Sequence comparison: Score matrices

Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas

Informal inductive proof of best alignment path

Consider the last step in the best alignment path to node α below. This path must come from one of the three nodes shown, where X, Y, and Z are the cumulative scores of the best alignments up to those nodes. We can reach node α by three possible paths: an A-B match, a gap in sequence A or a gap in sequence B:

<u>BUT</u> the best paths to X, Y, and Z are analogously the max of their three upstream possibilities, etc. Inductively QED.

Local alignment

d = -5

		А	A	G
	0	0	0	0
Α	0	2	2	0
G	0	0	0	4
С	0	0	0	0

(no arrow means no preceding alignment)

Local alignment

- Two differences from global alignment:
 - If a score is negative, replace with 0.
 - Traceback from the highest score in the matrix and continue until you reach 0.
- Global alignment algorithm: Needleman-Wunsch.
- Local alignment algorithm: Smith-Waterman.

Protein score matrices

• DNA score matrices are much simpler (and are conceptually similar).

• Quantitatively represent the degree of conservation of typical amino acid residues over evolutionary time.

• All possible amino acid changes are represented (matrix of size at least 20 x 20).

• Most commonly used are several different BLOSUM matrices derived for different degrees of evolutionary divergence.

BLOSUM62 Score Matrix

regular 20 amino acids

BLOSUM Clustered Scoring Matrix in 1/2 Bit Units # #

Cluster Percentage: >= 62

ambiguity codes and stop

																				\neg				
	A	R	Ν	D	С	Q	Е	G	Н	1	L	K	M	F	Ρ	S	Т	W	Y	V	В	Ζ	X	*
A	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-1	-2	-1	1	0	-3	-2	0	-2	-1	0	-4
R	-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2	-3	-1	0	-1	-4
Ν	-2	0	6	1	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2	-3	3	0	-1	-4
D	-2	-2	1	6	-3	0	2	-1	-1	-3	-4	-1	-3	-3	-1	0	-1	-4	-3	-3	4	1	-1	-4
С	0	-3	-3	-3	9	-3	-4	-3	-3	- <mark>1</mark>	-1	-3	-1	-2	-3	-1	-1	<mark>-2</mark>	-2	-1	-3	-3	-2	-4
Q	-1	1	0	0	-3	5	2	-2	0	-3	-2	1	0	-3	<mark>-1</mark>	0	-1	-2	-1	-2	0	3	-1	-4
Е	-1	0	0	2	-4	2	5	-2	0	-3	-3	1	-2	-3	-1	0	-1	-3	-2	-2	1	4	-1	-4
G	0	-2	0	-1	-3	<mark>-2</mark>	-2	6	-2	-4	-4	-2	-3	-3	-2	0	-2	-2	-3	-3	-1	-2	-1	-4
Н	-2	0	1	-1	-3	0	0	-2	8	-3	-3	-1	-2	-1	-2	-1	-2	-2	2	-3	0	0	-1	-4
1	-1	-3	-3	-3	-1	-3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3	-3	-3	-1	-4
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4	-2	2	0	-3	-2	-1	-2	-1	1	-4	-3	-1	-4
K	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5	<mark>-1</mark>	-3	-1	0	-1	-3	-2	-2	0	1	-1	-4
M	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	0	-2	-1	-1	-1	-1	1	-3	-1	-1	-4
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6	-4	-2	-2	1	3	-1	-3	-3	-1	-4
Ρ	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	-1	-1	-4	-3	-2	-2	-1	-2	-4
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4	1	-3	-2	-2	0	0	0	-4
Т	0	-1	0	-1	-1	-1	<mark>-1</mark>	-2	-2	-1	-1	-1	-1	-2	-1	1	5	-2	-2	0	-1	-1	0	-4
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11	2	-3	-4	-3	-2	-4
Y	-2	-2	<mark>-2</mark>	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	-1	-3	-2	-1	-4
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4	-3	-2	-1	-4
В	-2	-1	3	4	-3	0	1	-1	0	-3	-4	0	-3	-3	-2	0	-1	-4	-3	-3	4	1	-1	-4
Ζ	-1	0	0	1	-3	3	4	-2	0	-3	-3	1	-1	-3	-1	0	-1	-3	-2	-2	1	4	-1	-4
X	0	-1	-1	-1	-2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-2	0	0	-2	-1	-1	-1	-1	-1	-4
*	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	-4	1

Amino acid structures Hydrophobic glycine G ĊН-Polar Charged ĊH—CH₃ alanine А M CH₃ SH V valine С cysteine С histidine Н CH CH₃ OH -NH₃ N S L serine ĊH leucine СΗз Κ lysine CH₃ OH isoleucine Т ĊН N Т threonine CH ·NH CH NH₂ arginine R ĊН Ń H₂N Υ tyrosine CH₃ methionine Μ ĊН Ń С -NH-С D aspartate ĊН ĊН proline Ρ Ν asparagine Ń 0- $\rm NH_2$ Е glutamate СН glutamine Q ĊН Ń W tryptophan

phenylalanine

F

CH-C

BLOSUM62 Score Matrix

	A	R	Ν	D	С	Q	E	G	Н	1	L	K	M	F	Ρ	S	Т	W	Y	V
Α	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-1	-2	<mark>-1</mark>	1	0	-3	-2	0
R	-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	<mark>-2</mark>	-1	-1	-3	-2	-3
Ν	-2	0	6	1	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2	-3
D	-2	-2	1	6	-3	0	2)-1	-1	-3	-4	-1	-3	-3	-1	0	-1	-4	-3	-3
С	0	-3	-3	-3	9	-3	-4	-3	-3	-1	-1	-3	-1	-2	-3	-1	-1	-2	<mark>-2</mark>	-1
Q	-1	1	0	0	-3	5	2	-2	0	-3	-2	1	0	-3	-1	0	-1	-2	-1	-2
Е	- <mark>1</mark>	0	0	2	-4	2	5	-2	0	-3	-3	1	-2	-3	-1	0	-1	-3	-2	-2
G	0	-2	0	-1	-3	-2	-2	6	-2	-4	-4	-2	-3	-3	-2	0	-2	-2	-3	-3
Н	-2	0	1	-1	-3	0	0	-2	8	-3	-3	-1	-2	-1	-2	-1	-2	-2	2	-3
1	-1	-3	-3	-3	-1	-3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3
L	-1	-2	-3	-4	-1	<mark>-2</mark>	-3	-4	-3	2	4	-2	2	0	-3	-2	-1	-2	-1	1
Κ	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5	-1	-3	-1	0	-1	-3	-2	-2
Μ	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	0	<mark>-</mark> 2	-1	-1	-1	-1	1
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6	-4	-2	-2	1	3	-1
Ρ	-1	-2	<mark>-2</mark>	-1	-3	-1	-1	-2	<mark>-2</mark>	-3	-3	-1	-2	-4	7	-1	-1	-4	-3	-2
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4	1	-3	-2	-2
Т	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5	-2	-2	0
W	-3	-3	-4	-4	-2	-2	<mark>-3</mark>	-2	-2	<mark>-3</mark>	-2	-3	-1	1	-4	-3	-2	11	2	-3
Υ	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	-1
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4

Good scores chemically similar

Bad scores chemically dissimilar

Amino acid structures

Deriving BLOSUM scores

• Find sets of sequences whose alignment is thought to be correct (this is partly bootstrapped by alignment).

• Measure how often various amino acid <u>pairs</u> occur in the alignments.

• Normalize this to the <u>expected</u> frequency of such pairs randomly in the same set of alignments.

• Derive a log-odds score (often in half bits).

Example of alignment block

31 amino acids (columns) 61 sequences (rows)

- Thousands of such blocks go into computing a single BLOSUM matrix.
- Represent full diversity of sequences.
- Results are summed over all columns of all blocks.

Pair frequency vs. expectation

Actual aligned pair frequency:

 $q_{ij} = \frac{1}{T} \sum c_{ij}$

where c_{ij} is the count of ij pairs and T is the total pair count.

Randomly expected pair frequency:

 $e_{aa} = p_a p_a$

$$e_{ab} = p_a p_b + p_b p_a = 2p_a p_b$$

where p_a and p_b are the overall probabilities (frequencies) of specific residues a and b.

Sample column from a multiple alignment:

4 D-E pairs 4 D-N pairs 1 E-N pair

A multiple alignment of N sequences is the equivalent of all the pairwise alignments, which number (N)(N-1)/2. Log-odds score calculation (so adding scores == multiplying probabilities)

$$s_{ij} = \log_2 \frac{q_{ij}}{e_{ij}}$$

For computational speed often rounded to nearest integer and (to reduce round-off error) they are often multiplied by 2 (or more) first, giving a "half-bit" score:

matrixScore = (rounded)
$$2\log_2 \frac{q_{ij}}{e_{ij}}$$

	Α	R	Ν	D	С	Ø	Ш	G	Н	Ι	L	K	Μ	F	Ρ	S	Т	W	Y	V
Α	4	<mark>-1</mark>	-2	-2	0	-	-1	0	-2	-	-	-1	-	-2	-1	1	0	<mark>-</mark> 3	-2	0
R	-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	<mark>-</mark> 3	-2	-3
Ν	-2	0	6	1	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2	-3
D	-2	-2	1	6	3	0	2	<mark>-</mark>	-1	-3	-4	-1	- <mark>3</mark>	-3	-1	0	-1	-4	-3	-3
С	0	-3	-3	-3	9	-3	-4	-3	-3	-1	<mark>-1</mark>	-3	-1	-2	-3	-1	-1	-2	-2	-1
Q	-1	1	0	0	ŝ	5	2	-2	0	-3	-2	1	0	-3	-1	0	-1	-2	-1	-2
Е	-1	0	0	2	-4	2	5	-2	0	-3	-3	1	-2	-3	-1	0	-1	-3	-2	-2
G	0	-2	0	-1	-3	-2	-2	6	-2	-4	-4	-2	3	-3	-2	0	-2	-2	-3	-3
Н	-2	0	1	-1	-3	0	0	-2	8	-3	-3	-1	-2	-1	-2	-1	-2	-2	2	-3
1	-1	-3	-3	-3	-1	-3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4	-2	2	0	-3	-2	-1	-2	-1	1
ĸ	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5	-1	-3	-1	0	-1	-3	-2	-2
M	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	0	-2	-1	-1	-1	-1	1
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6	-4	-2	-2	1	3	-1
Ρ	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	-1	-1	-4	-3	-2
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4	1	-3	-2	-2
Т	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5	-2	-2	0
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11	2	-3
Υ	-2	-2	-2	-3	-2	-1	-2	<mark>-3</mark>	2	-1	-1	-2	-1	3	-3	-2	<mark>-2</mark>	2	7	-1
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4

BLOSUM62 matrix (half-bit scores)

(9 half-bits = 4.5 bits)

Frequency of C residue over all proteins: 0.0162 (you have to look this up)

Reverse calculation of aligned C-C pair frequency in BLOSUM data set:

 $\begin{array}{lll} {\rm C-C} & \frac{q_{cc}}{e_{cc}} = 2^{(4.5)} = 22.63 & e_{cc} = 0.0162 * 0.0162 = 0.000262 \\ & {\rm thus} & q_{cc} = 22.63 * 0.000262 = 0.00594 \end{array}$

Constructing Blocks

- Blocks are ungapped alignments of multiple sequences, usually 20 to 100 amino acids long.
- Cluster the members of each block according to their percent identity.
- Make pair counts and score matrix from a large collection of similarly clustered blocks.
- Each BLOSUM matrix is named for the <u>percent identity</u> cutoff in step 2 (e.g. BLOSUM70 for 70% identity).

Probabilistic Interpretation of Scores (ungapped) matrixScore = (rounded) $2\log_2 \frac{q_{ij}}{e_{ij}}$ (BLOSUM62)

• By converting scores back to probabilities, we can give a probabilistic interpretation to an alignment score.

 this alignment has a score of 16 (6+2+1+7) by BLOSUM 62, meaning an alignment with this score or more is 2⁸ (256) times more likely to be seen in a real alignment than in a random alignment.

FIAP FLSP

• this 15 amino acid alignment has a score of 75, meaning that it is $\sim 10^{11}$ times more likely to be seen in a real alignment than in a random alignment(!!).

VHRDLKPENLLLASK VHRDLKPENLLLASK

(4+8+5+6+4+5+7+5+6+4+4+4+4+4+5)

Randomly Distributed Gaps

if $p_g = k$ (probability of a gap at each position in the sequence) then $P(g_1) = k, P(g_2) = k^2, ..., P(g_n) = k^n$

[note - the slope of the line on a log-linear plot will vary according to the frequency of gaps, but it will always be linear]

Distribution of alignment gap lengths in large set of structurally-aligned proteins

Summary

- How a score matrix is derived
- What the scores mean probablistically
- Why gap penalties should be affine
- How to use scores in dynamic programming