
Introduction to Python

Genome 559: Introduction to Statistical 
and Computational Genomics

Prof. James H. Thomas



http://www.flos-freeware.ch/notepad2.html

http://www.python.org/download/releases/2.6.4/

If you have your own PC, download and install a 
syntax-highlighting text editor and Python 2.6.4:

If you have your own Mac, download Python 
(same site) and TextWrangler:

http://www.barebones.com/products/TextWrangler/download.html



Why Python?

• Python is
– easy to learn

– relatively fast

– object-oriented

– strongly typed

– widely used

– portable

• C is much faster but 
much harder to use.

• Java is somewhat 
faster and harder to 
use.

• Perl is slower, is as 
easy to use, but is 
not strongly typed.



Getting started on the Mac

• Start a terminal session

• Type “python”

• This should start the Python interpreter 
(often called “IDLE”)

> python

Python 2.6.4 (something something) 

details something something

Type "help", "copyright", "credits" or "license" 

for more information.

>>> print “Hello, world!”

Hello, world!



The interpreter

• Try printing various things
– Leave off the quotation marks.

– Print numbers, letters and combinations.

– Print two things, with a comma between.

– Enter a mathematical formula.

– Leave off the word “print”.

• The interpreter allows you to try things out 
interactively and quickly.

• Use the interpreter to test syntax, or to try 
commands that you’re not sure will work when 
you run your program. 



Your first program

• In your terminal, Ctrl-D out of python.
• Type “pwd” to find your present working directory.
• Open TextWrangler.
• Create a file containing one line: 

print “hello, world!”

• Be sure that you end the line with a carriage return.
• Save the file as “hello.py” in your present working 

directory.
• In your terminal, type “python hello.py”

> python hello.py

hello, world!

Notice that, once you 
save the file with 
“.py” as the 
extension, 
WordWrangler 
automatically colors 
the text according to 
the syntax.



Objects and types

• We use the term object to refer to any entity in a python program.
• Every object has an associated type, which determines the properties 

of the object.
• Python defines six types of built-in objects:

Number 10 or 2.71828

String “hello”

List [1, 17, 44] or [“pickle”, “apple”, “scallop”]

Tuple (4, 5) or (“homework”, “exam”)

Dictionary {“food” : “something you eat”, “lobster” : “an edible arthropod”}

File more later…

• Each type of object has its own properties, which we will learn about in 
the next several weeks.

• It is also possible to define your own types, comprised of combinations 
of the six base types.



Literals and variables

• A variable is simply a name for an object.

• For example, we can assign the name “pi” to the 
Number object 3.14159, as follows:

>>> pi = 3.14159

>>> print pi

3.14159

• When we write out the object directly, it is a literal, 
as opposed to when we refer to it by its variable 
name.



Assignment operator

>>> pi = 3.14159

This means assign the value 3.14159 to the variable pi.
(it does NOT assert that pi equals 3.14159)

>>> pi = 3.14159

>>> pi = -7.2

>>> print pi

-7.2



The “import” command

• Many python functions are available only via 
“packages” that must be imported.

>>> print log(10)

Traceback (most recent call last):

File foo, line 1, in bar

NameError: name 'log' is not defined

>>> import math

>>> print math.log(10)

2.30258509299

>>> print log(10)

Traceback (most recent call last):

File foo, line 1, in bar

print log(10)

NameError: name 'log' is not defined

foo and bar mean 
something-or-

other-goes-here



The command line

• To get information into a program, we can use the 
command line.

• The command line is the text you enter after the 
word “python” when you run a program.

python my-program.py 17

• The zeroth argument is the name of the program file.
• Arguments larger than zero are subsequent elements 

of the command line.

zeroth 

argument

first 

argument



Reading command line arguments

Access in your program like this:

import sys

print sys.argv[0]

print sys.argv[1]

> python my-program.py 17

my-program.py

17

zeroth 

argument

first 

argument

There can be any number of arguments, accessed 
by sequential numbers (sys.argv[2] etc).



Sample problem #1

• Write a program called “print-two-args.py” that reads 
the first two command line arguments after the 
program name, stores their values as variables, and 
then prints them on the same line with a colon 
between. 

• Remember to use the python interpreter for quick 
syntax tests.

> python print-two-args.py hello world

hello : world

Hint – to print multiple things on one line, separate by commas:
>>> print 7, “pickles“

7 pickles



Solution #1

import sys

arg1 = sys.argv[1]

arg2 = sys.argv[2]

print arg1, ":", arg2



Sample problem #2

• Write a program called “add-two-args.py” 
that reads the first two command line 
arguments after the program name, stores 
their values as variables, and then prints their 
sum.

> python add-two-args.py 1 2

3.0

Hint - to read an argument as a number, use the syntax 
num1 = float(sys.argv[1])



Solution #2

import sys

arg1 = float(sys.argv[1])

arg2 = float(sys.argv[2])

print arg1 + arg2



Challenge problems

Write a program called “circle-area.py” that reads the 
first command line argument as the radius of a circle 
and prints the area of the circle.

> python circle-area.py 15.7

774.371173183

Do the same thing but read a second argument as the 
unit type and include the units in your output.

> python circle-area2.py 3.721 cm

43.4979923683 square cm



Reading

• Chapters 1-2 of 
Python for Software 
Design by Downey.



One-minute feedback

Take an index card, write one 
thing that you liked or want more 
explanation for, hand in.


