
Genome 559
Intro to Statistical and

Computational Genomics

Lecture 16b:
Classes and Objects, Part III

Larry Ruzzo

Outline

Printing more naturally
“Operator Overloading”
Inheritance
Shallow copy/deep copy

Printing Objects

Why is “print” fine for numbers, tuples, etc.

>>> print ("Jan",5)
('Jan', 5)

but funky for class instances?

print mydate
<_ _main_ _.date instance at 0x247468>

Yes, mydate.printUS() works, but seems clunky

A better way to print objects

Actually, “print” doesn’t have special knowledge of how
to print numbers, strings, tuples, ...

It just knows how to print strings, and relies on each
class to have a _ _str_ _() method that returns a
string representing the object.

“<_ _main_ _.date instance at 0x247468>” is the result
of calling the default _ _str_ _() method.

You can write your own, tailored _ _str_ _() method
to give prettier/more useful results

Printing dates

class Date(object):
 def _ _init_ _(self, day, month) :
 self.day = day
 self.mon = month

 def _ _str_ _(self) :
 return ‘%s %s’%(self.mon, self.day)

 add(self, numdays) :
 (etc., as before)

birthday = Date(3,”Sep”)
print “It’s ”, birthday, “. Happy Birthday!”

 It’s Sep 3. Happy Birthday!

Advanced topic:
Allowing the plus sign

Similarly, how come “+” works (but differently)
for numbers and strings and tuples and ..., but
not for dates?

Yes, this works:
“party = mybirthday.addnew(4)”

to add numbers to dates, but this:
“party = mybirthday + 4”

seems so much more natural. Can we do it?

Advanced topic: Overloading “+”

Yes! Again, ‘+’ isn’t as smart as you thought; it calls class-
specific “add” methods (“_ _add_ _()”) to do the real work:

def _ _add_ _(self, numdays) :
 newmon = self.mon
 newday = self.day + numdays
 while newday > daysinmonth[newmon] :
 newday = newday - daysinmonth[newmon]
 newmonth = nextmonth(newmon)
 return Date(newday,newmon)

usage example
mybirthday = Date(6,"Jul")
party = mybirthday + 4 mybirthday._ _add_ _(4)
print mybirthday, party
 Jul 6 Jul 10

Operator overloading

This shows some of the power of classes in Python; we
can make new classes, like Date, behave like built-in ones

Operator overloads involve names with underscores
Common operator overloading methods

_ _init_ _ # object creation
_ _add_ _ # addition (+)
_ _mul_ _ # multiplication (*)
_ _sub_ _ # subtraction (-)
_ _lt_ _ # less than (<)
_ _str_ _ # printing
_ _call_ _ # function calls
... # And more: indexing, slicing, iteration, ...

Try “>>>dir(object)” in Python to see what’s there

Pros and Cons

Good aspects of operator overloading
- Can make classes easier to use

- Uniformity: use your own classes just like built-in ones

Bad aspects:
- Might obfuscate things (overload the + sign to do subtraction...)

- The “implicit” function calls can be confusing to follow at first

Net: an advanced technique you may or may not need

Exceptions: almost all classes will need _ _init_ _ ()
functions, and _ _str_ _() is usually a good idea, too

class Seq(object):
 def print_FASTA(self): ...
class DNA(Seq):
 def digest(self): ...
 def rev_comp(self): ...
class Prot(Seq):
 def digest(self): ...

myseq = DNA(file.readline())
frags = myseq.digest()
myseq.print_FASTA()

A key OO feature; done well, saves much work (done poorly–can be very confusing)

Inheritance:
do the common parts once

Superclass for seqs in general, with
appropriate methods common to all

Separate subclasses for protein vs
DNA sequences, with methods
appropriate to each

myseq is a “DNA” object; doesn’t
have a “print_FASTA” method, but
inherits it from Seq superclass

“Classes”: Summary

Most useful in (but not restricted to) large programs

Classes package together related data plus the functions
(“methods”) appropriate thereto

Method calls automatically find the def of the given name
within their own class, not some other one spelled the same

The relevant object is always passed to the method as its 1st
parameter, called “self” by convention

Method names starting & ending with “_ _” are special,
allowing “operator overloading” and other emulation of
“standard” behavior

Feedback

Please go to WebQ link next to HW6 on class
home page & fill out.

Practice

Definitely try dir(x) for x= some string, some
int, some list, your Date class

More play with Date example, esp. add __str__

Try Seq/DNA/Prot example from 3 slides back.
for prot.digest, just split on “W”, say; DNA, on “AAA”

What should digest return?

do rev, maybe rev_compl

