Sequence comparison: Significance of similarity scores

Genome 559: Introduction to Statistical and Computational Genomics

Prof. James H. Thomas

Are these proteins related?

SEQ 1: RVVNLVPS--FWVLDATYKNYAINYNCDVTYKLY
L P W L Y N Y C L
NO (score = 9)
SEQ 2: QFFPLMPPAPYWILATDYENLPLVYSCTTFFWLF

SEQ 1: RVVNLVPS--FWVLDATYKNYAINYNCDVTYKLY
L P W LDATYKNYA Y C L MAYBE (score = 15)
SEQ 2: QFFPLMPPAPYWILDATYKNYALVYSCTTFFWLF

SEQ 1: RVVNLVPS--FWVLDATYKNYAINYNCDVTYKLY RVV L PS W LDATYKNYA Y CDVTYKL

YES (score = 24)
SEQ 2: RVVPLMPSAPYWILDATYKNYALVYSCDVTYKLF

Significance of scores

How high is high enough?

The null hypothesis

- We are interested in characterizing the distribution of scores from sequence comparisons.
- We measure how surprising a given score is, assuming that the two sequences are not related.
- The assumption is called the null hypothesis.
- The purpose of most statistical tests is to determine whether the observed results provide a reason to reject the hypothesis that they are merely a product of chance factors.

Sequence similarity score distribution

Sequence comparison score

- Search a randomly generated database of sequences using a given query sequence.
- What will be the form of the resulting distribution of pairwise sequence comparison scores?

Empirical score distribution

- This shows the distribution of scores from a real database search using BLAST.
- This distribution contains scores from unrelated and related pairs.

High scores from related sequences

Empirical null score distribution

- This distribution is similar to the previous one, but generated using a randomized sequence database.

Computing a p -value

- The probability of observing a score >=X is the area under the curve to the right of X.
- This probability is called a p-value.
- p-value $=\operatorname{Pr}($ data|null $)$

Out of 1685 scores, 28 receive a score of 20 or better. Thus, the p-value associated with a score of 20 is approximately 28/1685 $=0.0166$.

Problems with empirical distributions

- We are interested in very small probabilities.
- These are computed from the tail of the distribution.
- Estimating a distribution with an accurate tail is computationally very expensive.

A solution

- Solution: Characterize the form of the distribution mathematically.
- Fit the parameters of the distribution empirically, or compute them analytically.
- Use the resulting distribution to compute accurate p-values.

Extreme value distribution

This distribution is roughly normal near the peak, but characterized by a larger tail on the right.

Computing a p -value

- The probability of observing a score >=4 is the area under the curve to the right of 4 .
- This probability is called a p -value.
- p-value $=\operatorname{Pr}($ data \mid null $)$

Extreme value distribution

Computing a p -value

$$
\begin{aligned}
& P S \geq 4=1-e^{\left(-e^{-4}\right)} \\
& P(S \geq 4)=0.018149
\end{aligned}
$$

Scaling the EVD

- An EV distribution derived from, e.g., the Smith-Waterman algorithm with BLOSUM62 matrix has a characteristic mode μ and scale parameter λ.

$$
P S \geq x=1-e^{\left(-e^{-x}\right)} \quad \text { scaled: } \quad P \quad S \geq x=1-e^{\left(-e^{-\lambda(x-\mu)}\right)}
$$

λ and μ depend on the size of the query, the size of the target database, the substitution matrix and the gap penalties.

An example

You run BLAST and get a score of 45. You then run BLAST on a shuffled version of the database, and fit an extreme value distribution to the resulting empirical distribution. The parameters of the EVD are $\mu=25$ and $\lambda=0.693$. What is the p-value associated with 45?

$$
\begin{aligned}
P S \geq 45 & =1-e^{\left(-e^{-0.69345-25}\right)} \\
& =1-e^{\left(-e^{-13.86}\right)} \\
& =1-e^{-9.565 \times 10^{-7}} \\
& =1-0.999999043 \\
& =9.565 \times 10^{-7}
\end{aligned}
$$

BLAST has precomputed values of μ and λ for all common matrices and gap penalties (and the run scales them for the size of the query and database)

What p-value is significant?

- The most common thresholds are 0.01 and 0.05 .
- A threshold of 0.05 means you are 95% sure that the result is significant.
- Is 95% enough? It depends upon the cost associated with making a mistake.
- Examples of costs:
- Doing expensive wet lab validation
- Making clinical treatment decisions
- Misleading the scientific community

Multiple testing

- Say that you perform a statistical test with a 0.05 threshold, but you repeat the test on twenty different observations (e.g. 20 different blast runs)
- Assume that all of the observations are explainable by the null hypothesis.
- What is the chance that at least one of the observations will receive a p-value less than 0.05 ?

Bonferroni correction

- Assume that individual tests are independent.
- Divide the desired p-value threshold by the number of tests performed.

Database searching

- Say that you search the non-redundant protein database at NCBI, containing roughly one million sequences (i.e. you are doing 10^{6} pairwise tests). What p-value threshold should you use?
- Say that you want to use a conservative p-value of 0.001 .
- Recall that you would observe such a p-value by chance approximately every 1000 times in a random database.
- A Bonferroni correction would suggest using a p-value threshold of $0.001 / 10^{6}=10^{-9}$.

E-values

- A p-value is the probability of making a mistake.
- An E-value is the expected number of times that the given score would appear in a random database of the given size.
- One simple way to compute the E-value is to multiply the p-value times the size of the database.
- Thus, for a p-value of 0.001 and a database of $1,000,000$ sequences, the corresponding E -value is $0.001 \quad 1,000,000=1,000$.
(BLAST actually calculates E-values in a more complex
way, but they mean the same thing)
>104K_THEPA 104 KD MICRONEME-RHOPTRY ANTIGEN MKFLILLFNILCLFPVLAADNHGVGPQGASGVDPITFDINSNQTGPAFLTAVEMAGVKYLC
Search HRLVEGNVVIWENASTPLYTGAIVTNNDGPYMAYVEVLGDPNLQFFIKSGDAWVTLSEHEY AVHIESVFSLNMAFQLENNKYEVETHAKNGANMVTFIPRNGHICKMVYHKNVRIYKATGND RGLRLLLINVFSIDDNGMMSNRYFQHVDDKYVPISQKNYETGIVKLKDYKHAYHPVDLDIK-

$\underline{\text { Choose }} \sqrt{\text { database }} \sqrt{\text { nr }}$

[^0]Now: BLAST! or Reser quary Reserail

Sequences producing significant alignments:
Score E
(bits) Value
gi| 112670 |splP15711|104K THEPA 104 KD MICRONEME-RHOPTRY ANT... 13520.0 gi| 14268530 |gb|AAK56556.1| 104 kDa microneme-rhoptry antige... $\frac{243}{243}$ le-62 gi 114268528 |gb|AAK56555.11 gi| $14268526|\mathrm{gb}|$ AAK $56554.1 \mid$ 104 kDa microneme-rhoptry 104 kDa microneme-rhoptry antige... $\underline{242}$ $4 \mathrm{e}-62$ $\underline{238}$ 7e-61 gi|31210185|ref|XP 314059.11 ENSANGP00000015608 [Anopheles
372.1 gi|22971724|ref|ZP 00018655.1| hypothetical protein [Chloro... gi| 32403566 |reflXP 322396.11 hypothetical protein [Neurospo... gi|24639766|ref|NP 572189.11 gi| $30348569|\mathrm{emb}|$ CAC84361.11 CG2861-PA [Drosophila melanoga..
$\begin{array}{ll}35 & 9.7\end{array}$ gil 30348569 emb CAC84361.1 hypothetical protein [Saimiriin... gi|6492132|gb|AAF14193.1| spherical body protein 3 [Babesia... gil 9629342 |reflNP 044542.11 virion protein [Human herpesvir... gi|24639768|ref|NP 726958.1| CG2861-PB [Drosophila melanoga.. TashAT2 protein [Theileria annul

3512 gil 24639768 IneINP 726958.1 3417 gi| $4757118|\mathrm{emb}| \mathrm{CAB} 42096.11$ gi| $17534529 \mid$ reflNP 495288.11 putative protein (2G676) [Caen $34 \quad 19$ gi|15241089/ref|NP 195809.1| gi $43489677|\mathrm{gb}|$ EAD99646.1| gi| 44419062 |gb|EAJ13596.1| gi | 43969222 |gb|EAG41329.1| gi| $15792145 \mid$ ref|NP $281968.1 \mid$ gi | 43926327 |gb|EAG18073.11 gi| $39595869|\mathrm{emb}|$ CAE67372.11 gi|30020082|ref|NP_831713.1| gi|43723946|gb|EAF16931.1| gi| $11545212|\mathrm{gb}|$ AAG37800. 11 gi| $40788024|\mathrm{emb}|$ CAE $47751.1 \mid$ gid 42656951|reflXP 052597.61 gi| 32698642 lreflNP 872557.11 gi| $12840300|\mathrm{dbj}| \mathrm{BAB} 24814.11$ gi| $28899333 \mid$ ref |NP 798938.11 gi| $7243081 / \mathrm{dbj} \mid$ BAA92588.11 leucine-rich repeat transmembr $34 \quad 20$
$34 \quad 21$ unknown [environmental sequence] $34 \quad 21$ unknown [environmental sequence] $34 \quad 22$ unknown [environmental sequence] putative oxidoreductase [Campy... $34 \quad 22$ unknown [environmental sequence] Hypothetical protein CBG12848 [... $33 \quad 23$ Glycosyltransferase [Bacillus ... $\quad 33 \quad 40$ unknown [environmental sequence] $33 \quad 41$ hypothetical telomeric Sfil frag... 3344 ubiquitin specific proteinase $5 .$. ubiquitin specific protease 53... DNA-ligase [Adoxophyes orana g... unnamed protein product [Mus mu... 4-diphosphocytidyl-2C-methyl-D... 3251 3251 KIAA1350 protein [Homo sapiens] -

33
33

3325
$33 \quad 29$
$33 \quad 34$
$33 \quad 37$ 37 $33 \quad 38$ 8

51 3252 3254 32 55

Summary

- A distribution plots the frequencies of types of observation.
- The area under the distribution is 1.
- Most statistical tests compare observed data to the expected result according to the null hypothesis.
- Sequence similarity scores follow an extreme value distribution, which is characterized by a long tail.
- The p-value associated with a score is the area under the curve to the right of that score.
- Selecting a significance threshold requires evaluating the cost of making a mistake.
- Bonferroni correction: Divide the desired p-value threshold by the number of statistical tests performed.
- The E-value is the expected number of times that the given score would appear in a random database of the given size.

[^0]: Do
 CD-Search
 F

