Genome 559

Hidden Markov Models

Sequence: СTTCATGTGAAAGCAGACGTAAGTCA State path: EEEEEEEEEEEEEEEEEE5 I I I I \| \| l $\log P$

Eddy, Nat. Biotech, 2004

Notes

Probability of a given a state path and output sequence is just product of emission/transition probabilities

If state path is hidden, you need to consider all possible paths (usually exponentially many). E.g., find:

Total probability of a given seq (sum over all paths)
Probability of the most probable single path
"Dynamic programming" algorithms similar to seq alignment can solve these problems relatively quickly

Viterbi: Most probable path

The Viterbi Algorithm

$v_{l}(i)=$ probability of the most probable path emitting $x_{1}, x_{2}, \ldots, x_{i}$ and ending in state l

Initialize:

Viterbi Traceback

Above finds probability of best path
To find the path itself, trace backward to the state k attaining the max at each stage

Viterbi Traceback

Viterbi score:

$$
v_{l}(i+1)=e_{l}\left(x_{i+1}\right) \cdot \max _{k}\left(v_{k}(i) a_{k, l}\right)
$$

Viterbi path ${ }^{R}$:

$$
\operatorname{back}_{l}(i+1)=\arg \max _{k}\left(v_{k}(i) a_{k, l}\right)
$$

An Application: Protein Alignments

x	AAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBCCCCCCCCCCC
HBA_HUMAN	-V LSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFEHF
HBB_HUMAN	VHLTPEEKSAVTALWGKV---NVDEV GGEALGRLLVVYPWTQRFFESF
MYG_PHYCA	-VLSEGEWQLVLHVWAKVEA--DVAGHGQDILIRLFKSHPETLEKFIRF
GLB3_CHITP	LSADQISTVQASFDKVKG-----DPVGILYAVFKADPSIMAKF' QF
GLB5_PETMA	PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFEKF
LGB2_LUPLU	GALTESQAALVKSSWEEF/NA--NIPKH THRFFILVLEIAPAAKDLFS-F
GLB1_GLYDI	-GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-F
Consensus	LS... v a w KV . . G . L. I . P . F F
Helix	DDDDDDDEEEEEEEEEEEEEEEEEEEEE FFFFFFFFFFFF
HBA_HUMAN	-DLS----HGSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKI,-
HBB_HUMAN	GDLSTPDAVMGNPKVKAHGKKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKI,-
MYG_PHYCA	KHLKTEAEMK2, SEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAQSHATKH -
GLB3_CHITP	AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRC;
GLB5_PETMA	K̈GLTTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF-
LGB2_LUPLU	LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSK;-
GLB1_GLYDI	SG----AS--DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGY¢N
Consensus	t .. . v..Hg kv. a a... d . a 1. 1 l H
Helix	FFGGGGGGGGGGGGGGGGGGG нннннннннннннннннннннннннн
HBA_HUMAN	-RVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR------
HBB_HUMAN	-HVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKY\|H------
MYG_PHYCA	-KIPIKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
GLB3_CHITP	--VTHDQLNNFRAGFVSYMKAHT--DFA-GAEAAWGATLDTFFGMIFSKM --..--
GLB5_PETMA	-QVDPQYFKVLAAVIADTVAAd------- DAGFEKLMSMICILL
LGB2_LUPLU	--VADAHFPVVKEAILKTIKEYVGAKWSEEL NSAWTIAYDELAIVIKKEMNDA
GLB1_GLYDI	KHLKAQYFEPLGASLLSAMEHRIGGKMNAAA KDAWAAAYADISGALISGLQS
Consensus	£ 1 f . a . k. . 1 sky

Profile Hmm Structure

Figure 5.2 The transition structure of a profile HMM.
$\mathrm{M} \mathrm{j}: \quad$ Match states (20 emission probabilities)
l : \quad Insert states (Background emission probabilities)
$\mathrm{D}_{\mathrm{j}}: \quad$ Delete states (silent - no emission)

Odds Scores

Lengthnormalized log odds scores, globin model

From DEKM

HMMs in Action: Pfam http://pfam.sanger.ac.uk/

Hand-curated "seed" multiple alignments (domains, not full-length proteins)
Train profile HMM from seed alignment Hand-chosen score threshold(s)
Automatic classification/alignment of all other protein sequences
II912 families in Pfam 24.0, 10/2009
(covers $\sim 75 \%$ of proteins)

HMM Summary

Search
Viterbi - best single path
Forward - sum over all paths
Posterior decoding
Model building
Typically fix architecture (e.g. profile HMM), then Learn parameters - the Baum-Welch Algorithm
Scoring
Odds ratio to background
Excellent tools available (SAM, HMMer, Pfam, ...)
A very widely used tool for biosequence analysis

Hidden Markov Models (HMMs; Claude Shannon, I948)

States:
Paths:
Transitions:
Emissions:
Observed data: emission sequence
Hidden data: state/transition sequence

The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped

Rolls	
Die	FFFLLL
Viterbi	FFFFFFFFFFFFFFF
Rolls	651166453132651245636664631636663162326455236266666625151631
Die	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLLFFFFFFFFF
Viterbi	LLLLLLFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFLLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterb	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLLLFF
Viterbi	LLLLLLLLLLLLFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLL

Figure 3.5

Rolls: Visible data-300 rolls of a die as described above.
Die: Hidden data-which die was actually used for that roll ($F=$ fair, $L=$ loaded). Viterbi: the prediction by the Viterbi algorithm is shown.

Inferring hidden stuff

Joint probability of a given path $\pi \&$ emission sequence x :

$$
P(x, \pi)=a_{0, \pi_{1}} \prod_{i=1}^{n} e_{\pi_{i}}\left(x_{i}\right) \cdot a_{\pi_{i}, \pi_{i+1}}
$$

But π is hidden; what to do? Some alternatives:
Most probable single path

$$
\pi^{*}=\arg \max _{\pi} P(x, \pi)
$$

Sequence of most probable states

$$
\hat{\pi}_{i}=\arg \max _{k} P\left(\pi_{i}=k \mid x\right)
$$

The Viterbi Algorithm: The most probable path

Viterbi finds: $\quad \pi^{*}=\arg \max _{\pi} P(x, \pi)$
Possibly there are 10^{99} paths of prob 10^{-99}
More commonly, one path (+ slight variants) dominate others. (If not, other approaches may be preferable.)
Key problem: exponentially many paths π

Unrolling an HMM

Conceptually, sometimes convenient
Note exponentially many paths

Rolls	
Die	FFFLLL
Viterbi	FFFFFFFFFFFFFFF
Rolls	651166453132651245636664631636663162326455236266666625151631
Die	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLLFFFFFFFFF
Viterbi	LLLLLLFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFLLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterb	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLLLFF
Viterbi	LLLLLLLLLLLLFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLL

Figure 3.5

Rolls: Visible data-300 rolls of a die as described above.
Die: Hidden data-which die was actually used for that roll ($F=$ fair, $L=$ loaded). Viterbi: the prediction by the Viterbi algorithm is shown.

Most probable path \neq Sequence of most probable states

Another example, based on casino dice again
Suppose p(fair \leftrightarrow loaded) transitions are 10^{-99} and roll sequence is IIIII...66666; then fair state is more likely all through I's \& well into the run of 6 's, but eventually loaded wins, and the improbable $\mathrm{F} \rightarrow \mathrm{L}$ transitions make Viterbi $=$ all L .

$$
\begin{aligned}
* & =\text { max prob } \\
\square & =\text { Viterbi }
\end{aligned}
$$

The Forward Algorithm

For each state/time, want total probability of all paths leading to it, with given emissions

$$
\begin{aligned}
f_{k}(i) & \triangleq P\left(x_{1} \ldots x_{i}, \pi_{i}=k\right) \\
f_{l}(i+1) & =e_{l}\left(x_{i+1}\right) \sum_{k} f_{k}(i) a_{k, l} \\
P(x) & =\sum_{\pi} P(x, \pi)=\sum_{k} f_{k}(n) a_{k, 0}
\end{aligned}
$$

The Backward Algorithm

Similar: for each state/time, want total probability of all paths from it, with given emissions, conditional on that state.

$$
\begin{aligned}
b_{k}(i) & \triangleq P\left(x_{i+1} \cdots x_{n} \mid \pi_{i}=k\right) \\
b_{k}(i) & =\sum_{l} a_{k, l} e_{l}\left(x_{i+1}\right) b_{l}(i+1) \\
b_{k}(n) & =a_{k, 0}
\end{aligned}
$$

In state k at step i ?

$$
\begin{aligned}
& P\left(x, \pi_{i}=k\right) \\
& \quad=P\left(x_{1}, \ldots, x_{i}, \pi_{i}=k\right) \cdot P\left(x_{i+1}, \ldots, x_{n} \mid x_{1}, \ldots, x_{i}, \pi_{i}=k\right) \\
& \quad=P\left(x_{1}, \ldots, x_{i}, \pi_{i}=k\right) \cdot P\left(x_{i+1}, \ldots, x_{n} \mid \pi_{i}=k\right) \\
& \quad=f_{k}(i) \cdot b_{k}(i) \\
& P\left(\pi_{i}=k \mid x\right)=\frac{P\left(x, \pi_{i}=k\right)}{P(x)}=\frac{f_{k}(i) \cdot b_{k}(i)}{P(x)}
\end{aligned}
$$

Posterior Decoding,

Alternative 1: what's the most likely state at step i?

$$
\hat{\pi}_{i}=\arg \max _{k} P\left(\pi_{i}=k \mid x\right)
$$

Note: the sequence of most likely states \neq the most likely sequence of states. May not even be legal!

The Occasionally Dishonest Casino

1 fair die, 1 "loaded" die, occasionally swapped

Rolls	
Die	FFFLLL
Viterbi	FFFFFFFFFFFFFFF
Rolls	651166453132651245636664631636663162326455236266666625151631
Die	LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLLFFFFFFFFF
Viterbi	LLLLLLFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFF
Rolls	222555441666566563564324364131513465146353411126414626253356
Die	FFFFFFFFLLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLL
Viterb	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Rolls	366163666466232534413661661163252562462255265252266435353336
Die	LLLLLLLLFF
Viterbi	LLLLLLLLLLLLFF
Rolls	233121625364414432335163243633665562466662632666612355245242
Die	FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFFFF
Viterbi	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLL

Figure 3.5

Rolls: Visible data-300 rolls of a die as described above.
Die: Hidden data-which die was actually used for that roll ($F=$ fair, $L=$ loaded). Viterbi: the prediction by the Viterbi algorithm is shown.

Figure 3.6 The posterior probability of being in the state corresponding to the fair die in the casino example. The x axis shows the number of the roll. The shaded areas show when the roll was generated by the loaded die.

Posterior Decoding, II

Alternative 1: what's most likely state at step i ?

$$
\hat{\pi}_{i}=\arg \max _{k} P\left(\pi_{i}=k \mid x\right)
$$

Alternative 2: given some function $g(k)$ on states, what's its expectation. E.g., what's probability of " + " model in CpG HMM ($g(k)=1$ iff k is " + " state)?

$$
G(i \mid x)=\sum_{k} P\left(\pi_{i}=k \mid x\right) \cdot g(k)
$$

CpG Islands again

Data: 4I human sequences, totaling 60 kbp , including 48 CpG islands of about I kbp each

Viterbi:
Found 46 of 48
plus 121 "false positives"
Posterior Decoding:
same 2 false negatives
plus 236 false positives

Post-process:
46/48
67 false pos

46/48
83 false pos

Post-process: merge within
500; discard < 500

Z-Scores

Figure 5.6 The Z-score calculated from the LL scores (left) and the log-odds (right).

HMM Casino Example

(Excel spreadsheet on web; download \& play...)

HMM Casino Example

(Excel spreadsheet on web; download \& play...)

An HMM (unrolled)

Emissions/sequence positions \longrightarrow

HMMs in Action: Pfam http://pfam.sanger.ac.uk/

Proteins fall into families, both across \& within species
Ex: Globins, GPCRs, Zinc fingers, Leucine zippers,...
Identifying family very useful: suggests function, etc.
So, search \& alignment are both important One very successful approach: profile HMMs

