
loops continued

Genome 559: Introduction to Statistical
and Computational Genomics

Prof. James H. Thomas

Review

• Pick variable names that are descriptive

• Comment your code if it complex (# sign)

for <element> in <object>:

<statement>

<statement>

. . .

<last statement>

Use for loop to iterate over
elements in a list, numbers, or
characters in a string

while (conditional test):

<statement1>

<statement2>

. . .

<last statement>

Use while loop to run until
some condition is met

Review

x += y # adds y to the value of x

x *= y # multiplies x by the value y

x -= y # subtracts y from the value of x

Increment operator

sys.exit() # exit program immediately

Explicit program exit

Use to terminate when something is wrong - best to use
print to provide user feedback before exit

Smart loop use

Read a file and print the first ten lines

import sys

infile = open(sys.argv[1], "r")

lineList = infile.readlines()

counter = 0

for line in lineList:

counter += 1

if (counter > 10):

break

print line

infile.close()

Does this work?

YES

NO

Is it ideal?

What if the file has a million lines? (not uncommon in bioinformatics)

import sys

infile = open(sys.argv[1], "r")

lineList = infile.readlines()

counter = 0

for line in lineList:

counter += 1

if (counter > 10):

break

print line

infile.close()

this statement reads
all million lines!!

import sys

infile = open(sys.argv[1], "r")

for counter in range(10):

line = infile.readline()

print line

infile.close()

How about this instead?

this version reads only
the first ten lines, one

at a time

import sys

infile = open(sys.argv[1], "r")

counter = 0

while counter < 10:

line = infile.readline()

print line

counter += 1

infile.close()

This while loop does the same thing, just as efficiently:

• The original readlines() approach not only takes much longer
on large files it also has to store ALL the data in memory.

• I ran original version and efficient version on a very large file.

• Original version ran for 45 seconds and crashed when it ran out
of memory.

• Improved version ran successfully in the blink of an eye.

What if the file has fewer than ten lines?
import sys

infile = open(sys.argv[1], "r")

for counter in range(10):

line = infile.readline()

print line

infile.close()

It prints a blank line repeatedly

hint - when readline() reaches the end of a file, it returns ""

import sys

infile = open(sys.argv[1], "r")

for counter in range(10):

line = infile.readline()

if len(line) == 0:

break

print line

infile.close()

Improved version:

added code, tests for end of file

Sequential splitting of file contents

Many problems in text or sequence parsing can employ this strategy:

• First, chop file content into chunks (lines or fasta sequences
etc.)

• Second, extract needed data from each chunk

• This can even be repeated - split each chunk into subchunks,
extract needed data from subchunks

import sys

lineList = open(sys.argv[1], "r").readlines()

for line in lineList:

fieldList = line.strip().split("\t")

for field in fieldList:

<do something>

What does this do?

Sample problem #1

Write a program read-N-lines.py that prints the first N lines
from a file, where N is the first argument and filename is the
second argument. Use a while loop and be sure it handles short
and long files.

>python read-N-lines.py 7 file.txt

this

file

has

five

lines

>

Solution #1

import sys

infile = open(sys.argv[2], "r")

max = int(sys.argv[1])

counter = 0

while counter < max:

line = infile.readline()

if len(line) == 0: # we reached end of file

break

print line

counter += 1

Sample problem #2
Write a program count-fasta.py that counts the
number of fasta sequences in a file specified on the
command line. Make sure it can run on a huge file (don't
read the entire file content at once).

>identifier1 comment comment comment

AAOSIUBOASIUETOAISOBUAOSIDUGOAIBUOABOIUAS

AOSIUDTOAISUETOIGLKBJLZXCOITLJLBIULEIJLIJ

>identifier2 comment comment

TXDIGSIDJOIJEOITJOSIJOIGJSOIEJTSOE

>identifier3

Etc.

Fasta format:

sequence on any number
of lines until next “>”

Two files are linked in News on the course web page – run your
program on both: small.txt and large.txt

Solution #2
import sys

Make sure we got an argument on the command line.

if (len(sys.argv) < 2):

print("USAGE: count-fasta.py file argument required")

sys.exit()

Open the file for reading.

fasta_file = open(sys.argv[1], "r")

lineList = fastaFile.readlines()

num_seqs = 0

for line in lineList:

Increment if this is the start of a sequence.

if (line[0] == ">"):

num_seqs += 1

print num_seqs

fasta_file.close()

Not required, but a
good habit to get into

Not so good - will run out
of memory if file is huge

Alternative solution #2

import sys

Make sure we got an argument on the command line.

if (len(sys.argv) < 2):

print("USAGE: count-fasta.py file argument required")

sys.exit()

Open the file for reading.

fasta_file = open(sys.argv[1], "r")

wholeText = fastaFile.read()

print wholeText.count(">")

fasta_file.close()

Not so good - will run out
of memory if file is huge

Improved solution #2
import sys

Make sure we got an argument on the command line.

if (len(sys.argv) < 2):

print "USAGE: count-fasta.py file argument required"

sys.exit()

Open the file for reading.

fasta_file = open(sys.argv[1], "r")

num_seqs = 0

line = fasta_file.readline() # read first line

while len(line) > 0:

Increment if this is the start of a sequence.

if line[0] == ">": # or if line.startswith(">"):

num_seqs += 1

line = fasta_file.readline() # read next line

print num_seqs

fasta_file.close()

Note - when readline() encounters the end-of-file (EOF) it returns "" (empty string)

Challenge problem
Write a program seq-len.py that reads a file of
fasta sequences and prints the name and length of
each sequence and their total length.

>seq-len.py seqs.fasta

seq1 432

seq2 237

seq3 231

Total length 900

Here‟s what fasta sequences look like:
>foo

gatactgactacagttt

ggatatcg

>bar

agctcacggtatcttag

agctcacaataccatcc

ggatac

>etc…

(„>‟ followed by name, newline, sequence on
any number of lines until next „>‟)

import sys

filename = sys.argv[1]

myFile = open(filename, "r")

myLines = myFile.readlines()

myFile.close() # we read the file, now close it

cur_name = myLines[0] # initialize required variables

cur_len = 0

total_len = 0

for index in range(1, len(myLines)):

line = myLines[index]

if (line.startswith(">")): # we reached a new fasta sequence

print cur_name, cur_len # write values for previous sequence

total_len += cur_len # increment total_len

cur_name = line.strip() # record the name of the new sequence

cur_len = 0 # reset cur_len

else: # still in the current sequence, increment length

cur_len += len(line.strip())

index += 1

print cur_name, cur_len # we need to write the last values

print “Total length", total_len

One solution
this version may have

problems with large files

Lea came up with a far more elegant solution. Here is my
version using Lea‟s method:

import sys

filename = sys.argv[1]

myFile = open(filename, "r")

whole_string = myFile.read()

myFile.close()

seqList = whole_string.split(">")

total_len = 0

for seq in seqList:

lineList = seq.split("\n")

length = len("".join(lineList[1:]))

total_len += length

print lineList[0], length

print "Total length", total_len

What this does is split the text of the entire file on “>”, which gives a list of
strings (each containing the sequence with its name). Each of these strings is
split at “\n” characters, which gives a list of lines. The 0th line in this list is the
name, and the rest of the lines are sequence. The funky looking join statement
just merges all the sequence lines into one long string and gets its length.

this version may have
problems with large files

A solution that will handle large files
without running out of memory

import sys

filename = sys.argv[1]

myFile = open(filename, "r")

cur_name = ""

cur_len = 0

total_len = 0

for line in myFile:

if (total_len > 0 and line.startswith(">")): # we reached a new fasta sequence

print cur_name, cur_len # write values for previous sequence

cur_name = line.strip() # record the name of the new sequence

cur_len = 0 # reset cur_len

elif line.startswith(">"): # this is the first fasta name, record it

cur_name = line.strip()

else:

cur_len += len(line.strip())

total_len += cur_len

print cur_name, cur_len # we need to write the last values

print "Total length", total_len

myFile.close()

One of the arts of programming is seeing how
to write elegant loops that do complex things.

It takes time and practice.

