Computing a tree: I

Genome 559: Introduction to Statistical and Computational Genomics

Prof. James H. Thomas

Defining what a tree means

rooted tree (all real trees are rooted):
unrooted tree (used when the root isn't known):

...divergence time is the sum of (horizontal) branch lengths

Parsimony principle

Find the tree that requires the fewest changes

Consider 4 sequences - all possible unrooted trees

Consider 4 sequences - all possible unrooted trees

Consider site 1

Consider site 1

	1	2	3	4	5	6
human						
chimp						
gorilla						
orangutan	a	g	t	c	t	c
a	g	a	g	t	c	
c	g	g	c	a	g	
c	g	g	g	a	c	

Consider site 1

	1	2	3	4	5	6
human	a	g	t	c	t	c
chimp						
gorilla						
orangutan	a	g	a	g	t	c
	c	g	g	c	a	g
c	g	g	g	a	c	

Consider site 1

	1	2	3	4	5	6
human						
chimp						
gorilla						
orangutan	a	g	t	c	t	c
a	g	a	g	t	c	
c	g	g	c	a	g	
c	g	g	g	a	c	

Consider site 2

Consider site 3

Put sites 1 and 3 together

	1	2	3	4	5	6
human						
chimp						
gorilla						
orangutan	a	g	t	c	t	c
a	g	a	g	t	c	
c	g	g	c	a	g	
c	g	g	g	a	c	

Now put all of them together

	1	2	3		4	5		6
human	a	g	t		C	t		C
chimp	a	g	a		g	t		C
gorilla	C	g	g		c	a		g
orangutan	C	g	g		-			

Which tree is most parsimonious?

	1	2	3			5		6
human	a	g	t		c	t		c
chimp	a	g	a		g	t		C
gorilla	C	g	g		c	a		g
orangutan	C	g	g		-	a		

Parsimony algorithm

1) Construct all possible trees
2) For each informative site in alignment count changes on each tree
3) Add them all up for each tree
4) Pick the lowest scoring

Distance trees

- Measure pairwise distance between each pair of sequences.
- Use a clustering method to build up a tree, starting with the closest pair (next lecture).

	1	2	3	4	5	6
human	a	g	t	c	t	c
chimp	a	g	a	g	t	c
gorilla	c	g	g	c	a	g
orangutan	c	g	g	g	a	c

human - chimp has 2 changes out of 6 sites \square human - orang has 4 changes of out 6 sites etc.

