Genome 559: Introduction to Statistical and Computational Genomics Winter 2010

> Lecture 20a: RNA Function, Search, Discovery

## The Message

Cells make lots of RNA noncoding RNA

Functionally important, functionally diverse, structurally complex

Computational tools needed

Algorithms for alignment, discovery, search, scoring, etc. Blended with knowledge of the biology

#### **RNA**

#### RNA Secondary Structure: RNA makes helices too



Usually single stranded

Central Dogma & Conventional Wisdom: Proteins catalyze & regulate biochemistry









et al., 1998, 2003







#### RNAs of unusual abundance

Still being doscovered. More abundant than 5S rRNA From unknown marine organisms



Weinberg et al., *Natur*e, Dec 2009



Weinberg et al., Nature, Dec 2009

still being discovered



Widespread, deeply conserved, structurally sophisticated, functionally diverse, biologically important uses for ncRNA throughout biology.



Weinberg, et al. Nucl. Acids Res., July 2007 35: 4809-4819.



A: Structure often more important than sequence





#### Motif Description & Inference



Covariation is strong evidence for base pairing

#### A mRNA leader

|     |                     |                                  |                              | P1                     |                                           | 1                           |                           |
|-----|---------------------|----------------------------------|------------------------------|------------------------|-------------------------------------------|-----------------------------|---------------------------|
|     | 05                  | TSS                              |                              | <b>D</b> 2             |                                           | _                           |                           |
|     | -35 -10             |                                  |                              |                        |                                           |                             | KBS Start                 |
| Bsu | TTGCAT . 17. TAAGAT | .40.AAAAC <mark>GAUGUU</mark>    | CCCC <mark>UC</mark> UCCCC   |                        | UGGC.CAAGAG                               | CAUCUG.05.AC                | GAGU.08. <mark>AUG</mark> |
| Bha | TTGTTC.17.TCTTCT    | .17.AUUAC <mark>GAUGUU</mark>    | CCGC <mark>UG . CAG</mark> . | GGGUAGAAG              | . CUGUCAUGAG                              | CAUCUG.06.AC                | GAGG.11.AUG               |
| Oih | TTGAAC.17. TATATT   | .31.UAAAC <mark>GAUGUU</mark>    | CCGCUG.UC.                   | CCAUACUU               | GUUCAUGAG                                 | CAUUAG.06.AC                | GAGU.07.AUG               |
| Bce | TTGCTA.18. TATGCT   | .36.UUAAC <mark>GAUGUU</mark>    | CCGCUG.UAA.                  | UUUAUUAAGACU.          | . UUA . UAAGAG                            | CAUCUG.05.AC                | GAGA.09.AUG               |
| Gka | TTGCCT.17.TATCAT    | .38.AAAAC <mark>GAUGUU</mark>    | CCGC <mark>UG . CAAU</mark>  | GA.AGAGAUC             | AUUG <mark>GCA</mark> UGAA                | CAUCUG.04.AC                | GAGU.08. <mark>AUG</mark> |
| Bcl | TTGTGC.17. TATGAT   | .45.AUUAC <mark>GAUAUU</mark>    | CCGC <mark>UG.CUG</mark> .   | CAGUGU                 | . UGG . CAUGAA                            | UGUCUG.06. <mark>A</mark> G | GAGG.10.AUG               |
| Bac | ATGACA.17.GATAGT    | .35.AUAAC <mark>GAUGUU</mark>    | CCGCUG.CA.A                  | UAAAGAAAGUCUG          | UG.CAAGAG                                 | CAUCUG.05.AC                | GAGU.08.AUG               |
| Lmo | TTTACA.17. TAACCT   | .28.AUAAC <mark>GAUAUU</mark>    | CCGCUU.CAU.                  | UAUUAAU                | . AUG . AAUGAA                            | UGUU <mark>UG.05.</mark> AC | GAGA.07.AUG               |
| Sau | TTGAAA.17. TAACAT   | .23.AUCAC <mark>UAUG</mark> AU   | CCGCUG.CU                    | AUAUAUUUGUCG.          | AGGCAAGAA                                 | CAUAGG.04.AC                | ACCA.09.AUG               |
| Cpe | TTAAAG.18. TAAACT   | .08.GUACC <mark>GGCG</mark> GU   | CCUC <mark>UGUCACA</mark>    | GAG                    | UGUGU <mark>UA</mark> AGAA                | CGUCAA.17.AC                | GAGG.08.AUG               |
| Chy | TTGCAT.17. TATAAT   | .09.UACCAAACGUU                  | CCGCUG.GA                    | CAGGGGC                | UC.CAUGAA                                 | CGUGCC.03.AC                | GAGG.09.AUG               |
| Swo | TTGAGA.17. TAAAAT   | .16.AAAAA <mark>GGUG</mark> GU   | CCGCUG . CAUU                | AAACUAA                | AAUG. UAUGAA                              | CACCUU.05.AC                | GAGG.07.AUG               |
| Ame | TTGCGG.17. TATAAT   | .10.UUACG <mark>GGCC</mark> GU   | CCUCUA.UAC.                  | AGGA                   | . GUA . UAAGAA                            | CGUCUA.07.AC                | GAGG.07.AUG               |
| Dre | TTGCCC.17. TATAAT   | .16.UUACGGACGGU                  | CCGCUG.CCU.                  | CUGGGAA                | . AGG . UAAGAA                            | CGUCUA.04.AC                | GAAG.12.GUG               |
| Spn | TTTACT.17. TAAACT   | .28.AUACA <mark>GUU</mark> UAU   | CCGCUG . AGGA                | AGAU                   | UCCU. CAAGAU                              | JGACAA.04.AC                | GAGA.05.AUG               |
| Smu | TTTACA. 17. TACAAT  | .26.AAACG <mark>GCU</mark> AAU   | CCGCUG.AG                    | ACAGAGCA               | CU.UAUGAU                                 | UAGUAA.04.AC                | GAGA.07.AUG               |
| Lpl | TTGCGT.18. TATTCT   | .21.UUAACGAUGUU                  | CCGCUG.AC                    | CAGGUU                 | GU. CACGAA                                | UGUCGG.04.AG                | GAAG.09.AUG               |
| Efa | TTTACA.17. TAAACT   | .28.AUUACAAUAUU                  | CCGC <mark>UG.UGG</mark> .   | CAGAAG <mark>UG</mark> | A <mark>CCA</mark> . <mark>UA</mark> AGAA | UAUUUG.06.AG                | GAGA.08.AUG               |
| Ljo | TTTACA.17. TAAACT   | . 25 . UUAUG <mark>GGUAUU</mark> | CCGCUG. GCAC                 | AAG                    | GUGUUGAUGAA                               | JGCCGU.03.AG                | GAGA.07.AUG               |
| sth | TAGACA.17.TAAGAT    | . 29. UAACG <mark>GCUAAU</mark>  | CCGCUG.AGA.                  | CACAGAGGUUG            | CUCU.UAAGAU                               | JAGUAA.03.AG                | GAGU.08.AUG               |
| Lac | TTAAAA.17.TTACTT    | . 39. UUAUG <mark>GGUAUU</mark>  | CCGCUG.ACG.                  | CUGGUA                 | . CGUUGAUGAA                              | JGCCGA.03.AC                | GAGA.10.AUG               |
| Spv | TTTACA.17. TAGAAT   | .29.UUACGGCUAAU                  | CCGCUA.AG.                   | ACAAGUA                | CU . UAAGAU                               | JAGUAA.03.AC                | GACA.06.AUG               |
| Lsa | TTTTAA.17.TAAAAT    | .26.ACAACGAUAUU                  | ccccuc.ccc                   | CAAGA                  | .CGUUAAUGAA                               | UAUCUG.06.AC                | GAGA.07.AUG               |
| Lsl | TTTACT. 17. TATTTT  | .24.AUAACGAUAUU                  | CCGCUG.C                     | AACUG                  | GACAUGAA                                  | JGUCGG.04.AC                | GAAA.07.AUG               |
| Fnu | TTGACA.17.TAAAAT    | 12.AAUUCGAUAUU                   | CCGCUU.UAA.                  | UAAA                   | .UUA.AAUGAA                               | UAUCUU.04.AC                | GAAG.02.AUG               |





# Mutual Information $M_{ij} = \sum_{i,j} f_{i,j} \log_2 \frac{f_{i,j}}{f_i f_i}; \quad 0 \le M_{ij} \le 2$

Max when *no* seq conservation but perfect pairing; Expected score gain from modeling i & j as paired. Given columns, finding optimal pairing *without pseudoknots* can be done by dynamic programming



#### **RNA Motif Models**

"Covariance Models" (Eddy & Durbin 1994) aka profile stochastic context-free grammars aka hidden Markov models on steroids
Model position-specific nucleotide preferences and base-pair preferences

Pro: accurate

Con: model building hard, search sloooow

#### **Profile Hmm Structure**



Figure 5.2 The transition structure of a profile HMM.

- M<sub>j</sub>: Match states (20 emission probabilities)
- I: Insert states (Background emission probabilities)
- Dj: Delete states (silent no emission)

#### **CM** Structure

A: Sequence + structureB: the CM "guide tree"C: probabilities of letters/ pairs & of indels

Think of each branch being an HMM emitting both sides of a helix (but 3' side emitted in reverse order)



#### CM Viterbi Alignment (the "inside" algorithm)

 $S_{ii}^{y} = \max_{\pi} \log P(x_{ii} \text{ generated starting in state } y \text{ via path } \pi)$  $S_{ij}^{y} = \begin{cases} \max_{z} [S_{i+1,j-1}^{z} + \log T_{yz} + \log E_{x_{i},x_{j}}^{y}] & \text{match pair} \\ \max_{z} [S_{i+1,j}^{z} + \log T_{yz} + \log E_{x_{i}}^{y}] & \text{match/insert left} \\ \max_{z} [S_{i,j-1}^{z} + \log T_{yz} + \log E_{x_{j}}^{y}] & \text{match/insert right} \\ \max_{z} [S_{i,j}^{z} + \log T_{yz}] & \text{delete} \\ \max_{i < k \le j} [S_{i,k}^{y_{left}} + S_{k+1,j}^{y_{right}}] & \text{bifurcation} \end{cases}$ Time O(qn<sup>3</sup>), q states, seq len n

compare: O(qn) for profile HMM, or pairwise alignment



cytoplasmic tRNA

#### Fast Motif Search

Faster Genome Annotation of Non-coding RNAs Without Loss of Accuracy Weinberg & Ruzzo Recomb '04, ISMB '04, Bioinformatics '06

#### CM's are good, but slow



#### Results: New ncRNA's?

| Name                  | # found<br>BLAST<br>+ CM | # found<br>rigorous filter<br>+ CM | # new |
|-----------------------|--------------------------|------------------------------------|-------|
| Pyrococcus snoRNA     | 57                       | 180                                | 123   |
| Iron response element | 201                      | 322                                | 121   |
| Histone 3' element    | 1004                     | 1106                               | 102   |
| Purine riboswitch     | 69                       | 123                                | 54    |
| Retron msr            | 11                       | 59                                 | 48    |
| Hammerhead I          | 167                      | 193                                | 26    |
| Hammerhead III        | 251                      | 264                                | 13    |
| U4 snRNA              | 283                      | 290                                | 7     |
| S-box                 | 128                      | 131                                | 3     |
| U6 snRNA              | 1462                     | 1464                               | 2     |
| U5 snRNA              | 199                      | 200                                | I     |
| U7 snRNA              | 312                      | 313                                | I     |

#### Motif Discovery In Prokaryotes

(Vertebrates too, but no time today... see, e.g., Torarinsson, et al. Genome Research, Jan 2008)

#### A pipeline for RNA motif genome scans



Yao, Barrick, Weinberg, Neph, Breaker, Tompa and Ruzzo. A Computational Pipeline for High Throughput Discovery of cis-Regulatory Noncoding RNA in Prokaryotes. *PLoS Computational Biology*. 3(7): e126, July 6, 2007.

#### Analysis Pipeline and Processing Times

Input from ~70 complete Firmicute genomes available in late 2005-early 2006, totaling ~200 megabases





Weinberg, et al. Nucl. Acids Res., July 2007 35: 4809-4819.

#### New Riboswitches (all lab-verified)

- SAM IV (S-adenosyl methionine)
- SAH (S-adenosyl homocystein)
- MOCO (Molybdenum Cofactor)
- PreQI II (queuosine precursor)

GEMM (cyclic di-GMP)

# Summary

ncRNA - apparently widespread, much interest Covariance Models - powerful but expensive RaveNnA filtering - search ~100x faster with no/little loss CMfinder - CM-based motif discovery in unaligned sequences Pipelines integrating comp and bio for ncRNA discovery Many vertebrate ncRNAs? *structural*, not seq conservation; functional significance unclear BIG CPU demands...

Still need for further methods development & application

#### Final Exam

Thursday 3/18, 4:30-6:20, this lab

2 parts:

- A. 60-80%: pencil + paper, computers off,
   closed book, but one 8.5x11 sheet of notes
   covers theory and Python both
- B. 40-20%: computers on,2-3 small programming problems

### Course Wrap Up

Modern biology is suddenly very data-rich

Mathematical & computational tools needed

We showed: sequence modeling, alignment & search, phylogeny, linkage mapping, some data bases

Python is a good tool for doing much of this

There's lots more!

Check out, e.g., GENOME 540/1, CSE 527...

### We hope you enjoyed it.

Thanks!