVAPWKIEEVKTLKGLIKSKPVVAIVDMMDVPAPQLQEIRDKIR-DKVKLRMSRNTLIIRALKEAAEELNNPKLA-------------MAHVAEWKKKEVEELANLIKSYPVIALVDVSSMPAYPLSQMRRLIRENGGLLRVSRNTLIELAIKKAAQELGKPELE-------------MAHVAEWKKKEVEELAKLIKSYPVIALVDVSSMPAYPLSQMRRLIRENGGLLRVSRNTLIELAIKKAAKELGKPELE-------------MAHVAEWKKKEVEELANLIKSYPVVALVDVSSMPAYPLSQMRRLIRENNGLLRVSRNTLIE LAIKKVAQE LGKPELE-------------MAHVAEWKKKEVEELANIIKSYPVIALVDVAGVPAYPLSKMRDKLR-GKALLRVSRNTLIELAIKRAAQELGQPELE-----MSAESERKTETIPEWKQEEVDAIVEMIESYESVGVVNIAGIPSRQLQDMRRDLHGT-AELRVSRNTLLERALDDVD-----DGLE$----M S E S E V R Q T E V I P Q W K R E E V D E L V D F I E S Y E S V G V V G V A G I P S R Q L Q S M R R E L H G S-A A V R M S R N T L V N R A L D E V N-----D G F E ~$-----MSAEEQRTTEEVPEWKRQEVAELVDLLETYDSVGVVNVTGIPSKQLQDMRRGLHGQ-AALRMSRNTLLVRALEEAG-----DGLD$-------------M K E V S Q Q K K E L V N E I T Q R I K A S R S V A I V D T A G I R T R Q I Q D I R G K N R G K-I N L K V I K K T L L F K A L E N L G D----E K L S$$-----------M R K I N P K K K E I V S E L A Q D I T K S K A V A I V D I K G V R T R Q M Q D I R A K N R D K-V K I K V V K K T L L F K A L D S I N D----E K L T$ -------------MTEPAQWKIDFVKNLENE INSRKVAAIVS IKGLRNNEFOKIRNS IRDK-ARIKVSRARLLRLAIENTGK----NNTV 1. 10 20 30 40 50 50 . .60 KVSRA 70

First 90 Residues, Human to Archaea

Alignment of 7 globins.

Helix
HBA_HUMAN HBB_HUMAN MYG_PHYCA GLB3_CHITP GLB5_PETMA LGB2_LUPLU GLB1_GLYDI Consensus

AAAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBCCCCCCCCCCC ---------VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF ---------VHLTPEEKSAVTALWGKV----NVDEVGGEALGRLLVVYPWTQRFFESF ---------VLSEGEWQLVLHVWAKVEA--DVAGHGQDILIRLFKSHPETLEKFDRF -----------LSADQISTVQASFDKVKG------DPVGILYAVFKADPSIMAKFTQF PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKF -------GALTESQAALVKSSWEEFNA--NIPKHTHRFFILVLEIAPAAKDLFS-F ---------GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F Ls... v a W kv . . g . L. . f . P . F F

DDDDDDDEEEEEEEEEEEEEEEEEEEEE
FFFFFFFFFFFF -DLS-----HGSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL-GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKL-KHLKTEAEMKASEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAQSHATKH-AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG-K̈GLTTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF-LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-SG----AS---DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGN GLB1_GLYDI Consensus
t .. . v..Hg kv. a a...l d . a 1.1 H

Helix

HBA_HUMAN
HBB__HUMAN
MYG_PHYCA GLB3_CHITP GLB5_PETMA LGB2_LUPLU GLB1_GLYDI Consensus

FFGGGGGGGGGGGGGGGGGGG
HHHHHHHHHHHHHHHHHHHHHHHHHH -RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR-------HVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH-------KIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG --VTHDQLNNFRAGFVSYMKAHT--DFA-GAEAAWGATLDTFFGMIFSKM-...-. -QVDPQYFKVLAAVIADTVAAG--------- DAGFEKLMSMICILLRSAY-...-. --VADAHFPVVKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA---KHIKAQYFEPLGASLLSAMEHRIGGKMNAAAKDAWAAAYADISGALISGLQS----v.

Human, whale, midge, lamprey, lupin, bloodworm.
A-H mark 8 alpha helices. Consensus line: upper case $=6 / 7$, lower $=4 / 7$, dot $=3 / 7$.

Multiple Alignments: Key Issues

Scoring:
How to evaluate a proposed alignment

Computational demands:
How to do it in reasonable time

Multiple Alignment Scoring

A Key Issue
Varying goals, methods (\& controversy)
Ideal is perhaps phylogenetic, position specific, but typically too slow, too many parameters

Most methods assume independence between columns, so you can score them separately
(Very inappropriate for RNA alignments, e.g.)

Multiple Alignment Scoring within one column

Two common ways:
I. Min Entropy - if you assume a star phylogeny with long branches, positions in one column are independent and a proper probabilistic model reduces to per-column entropy (akin to last week). Intuitively sensible; favors alignments with less in-column variability
2. SP score: $\underline{\text { Sum of }} \underline{\text { Pairs }}$
E.g., use BLOSUM62 score
abcde ac-de
xccxd

$$
\Sigma_{i<j} D\left(S_{i}, S_{j}\right)
$$ between all pairs of sequences

It is not theoretically justifiable, but is easy, not terrible

Optimal SP
 Alignment via DP

k sequences of length n

$(n+I) \times(n+I) \times \cdots \times(n+I) k$-dim array
Max of $2^{k}-1$ neighbors per cell; $(n+1)^{k}$ cells
Time: at least $(2 n)^{k}$
Want n, k 10's to I00's
Unlikely to do dramatically better it's "NP-hard"

Wang \& Jiang, '94

E.g., $\mathrm{n}=100$ $10^{6} \mathrm{ops} / \mathrm{sec}$ k	
2	Time
2	40 ms
3	8 sec
4	.5 hr
5	100 hrs
6	2 years

Common Heuristic: Progressive Alignment

Pick a "guide tree"
phylogeny is ideal, but expensive
quicker alternative: get pairwise alignment scores, convert to distances, use, e.g., "neighbor joining"
Work up tree, leaves to root, doing pairwise alignments
(Many implementations, many variants, e.g. ClustalW)

Aligning Alignments

Except at leaves, progressive alignment is aligning two alignments or a sequence to an alignment Key in pairwise alignment is scoring " x aligns with y "
Now x, y are columns in the input alignments. Score?
Convenience of SP score is that you just score each letter in x vs each letter in y, say via BLOSUM62
Usual issues with gaps
Now run usual pairwise DP alignment at each step

Progressive Alignment

input steps 1\&2 steps $3 \& 4$
step 5 nonprogessive

BLOSUM 62

| | \mathbf{A} | \mathbf{R} | \mathbf{N} | \mathbf{D} | \mathbf{C} | \mathbf{Q} | \mathbf{E} | \mathbf{G} | \mathbf{H} | \mathbf{I} | \mathbf{L} | \mathbf{K} | \mathbf{M} | \mathbf{F} | \mathbf{P} | \mathbf{S} | \mathbf{T} | \mathbf{W} | \mathbf{Y} | \mathbf{V} |
| :--- | ---: |
| \mathbf{A} | $\mathbf{4}$ | -1 | -2 | -2 | 0 | -1 | -1 | 0 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | 0 | -3 | -2 | 0 |
| \mathbf{R} | -1 | $\mathbf{5}$ | 0 | -2 | -3 | 1 | 0 | -2 | 0 | -3 | -2 | 2 | -1 | -3 | -2 | -1 | -1 | -3 | -2 | -3 |
| \mathbf{N} | -2 | 0 | $\mathbf{6}$ | 1 | -3 | 0 | 0 | 0 | 1 | -3 | -3 | 0 | -2 | -3 | -2 | 1 | 0 | -4 | -2 | -3 |
| \mathbf{D} | -2 | -2 | 1 | $\mathbf{6}$ | -3 | 0 | 2 | -1 | -1 | -3 | -4 | -1 | -3 | -3 | -1 | 0 | -1 | -4 | -3 | -3 |
| \mathbf{C} | 0 | -3 | -3 | -3 | $\mathbf{9}$ | -3 | -4 | -3 | -3 | -1 | -1 | -3 | -1 | -2 | -3 | -1 | -1 | -2 | -2 | -1 |
| \mathbf{Q} | -1 | 1 | 0 | 0 | -3 | $\mathbf{5}$ | $\mathbf{2}$ | -2 | 0 | -3 | -2 | 1 | 0 | -3 | -1 | 0 | -1 | -2 | -1 | -2 |
| \mathbf{E} | -1 | 0 | 0 | $\mathbf{2}$ | -4 | 2 | $\mathbf{5}$ | -2 | 0 | -3 | -3 | 1 | -2 | -3 | -1 | 0 | -1 | -3 | -2 | -2 |
| \mathbf{G} | 0 | -2 | 0 | -1 | -3 | -2 | -2 | $\mathbf{6}$ | -2 | -4 | -4 | -2 | -3 | -3 | -2 | 0 | -2 | -2 | -3 | -3 |
| \mathbf{H} | -2 | 0 | 1 | -1 | -3 | 0 | 0 | -2 | $\mathbf{8}$ | -3 | -3 | -1 | -2 | -1 | -2 | -1 | -2 | -2 | $\mathbf{2}$ | -3 |
| \mathbf{I} | -1 | -3 | -3 | -3 | -1 | -3 | -3 | -4 | -3 | $\mathbf{4}$ | $\mathbf{2}$ | -3 | 1 | 0 | -3 | -2 | -1 | -3 | -1 | 3 |
| \mathbf{L} | -1 | -2 | -3 | -4 | -1 | -2 | -3 | -4 | -3 | 2 | $\mathbf{4}$ | -2 | 2 | 0 | -3 | -2 | -1 | -2 | -1 | 1 |
| \mathbf{K} | -1 | 2 | 0 | -1 | -3 | 1 | 1 | -2 | -1 | -3 | -2 | $\mathbf{5}$ | -1 | -3 | -1 | 0 | -1 | -3 | -2 | -2 |
| \mathbf{M} | -1 | -1 | -2 | -3 | -1 | 0 | -2 | -3 | -2 | 1 | $\mathbf{2}$ | -1 | $\mathbf{5}$ | 0 | -2 | -1 | -1 | -1 | -1 | 1 |
| \mathbf{F} | -2 | -3 | -3 | -3 | -2 | -3 | -3 | -3 | -1 | 0 | 0 | -3 | 0 | $\mathbf{6}$ | -4 | -2 | -2 | 1 | 3 | -1 |
| \mathbf{P} | -1 | -2 | -2 | -1 | -3 | -1 | -1 | -2 | -2 | -3 | -3 | -1 | -2 | -4 | $\mathbf{7}$ | -1 | -1 | -4 | -3 | -2 |
| \mathbf{S} | 1 | -1 | 1 | 0 | -1 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -2 | -1 | $\mathbf{4}$ | 1 | -3 | -2 | -2 |
| \mathbf{T} | 0 | -1 | 0 | -1 | -1 | -1 | -1 | -2 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | $\mathbf{5}$ | -2 | -2 | 0 |
| \mathbf{W} | -3 | -3 | -4 | -4 | -2 | -2 | -3 | -2 | -2 | -3 | -2 | -3 | -1 | 1 | -4 | -3 | -2 | $\mathbf{1 1}$ | $\mathbf{2}$ | -3 |
| \mathbf{Y} | -2 | -2 | -2 | -3 | -2 | -1 | -2 | -3 | 2 | -1 | -1 | -2 | -1 | 3 | -3 | -2 | -2 | 2 | $\mathbf{7}$ | -1 |
| \mathbf{V} | 0 | -3 | -3 | -3 | -1 | -2 | -2 | -3 | -3 | 3 | 1 | -2 | 1 | -1 | -2 | -2 | 0 | -3 | -1 | $\mathbf{4}$ |

Summary

Very important problem
Scoring is very difficult to get right
Fast, exact solutions appear impossible (even with simple scoring schemes)
Many heuristics have been tried
Useful methods like ClustalW are available
Still an open field
e.g., "genome scale" and RNA especially challenging

Iterative Pairwise Alignment (More Detail)

align some pair
while not done
Pick an unaligned string "near" some aligned one(s)
Align with the profile of the previously aligned group
Resulting new spaces inserted in all
Many variants

Summarizing a Multiple Alignment

A profile of a multiple alignment gives letter frequencies per column

$$
\begin{array}{ccc}
\mathrm{a} & \mathrm{~b} & \mathrm{a} \\
\mathrm{a} & \mathrm{~b} & - \\
- & \mathrm{b} & \mathrm{a} \\
\mathrm{c} & \mathrm{a} & -
\end{array}
$$

	col 1	col 2	col 3
a	50%	25%	50%
b	0%	75%	0%
c	25%	0%	0%
-	25%	0%	50%

Alternatively, use log likelihood ratios

$$
\begin{aligned}
& P_{i}(a)=\text { fraction of a's in col } i \\
& p(a)=\text { fraction of a's overall } \quad \log p_{i}(a) / p(a)
\end{aligned}
$$

Aligning to a Phylogenetic Tree

Given a tree with a sequence at each leaf, assign labels to internal nodes so as to
minimize $\sum_{\text {edges }(\mathrm{i}, \mathrm{j})} \mathrm{D}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}}\right)$
[Note: NOT SP score]
Also NP-Complete
Poly time approximation within $2 \times$ possible; better with more time (PTAS)

Multiple Sequence Alignment

Defn: An alignment of $\mathrm{S}_{\mathrm{l}}, \mathrm{S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}}$, is a set of strings $S^{\prime}, S^{\prime}{ }_{2}, \ldots, S_{k}^{\prime}$, (with spaces) s.t.
(I) $\left|S_{1}^{\prime}\right|=\left|S_{2}^{\prime}\right|=\ldots=\left|S_{k}^{\prime}\right|$, and
(2) removing all spaces leaves $S_{1}, S_{2}, \ldots, S_{k}$

$$
\begin{aligned}
& \text { a c b c d b a c - - b c d b } \\
& c a d b d \quad-c a d b-d- \\
& a \mathrm{c} a \mathrm{~b} \mathrm{c} d \quad \mathrm{~d} c \mathrm{a}-\mathrm{b} \mathrm{c} d-
\end{aligned}
$$

Multiple Alignment Scoring

Varying goals
Varying methods (\& controversy)
3 examples:
Consensus string;
sum distances to it
Align to (evolutionary) tree;
sum edges
SP score:
Sum of Pairs
$\underset{\substack{\text { abde } \\ \text { x.c.de } \\ \text { xccel }}}{ }\rangle \quad \Sigma_{i} D\left(S_{i}, C\right)$

$\left.\begin{array}{c}\begin{array}{c}\text { abcde } \\ \text { ac-de } \\ \text { xccxd }\end{array}\end{array}\right\rangle \quad \sum_{\mathbf{i}<\mathbf{j}} D\left(S_{\mathbf{i}}, S_{\mathbf{j}}\right)$

NP-Complete Problems

A problem X is NP-Complete if
(I) it's in NP, and
(2) a poly time algorithm for X would give a poly time algorithm for all problems in NP
Thousands known; superficially very different

- algebra, geometry, cs, bio, ...

Smart Money betting against $\mathrm{P}=\mathrm{NP}$

