## Sequence comparison: Score matrices

Genome 559: Introduction to Statistical and Computational Genomics

Prof. James H. Thomas

## Informal inductive proof of best alignment path

Consider the last step in the best alignment path to node $\alpha$ below. This path must come from one of the three nodes shown, where $X, Y$, and $Z$ are the cumulative scores of the best alignments up to those nodes. We can reach node $\alpha$ by three possible paths: an $A-B$ match, a gap in sequence $A$ or a gap in sequence $B$ :
$\operatorname{seq} A$


The best-scoring path to
$\alpha$ is the maximum of:
$X+$ match
Y + gap
Z + gap

BUT the best paths to $X, Y$, and $Z$ are analogously the max of their three upstream possibilities, etc. Inductively QED.

## Local alignment

|  | A | C | G | T |
| :---: | :---: | :---: | :---: | :---: |
| A | 2 | -7 | -5 | -7 |
| C | -7 | 2 | -7 | -5 |
| G | -5 | -7 | 2 | -7 |
| T | -7 | -5 | -7 | 2 |
| $d=-5$ |  |  |  |  |
|  |  |  |  |  |


|  |  | $A$ | $A$ | $G$ |
| :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 0 | 0 |
| $A$ | 0 | 2 | 2 | 0 |
| G | 0 | 0 | 0 | 4 |
| C | 0 | 0 | 0 | 0 |

(no arrow means no preceding alignment)

## Local alignment

- Two differences from global alignment: - If a score is negative, replace with 0 .
- Traceback from the highest score in the matrix and continue until you reach 0 .
- Global alignment algorithm: NeedlemanWunsch.
- Local alignment algorithm: SmithWaterman.


## Protein score matrices

- DNA score matrices are much simpler (and are conceptually similar).
- Quantitatively represent the degree of conservation of typical amino acid residues over evolutionary time.
- All possible amino acid changes are represented (matrix of size at least $20 \times 20$ ).
- Most commonly used are several different BLOSUM matrices derived for different degrees of evolutionary divergence.


## BLOSUM62 Score Matrix

regular 20 amino acids
\# BLOSUM Clustered Scoring Matrix in $1 / 2$ Bit Units
\# Cluster Percentage: $>=62$
ambiguity codes and stop


Hydrophobic
 G

A

valine
V

leucine
isoleucine
I
methionine $M$
proline
tryptophan W

glutamine

Polar




## Amino acid structures

Charged
lysine
K
R

aspartate
D



## BLOSUM62 Score Matrix

|  | A | R | N | D | C | Q | E | G | H | I | L | K | M | F | P | S | T | W | Y | V |
| :---: | ---: | ---: | ---: | ---: | :--- | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A | 4 | -1 | -2 | -2 | 0 | -1 | -1 | 0 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | 0 | -3 | -2 | 0 |
| R | -1 | 5 | 0 | -2 | -3 | 1 | 0 | -2 | 0 | -3 | -2 | 2 | -1 | -3 | -2 | -1 | -1 | -3 | -2 | -3 |
| N | -2 | 0 | 6 | 1 | -3 | 0 | 0 | 0 | 1 | -3 | -3 | 0 | -2 | -3 | -2 | 1 | 0 | -4 | -2 | -3 |
| D | -2 | -2 | 1 | 6 | -3 | 0 | 2 | -1 | -1 | -3 | -4 | -1 | -3 | -3 | -1 | 0 | -1 | -4 | -3 | -3 |
| C | 0 | -3 | -3 | -3 | 9 | -3 | -4 | -3 | -3 | -1 | -1 | -3 | -1 | -2 | -3 | -1 | -1 | -2 | -2 | -1 |
| Q | -1 | 1 | 0 | 0 | -3 | 5 | 2 | -2 | 0 | -3 | -2 | 1 | 0 | -3 | -1 | 0 | -1 | -2 | -1 | -2 |
| E | -1 | 0 | 0 | 2 | -4 | 2 | 5 | -2 | 0 | -3 | -3 | 1 | -2 | -3 | -1 | 0 | -1 | -3 | -2 | -2 |
| G | 0 | -2 | 0 | -1 | -3 | -2 | -2 | 6 | -2 | -4 | -4 | -2 | -3 | -3 | -2 | 0 | -2 | -2 | -3 | -3 |
| H | -2 | 0 | 1 | -1 | -3 | 0 | 0 | -2 | 8 | -3 | -3 | -1 | -2 | -1 | -2 | -1 | -2 | -2 | 2 | -3 |
| I | -1 | -3 | -3 | -3 | -1 | -3 | -3 | -4 | -3 | 4 | 2 | -3 | 1 | 0 | -3 | -2 | -1 | -3 | -1 | 3 |
| L | -1 | -2 | -3 | -4 | -1 | -2 | -3 | -4 | -3 | 2 | 4 | -2 | 2 | 0 | -3 | -2 | -1 | -2 | -1 | 1 |
| K | -1 | 2 | 0 | -1 | -3 | 1 | 1 | -2 | -1 | -3 | -2 | 5 | -1 | -3 | -1 | 0 | -1 | -3 | -2 | -2 |
| M | -1 | -1 | -2 | -3 | -1 | 0 | -2 | -3 | -2 | 1 | 2 | -1 | 5 | 0 | -2 | -1 | -1 | -1 | -1 | 1 |
| F | -2 | -3 | -3 | -3 | -2 | -3 | -3 | -3 | -1 | 0 | 0 | -3 | 0 | 6 | -4 | -2 | -2 | 1 | 3 | -1 |
| P | -1 | -2 | -2 | -1 | -3 | -1 | -1 | -2 | -2 | -3 | -3 | -1 | -2 | -4 | 7 | -1 | -1 | -4 | -3 | -2 |
| S | 1 | -1 | 1 | 0 | -1 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -2 | -1 | 4 | 1 | -3 | -2 | -2 |
| T | 0 | -1 | 0 | -1 | -1 | -1 | -1 | -2 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | 5 | -2 | -2 | 0 |
| W | -3 | -3 | -4 | -4 | -2 | -2 | -3 | -2 | -2 | -3 | -2 | -3 | -1 | 1 | -4 | -3 | -2 | 11 | 2 | -3 |
| Y | -2 | -2 | -2 | -3 | -2 | -1 | -2 | -3 | 2 | -1 | -1 | -2 | -1 | 3 | -3 | -2 | -2 | 2 | 7 | -1 |
| V | 0 | -3 | -3 | -3 | -1 | -2 | -2 | -3 | -3 | 3 | 1 | -2 | 1 | -1 | -2 | -2 | 0 | -3 | -1 | 4 |

Good scores chemically similar

Bad scores chemically dissimilar

## Amino acid structures

Hydrophobic
Polar
glycine
alanine G

A

isoleucine
I
methionine
M

proline
tryptophan
 A


leucine



P


Charged


## Deriving BLOSUM scores

- Find sets of sequences whose alignment is thought to be correct (this is partly bootstrapped by alignment).
- Measure how often various amino acid pairs occur in the alignments.
- Normalize this to the expected frequency of such pairs randomly in the same set of alignments.
- Derive a log-odds score (often in half bits).


## Example of alignment block

31 amino acids (columns)
61 sequences (rows)

- Thousands of such blocks go into computing a single BLOSUM matrix.
- Represent full diversity of sequences.
- Results are summed over all columns of all blocks.

SHLLRHQRIHDKTAPKPLWEGPVAGQGEDVE SHLLRHQRTHDKDFFVPEUESRVESHWENIE SHLLRHQRIHDKNVQEPEUKSRMESQLENVE SHLLRHQRI HDKNVQEPEUKSRMEGQLENVE SHLLRHQRIHDKNVQETEWKSRMESQLENVE SHLLRHQRIHDKNVQEPEWKSRMESQLENVE SHLLRHQRIHDKNVQEPEWKSRTESQLENVE SHLLRHQRIHDKNVQEPEWKSRTESQLENVE SHLLRHQRIHDKSVQEPEWEGRTESQUQNVE SHLLRHQRIHDKSVQEPEWEGRTESQWQNVE SHLLRHQRIHDKNAPNPEWESQMEIQERNVE SHLLRHQRIHDKSNQKPEWECRVEGQWENVE SHLLRHQRIHDKNAPEPGUECRVEGQUENVE SHLLRHQRVHDKKIQESEWGCRTESQWENVQ SHLLRHQRVHDKKIQESEWGCRTESQWENVQ SHLLRHRRIHDKNVQDPEWEYRGEGQWENNE SHLLRHRRI HD KNVQDPEUEYRGEGQWENNE SHLLRHQRIHDRNAQDPEUESRTESQUENVD SHLLRHQRIHDRNAQDPEWESRTESQUENVD SHLLRHQRIHDKNVQDSEWESRMESQUENVE SHLLRHQRIHDKNVQNPEWESRTESQUENTE SHLLRHQRIHDKNVQNPEUESRTESQWENTE SHLLRHQRIHDKNVQNPEWESRTESQUENTE SHLLRHQRIHDKNVQNPEWESRTESQWENTE SHLLRHQRIHDKNVQNPEWERRTESQWENIE SHLLRHQRIHDKNVQNPEWERRTESQUENIE SHLLRHQRIHDKNFQNPEWEGRTESQWENVE SHLLRHQRIHDKNFQNPEWEGRTESQUENVE SHLLRHQRIHNKNVENPEWESRVESQWENVE SHLLRHQRIHNKNVENPEUESRVESQUENVE SHLLRHQRIHNKSVQNPEWESRMESQWESVE SHLLRHQRIHNKNVQTLEWESRMESQWESVE SHLLRHQRIHNKNLQNPDUESRKESQWENVE SHLLRHQRIHNKNLQNPDWE SRKE SQUENVE SHLLRHQRIHDKNVQNPDWE SRME SQUENVE SHLLRHQRIHDKNVQNPDUESRMESQWENVE SHLLRHQRIHDKNVQDREWE SRVE SRUENVE SHLLRHQRIHDKNVQDREWE SRVE SRWENVE SHLLRHQRIHDKNAQNPKGQSRRESQWENFE SHLLRHQRIHDKNAQNPKGQSRRESQWENFE SHLLRHQRIHEKSVQDLDWQSRLESQWGDVE SHLLRHQRIHDNNVQNPDWE SRMESQEGHIE SHLLRHQRIHDKNVQDPDWESRMESQEGHIE SHLLRHQRIHDKSVQNPKWECRKGGQEENAE SHLLRHQRIHDKSVQNPKWECRKGGQEENAE SHLLRHQRIHDKSVQNPDUESRMESSWENAE SHLLRHQRIHDKSVQNPDUESRMESSWENAE SHLLRHRRVHDKDVQDPEWEDRVERSEGSVE SHLLRHRRVHDKDVQDPEWEDRVERSEGSVE SHLLRHQRIHDKNMQDSEWE SRMENQUENAE SHLLRHQRIHDKNMQDSEWESRMENQWENAK SHLLRHQRVHDKNLEDSEWENRVENQWEKTE SHLLRHQRVHDKNLED SEWENRVENQWEDTE SHLLRHQRIHARHVRE PDWEGRLEGQUENTE SHLRRHQRIHAKNVREPDUEGRMESQWENTE SHLLRHQRIHERNIQEPDWEGRMESQWENVG SHLLRHQRIHERNIQEPDWEGRMESQWENVG SHLLRHQRIHNRCFHDAVFESETETQWGNLE SHLLRHQRIHNRCFHDAVFESETETQWGNLE SHLLRHQRIHNRFFHDPECEGEVETQWENLE SHLLRHQRIHNRFFHDPECEGEVETQWENLE

## Pair frequency vs. expectation

Actual aligned pair frequency:
$q_{i j}=\frac{1}{T} \sum c_{i j}$
where $c_{i j}$ is the count of $i j$ pairs and $T$ is the total pair count.

Randomly expected pair frequency:
$e_{a a}=p_{a} p_{a}$
$e_{a b}=p_{a} p_{b}+p_{b} p_{a}=2 p_{a} p_{b}$
where $p_{a}$ and $p_{b}$ are the overall probabilities (frequencies) of specific residues $a$ and $b$.

Sample column from a multiple alignment:


A multiple alignment of N sequences is the equivalent of all the pairwise alignments, which number ( N )( $\mathrm{N}-1$ )/2.

Log-odds score calculation (so adding scores == multiplying probabilities)

$$
s_{i j}=\log _{2} \frac{q_{i j}}{e_{i j}}
$$

For computational speed often rounded to nearest integer and (to reduce round-off error) they are often multiplied by 2 (or more) first, giving a "half-bit" score:

$$
\text { matrixScore }=\left(\text { rounded } 2 \log _{2} \frac{q_{i j}}{e_{i j}}\right.
$$

|  | A | R | N | D | C | Q | E | G | H | I | L | K | M | F | P | S | T | W | Y | V |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| A | 4 | -1 | -2 | -2 | 0 | -1 | -1 | 0 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | 0 | -3 | -2 | 0 |
| R | -1 | 5 | 0 | -2 | -3 | 1 | 0 | -2 | 0 | -3 | -2 | 2 | -1 | -3 | -2 | -1 | -1 | -3 | -2 | -3 |
| N | -2 | 0 | 6 | 1 | -3 | 0 | 0 | 0 | 1 | -3 | -3 | 0 | -2 | -3 | -2 | 1 | 0 | -4 | -2 | -3 |
| D | -2 | -2 | 1 | 6 | -3 | 0 | 2 | -1 | -1 | -3 | -4 | -1 | -3 | -3 | -1 | 0 | -1 | -4 | -3 | -3 |
| C | 0 | -3 | -3 | -3 | 9 | -3 | -4 | -3 | -3 | -1 | -1 | -3 | -1 | -2 | -3 | -1 | -1 | -2 | -2 | -1 |
| Q | -1 | 1 | 0 | 0 | -3 | 5 | 2 | -2 | 0 | -3 | -2 | 1 | 0 | -3 | -1 | 0 | -1 | -2 | -1 | -2 |
| E | -1 | 0 | 0 | 2 | -4 | 2 | 5 | -2 | 0 | -3 | -3 | 1 | -2 | -3 | -1 | 0 | -1 | -3 | -2 | -2 |
| G | 0 | -2 | 0 | -1 | -3 | -2 | -2 | 6 | -2 | -4 | -4 | -2 | -3 | -3 | -2 | 0 | -2 | -2 | -3 | -3 |
| H | -2 | 0 | 1 | -1 | -3 | 0 | 0 | -2 | 8 | -3 | -3 | -1 | -2 | -1 | -2 | -1 | -2 | -2 | 2 | -3 |
| I | -1 | -3 | -3 | -3 | -1 | -3 | -3 | -4 | -3 | 4 | 2 | -3 | 1 | 0 | -3 | -2 | -1 | -3 | -1 | 3 |
| L | -1 | -2 | -3 | -4 | -1 | -2 | -3 | -4 | -3 | 2 | 4 | -2 | 2 | 0 | -3 | -2 | -1 | -2 | -1 | 1 |
| K | -1 | 2 | 0 | -1 | -3 | 1 | 1 | -2 | -1 | -3 | -2 | 5 | -1 | -3 | -1 | 0 | -1 | -3 | -2 | -2 |
| M | -1 | -1 | -2 | -3 | -1 | 0 | -2 | -3 | -2 | 1 | 2 | -1 | 5 | 0 | -2 | -1 | -1 | -1 | -1 | 1 |
| F | -2 | -3 | -3 | -3 | -2 | -3 | -3 | -3 | -1 | 0 | 0 | -3 | 0 | 6 | -4 | -2 | -2 | 1 | 3 | -1 |
| P | -1 | -2 | -2 | -1 | -3 | -1 | -1 | -2 | -2 | -3 | -3 | -1 | -2 | -4 | 7 | -1 | -1 | -4 | -3 | -2 |
| S | 1 | -1 | 1 | 0 | -1 | 0 | 0 | 0 | -1 | -2 | -2 | 0 | -1 | -2 | -1 | 4 | 1 | -3 | -2 | -2 |
| T | 0 | -1 | 0 | -1 | -1 | -1 | -1 | -2 | -2 | -1 | -1 | -1 | -1 | -2 | -1 | 1 | 5 | -2 | -2 | 0 |
| W | -3 | -3 | -4 | -4 | -2 | -2 | -3 | -2 | -2 | -3 | -2 | -3 | -1 | 1 | -4 | -3 | -2 | 11 | 2 | -3 |
| Y | -2 | -2 | -2 | -3 | -2 | -1 | -2 | -3 | 2 | -1 | -1 | -2 | -1 | 3 | -3 | -2 | -2 | 2 | 7 | -1 |
| V | 0 | -3 | -3 | -3 | -1 | -2 | -2 | -3 | -3 | 3 | 1 | -2 | 1 | -1 | -2 | -2 | 0 | -3 | -1 | 4 |

# BLOSUM62 matrix (half-bit scores) 

( 9 half-bits $=4.5$ bits )

Frequency of C residue over all proteins: 0.0162 (you have to look this up)

Reverse calculation of aligned C-C pair frequency in BLOSUM data set:

$$
\begin{array}{r}
\mathrm{C-C} \quad \frac{q_{c c}}{e_{c c}}=2^{(4.5)}=22.63 \quad e_{c c}=0.0162 * 0.0162=0.000262 \\
\text { thus } \quad q_{c c}=22.63 * 0.000262=0.00594
\end{array}
$$

## Constructing Blocks

- Blocks are ungapped alignments of multiple sequences, usually 20 to 100 amino acids long.

Cluster the members of each block according to their percent identity.

Make pair counts and score matrix from a large collection of similarly clustered blocks.

- Each BLOSUM matrix is named for the percent identity cutoff in step 2 (e.g. BLOSUM70 for $70 \%$ identity).


## Probabilistic Interpretation of Scores (ungapped)

$$
\begin{equation*}
\text { matrixScore }=\left(\text { rounded } 2 \log _{2} \frac{q_{i j}}{e_{i j}}\right. \tag{BLOSUM62}
\end{equation*}
$$

- By converting scores back to probabilities, we can give a probabilistic interpretation to an alignment score.
- this alignment has a score of $16(6+2+1+7)$ by BLOSUM 62, meaning an alignment with this score or more is $2^{8}$ (256) times more likely to be seen in a real alignment than in a random alignment.
- this 15 amino acid alignment has a score of 75 , meaning that it is $\sim 10^{11}$ times more likely to be seen in a real alignment than in a random alignment(!!).

VHRDLKPENLLIASK
VHRDITKPENTITASK
$(4+8+5+6+4+5+7+5+6+4+4+4+4+4+5)$

## Randomly Distributed Gaps

if $\quad p_{g}=k$ (probability of a gap at each position in the sequence)
then $P\left(g_{1}\right)=k, P\left(g_{2}\right)=k^{2}, \ldots, P\left(g_{n}\right)=k^{n}$

Expectation for Linear Gap Penalty

[note - the slope of the line on a log-linear plot will vary according to the frequency of gaps, but it will always be linear]

Distribution of alignment gap lengths in large set of structurally-aligned proteins


## Summary

- How a score matrix is derived
- What the scores mean probablistically
- Why gap penalties should be affine
- How to use scores in dynamic programming

