Genome 559 Intro to Statistical and Computational Genomics

Lecture 16a: Computational Gene Prediction Larry Ruzzo

Today:

Finding protein-coding genes coding sequence statistics prokaryotes mammals More on classes More practice

Codons & The Genetic Code

		Second Base					
		U	С	Α	G		
First Base	U	Phe	Ser	Tyr	Cys	U	
		Phe	Ser	Tyr	Cys	С	
		Leu	Ser	Stop	Stop	Α	
		Leu	Ser	Stop	Trp	G	
	с	Leu	Pro	His	Arg	U	
		Leu	Pro	His	Arg	С	
		Leu	Pro	Gln	Arg	Α	3S6
		Leu	Pro	Gln	Arg	G	m
	A	lle	Thr	Asn	Ser	U	2
		lle	Thr	Asn	Ser	С	L L L
		lle	Thr	Lys	Arg	Α	
		Met/Start	Thr	Lys	Arg	G	
	G	Val	Ala	Asp	Gly	U	
		Val	Ala	Asp	Gly	С	
		Val	Ala	Glu	Gly	Α	
		Val	Ala	Glu	Gly	G	

Ala	: Alanine
٩rg	: Arginine
\sn	: Asparagine
Asp	: Aspartic acid
Cys	: Cysteine
Gİn	: Glutamine
Glu	: Glutamic acid
Gly	: Glycine
His	: Histidine
le	: Isoleucine
₋eu	: Leucine
_ys	: Lysine
Met	: Methionine
Phe	: Phenylalanine
Pro	: Proline
Ser	: Serine
Γhr	: Threonine
Гrр	: Tryptophane
Гуr	: Tyrosine
/al	: Valine

Idea #1: Find Long ORF's

Reading frame: which of the 3 possible sequences of triples does the ribosome read? Open Reading Frame: No stop codons In random DNA average ORF = 64/3 = 21 triplets 300bp ORF once per 36kbp per strand But average protein ~ 1000bp

So, coding DNA is not random-stops are rare

Scanning for ORFs

Idea #2: Codon Frequency,...

Even between stops, coding DNA is not random

In random DNA, Leu : Ala : Tryp = 6:4:1

But in real protein, ratios ~ 6.9 : 6.5 : 1

Even more: *synonym usage* is biased (in a species dependant way)

Examples known with 90% AT 3rd base

Why? E.g. efficiency, histone, enhancer, splice interactions,...

More generally: k-th order Markov model

k=5 or 6 is typical, since significant influences spanning codons are detectable

Markov Models

Can always represent a joint probability distribution

 $P(x_1x_2...x_n) = P(x_1) P(x_2 | x_1) P(x_3 | x_1x_2) ... P(x_n | x_1x_2...x_{n-3}x_{n-2}x_{n-1})$

If each letter only depends on the k previous ones, it's a "k-th order Markov model." E.g., k=3:

 $P(x) = P(x_1) P(x_2 | x_1) P(x_3 | x_1 x_2) P(x_4 | x_1 x_2 x_3) P(x_5 | x_2 x_3 x_4) \dots P(x_n | x_{n-3} x_{n-2} x_{n-1})$ Idea: distant influences fade Implementation: count (k+1)-mers; frequency of k+1st letter conditional on previous k is P(-|-) above. (It's MLE; maybe add pseudocounts, too. Sound familiar...?)

For "gene finding"

Given:

P(-|-) for known genes, vs

Q(- | -) for background,

again can look at likelihood ratio

P/Q (or log(P/Q))

that given sequence comes from the "gene" model vs the "background" model.

Overall, "sliding window" \approx like WMM scoring Report high scores.

Codon Usage in $\Phi x 174$

Summary

Computational gene prediction exploits statistical differences between protein coding genes and other DNA sequence, e.g. long ORFS codon-usage- or other baises Often use kth-order Markov models, k \approx 6

This works pretty well in prokaryotes

Eukaryotes are harder...

In addition to larger genomes, splicing, alternative splice-, transcription start- and/or, polyA-sites

"Mammalian transcriptomes are a composed of a swarming mass of different, overlapping transcripts..."

Harrow, et al. Identifying protein-coding genes in genomic sequences. Genome Biol. 2009, 10(1):201.

Summary

Integrate many sources of information

Many tools you've seen:

BLAST, pairwise alignment, multiple alignment, sequence profiles/weight matrix/Markov/phylogenetic modeling And extensions:

Hidden Markov models, spliced alignment, ...

Assessment:

purely computational predictions – ~80% accurate on exons, ~60% on genes (e.g., often extra/missing exons) So, manual curation still valuable