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Today:

Finding protein-coding genes
coding sequence statistics
prokaryotes
mammals

More on classes

More practice



Codons & The Genetic Code

Second Base
U C A G

Phe Ser Tyr Cys U

U Phe Ser Tyr Cys C

Leu Ser Stop Stop A

Leu Ser Stop Trp G

Leu Pro His Arg U

Leu Pro His Arg C
o ¢ Leu Pro GIn Arg A %
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: Alanine

: Arginine

: Asparagine

: Aspartic acid
: Cysteine

: Glutamine

: Glutamic acid
: Glycine

. Histidine

. Isoleucine

: Leucine

: Lysine

: Methionine

: Phenylalanine
: Proline

: Serine

: Threonine

: Tryptophane
: Tyrosine

: Valine



ldea #1: Find Long ORF’s

Reading frame: which of the 3 possible sequences
of triples does the ribosome read!?

Open Reading Frame: No stop codons

In random DNA

average ORF = 64/3 = 21 triplets
300bp ORF once per 36kbp per strand

But average protein ~ 1000bp

So, coding DNA is not random—stops are rare



Scanning for ORFs

UUAAUGUGUCAUUGAUUAAG
AAUUACACAGUAACUAAUAC
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|ldea #2: Codon Frequency,...

Even between stops, coding DNA is not random
In random DNA, Leu:Ala: Tryp =6:4: |
But in real protein, ratios ~6.9:6.5: |

Even more: synonym usage is biased (in a species
dependant way)

Examples known with 90% AT 3™ base
Why!? E.g. efficiency, histone, enhancer, splice interactions,...

More generally: k-th order Markov model

k=5 or 6 is typical, since significant influences spanning codons are
detectable



Markov Models

Can always represent a joint probability distribution

P(X)%;...%,) = P(x)) P(<y | X)) P(X3 | X%3) e (X | XXX 3% 5% )
If each letter only depends on the k previous ones, it’s a “k-th
order Markov model.” E.g., k=3:

P(x) = P(x|) P(x; | ;) P(x3 | X%;) P(X4 | X;X;%3) P(X5 | Xy%3%) ... P(X, | X 3% 0%,.1)

|dea: distant influences fade W

Implementation: count (k+|)-mers; frequency of k+ [+t

letter conditional on previous k is P(-|-) above.
(I's MLE; maybe add pseudocounts, too. Sound familiar...?)



For “gene finding”

Given:

P( - | - ) for known genes, vs
Q( - | -) for background,

again can look at likelihood ratio

P/Q (or log(P/Q))
that given sequence comes from the “gene” model vs
the “background” model.

Overall, “sliding window” = like WMM scoring
Report high scores.



Codon Usage in ®x |74
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Summary

Computational gene prediction exploits
statistical differences between protein coding
genes and other DNA sequence, e.g.

long ORFS
codon-usage- or other baises

Often use k™-order Markov models, k = 6

This works pretty well in prokaryotes



Eukaryotes are harder...

In addition to larger genomes, splicing, alternative
splice-, transcription start- and/or, polyA-sites

“Mammalian transcriptomes are a composed
of a swarming mass of different, overlapping
transcripts...”

Harrow, et al. Identifying protein-coding genes in
genomic sequences. Genome Biol. 2009,10(1):201.
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Summary

Integrate many sources of information

Many tools you've seen:
BLAST, pairwise alignment, multiple alignment, sequence
profiles/weight matrix/Markov/phylogenetic modeling

And extensions:
Hidden Markov models, spliced alignment, ...

Assessment:
purely computational predictions — ~80% accurate on
exons, ~60% on genes (e.g., often extra/missing exons)
So, manual curation still valuable



