Computing a tree: I

Genome 559: Introduction to Statistical and Computational Genomics Prof. James H. Thomas

Defining what a tree means

...divergence time is the sum of (horizontal) branch lengths

Parsimony principle

Find the tree that requires the fewest changes

Consider 4 sequences - all possible unrooted trees

Consider 4 sequences - all possible unrooted trees

	1	2	3	4	5	6
human	a	g	t	С	t	C
chimp	a	g	a	g	t	C
gorilla	с	g	g	C	а	g
orangutan	С	g	g	g	а	C

	1	2	3	4	5	6
human	a	g	t	C	t	C
chimp	a	g	а	g	t	C
gorilla	С	g	g	С	a	g
orangutan	С	g	g	g	a	C

1	2	3	4	5	6
a	g	t	C	t	C
a	g	а	g	t	C
С	g	g	С	a	g
С	g	g	g	a	C
	1 a a c c	1 2 a g a g c g c g	1 2 3 a g t a g a c g g c g g	1 2 3 4 a g t c a g a g c g g c c g g g g	1 2 3 4 5 a g t c t a g a g t c g g c a c g g g a

1 2 human a 9 chimp a 9 gorilla c 9 orangutan c 9

1	2	3	4	5	6
a	g	t	С	t	C
a	g	а	g	t	C
С	g	g	С	а	g
C	g	g	g	a	C

Uninformative (no changes)

Put sites 1 and 3 together

	1	2	3	4	5	6
human	a	g	t	С	t	С
chimp	a	g	a	g	t	С
gorilla	С	g	g	С	а	g
orangutan	С	g	g	g	a	С

Now put all of them together

human chimp gorilla orangutan

1	2	3	4	5	6
a	g	t	с	t	с
a	g	a	g	t	с
С	g	g	С	a	g
С	g	g	g	a	С

Which tree is most parsimonious?

	1	2	3	4	5	6	
human	a	g	t	с	t	с	
chimp	a	g	a	g	t	с	
gorilla	С	g	g	С	а	g	
orangutan	С	g	g	g	a	С	

Parsimony algorithm

- 1) Construct all possible trees
- 2) For each informative site in alignment count changes on each tree
- 3) Add them all up for each tree
- 4) Pick the lowest scoring

Distance trees

• Measure pairwise distance between each pair of sequences.

• Use a clustering method to build up a tree, starting with the closest pair (next lecture).

	1	2	3	4	5	6	
human	a	g	t	С	t	С	
chimp	а	g	а	g	t	С	
gorilla	С	g	g	С	а	g	
orangutan	C	g	g	g	а	С	

human - chimp has 2 changes out of 6 sites human - orang has 4 changes of out 6 sites etc.