
Strings

Genome 559: Introduction to Statistical
and Computational Genomics

Prof. James H. Thomas

Strings
• A string is a sequence of characters.

• In Python, strings start and end with single or double
quotes (they are equivalent but they have to match).

>>> s = "foo"

>>> print s

foo

>>> s = 'Foo'

>>> print s

Foo

>>> s = "foo'

SyntaxError: EOL while scanning string literal

(EOL means end-of-line)

Defining strings

• Each string is stored in the computer’s
memory as a list (array) of characters.

>>> myString = "GATTACA"

myString

computer memory (7 bytes)

How many bytes are needed to store the human genome? (3 billion nucleotides)

Accessing single characters

• You can access individual characters by using indices in square brackets.

>>> myString = "GATTACA"

>>> myString[0]

'G'

>>> myString[2]

'T'

>>> myString[-1]

'A'

>>> myString[-2]

'C'

>>> myString[7]

Traceback (most recent call last):

File "<stdin>", line 1, in ?

IndexError: string index out of range

Negative indices start at the
end of the string and move left.

Accessing substrings

>>> myString = "GATTACA"

>>> myString[1:3]

'AT'

>>> myString[:3]

'GAT'

>>> myString[4:]

'ACA'

>>> myString[3:5]

'TA'

>>> myString[:]

'GATTACA'

notice that the length of the
returned string [x:y] is y - x

Special characters

• The backslash is used to
introduce a special character.

>>> print "He said "Wow!""

SyntaxError: invalid syntax

>>> print "He said, \"Wow!\""

He said "Wow!"

>>> print "He said:\nWow!"

He said:

Wow!

Escape
sequence

Meaning

\\ Backslash

\’ Single quote

\” Double quote

\n Newline

\t Tab

More string functionality

>>> len("GATTACA")

7

>>> print "GAT" + "TACA"

GATTACA

>>> print "A" * 10

AAAAAAAAAA

>>> "GAT" in "GATTACA"

True

>>> "AGT" in "GATTACA"

False

←Length

←Concatenation

←Repeat

←Substring tests

(you can read this as “is GAT in GATTACA”)

String methods

• In Python, a method is a function that is
defined with respect to a particular object.

• The syntax is:

object.method(arguments)

>>> dna = "ACGT"

>>> dna.find("T")

3 the first position where “T” appears

String methods
>>> s = "GATTACA"

>>> s.find("ATT")

1

>>> s.count("T")

2

>>> s.lower()

'gattaca'

>>> s.upper()

'GATTACA'

>>> s.replace("G", "U")

'UATTACA'

>>> s.replace("C", "U")

'GATTAUA'

>>> s.replace("AT", "**")

'G**TACA'

>>> s.startswith("G")

True

>>> s.startswith("g")

False

Function with two
arguments

Function with no
arguments

Strings are immutable
• Strings cannot be modified; instead, create a

new string from the old one.

>>> s = "GATTACA"

>>> s[0] = "R"

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: 'str' object doesn't support item assignment

>>> s = "R" + s[1:]

>>> s

'RATTACA’

>>> s = s.replace("T","B")

>>> s

'RABBACA'

>>> s = s.replace("ACA", "I")

>>> s

'RABBI'

• String methods do not modify the string;
they return a new string.

>>> seq = "ACGT"

>>> seq.replace("A", "G")

'GCGT'

>>> print seq

ACGT

>>> seq = "ACGT"

>>> new_seq = seq.replace("A", "G")

>>> print new_seq

GCGT

Strings are immutable

String summary

Basic string operations:

S = "AATTGG" # assignment - or use single quotes ' '

s1 + s2 # concatenate

s2 * 3 # repeat string

s2[i] # get character at position 'i'

s2[x:y] # get a substring

len(S) # get length of string

int(S) # turn a string into an integer

float(S) # turn a string into a floating point decimal number

Methods:

S.upper()

S.lower()

S.count(substring)

S.replace(old,new)

S.find(substring)

S.startswith(substring)

S. endswith(substring)

Printing:

print var1,var2,var3 # print multiple variables

print "text",var1,"text" # print a combination of explicit text (strings) and variables

is a special character –
everything after it is a

comment, which the
program will ignore – USE

LIBERALLY!!

Sample problem #1

• Write a program called dna2rna.py that reads a DNA
sequence from the first command line argument and
prints it as an RNA sequence. Make sure it retains
the case of the input.

> python dna2rna.py ACTCAGT

ACUCAGU

> python dna2rna.py actcagt

acucagu

> python dna2rna.py ACTCagt

ACUCagu

Hint: first get it
working just for

uppercase letters.

Two solutions

import sys

seq = sys.argv[1]

new_seq = seq.replace("T", "U")

newer_seq = new_seq.replace("t", "u")

print newer_seq

OR

import sys

print sys.argv[1]

(to be continued)

Two solutions

import sys

seq = sys.argv[1]

new_seq = seq.replace("T", "U")

newer_seq = new_seq.replace("t", "u")

print newer_seq

import sys

print sys.argv[1].replace("T", "U")

(to be continued)

Two solutions

import sys

seq = sys.argv[1]

new_seq = seq.replace("T", "U")

newer_seq = new_seq.replace("t", "u")

print newer_seq

import sys

print sys.argv[1].replace("T", "U").replace("t", "u")

• It is legal (but not always desirable) to chain together
multiple methods on a single line.

Sample problem #2
• Write a program get-codons.py that reads the first command

line argument as a DNA sequence and prints the first three
codons, one per line, in uppercase letters.

> python get-codons.py TTGCAGTCG

TTG

CAG

TCG

> python get-codons.py TTGCAGTCGATC

TTG

CAG

TCG

> python get-codons.py tcgatcgac

TCG

ATC

GAC

(challenge – print the codons on one line separated by spaces)

Solution #2

program to print the first 3 codons from a DNA

sequence given as the first command-line argument

import sys

seq = sys.argv[1] # get first argument

up_seq = seq.upper() # convert to upper case

print up_seq[0:3] # print first 3 characters

print up_seq[3:6] # next 3

print up_seq[6:9] # next 3

These comments are simple, but when you write more complex
programs good comments will make a huge difference in making your
code understandable (both to you and others).

Sample problem #3 (optional)

• Write a program that reads a protein sequence as a
command line argument and prints the location of the
first cysteine residue (C).

> python find-cysteine.py

MNDLSGKTVIITGGARGLGAEAARQAVAAGARVVLADVLDEEGAATARELGDAARYQHLDVTI

EEDWQRVCAYAREEFGSVDGL 70

> python find-cysteine.py

MNDLSGKTVIITGGARGLGAEAARQAVAAGARVVLADVLDEEGAATARELGDAARYQHLDVTI

EEDWQRVVAYAREEFGSVDGL -1

Solution #3

import sys

protein = sys.argv[1]

upper_protein = protein.upper()

print upper_protein.find("C")

Challenge problem
• Write a program get-codons2.py that reads the first

command- line argument as a DNA sequence and the second
argument as the frame, then prints the first three codons
on one line separated by spaces.

> python get-codons2.py TTGCAGTCGAG 0

TTG CAG TCG

> python get-codons2.py TTGCAGTCGAG 1

TGC AGT CGA

> python get-codons2.py TTGCAGTCGAG 2

GCA GTC GAG

import sys

seq = sys.argv[1]

frame = int(sys.argv[2])

seq = seq.upper()

c1 = seq[frame:frame+3]

c2 = seq[frame+3:frame+6]

c2 = seq[frame+6:frame+9]

print c1, c2, c3

Challenge solution

Reading

• Chapter 8 of Python
for Software Design
by Downey.

