
dictionaries
(aka hash tables or hash maps)

Genome 559: Introduction to Statistical
and Computational Genomics

Prof. James H. Thomas

Review

• You should be very comfortable with loops by now

• Start paying attention to program robustness and
speed.

• Consider very large or very small input files.

• Consider files with the wrong format.

• Consider command-line options that are missing or
in the wrong format.

• A dictionary organizes linked information

• Examples:
- word and definition
- name and phone number
- name and DNA sequence
- username and password

• If you know the first entry, you can immediately
get the second one

Dictionaries

Rules for dictionaries

• The first item is a "key"

• Each key can only appear once

• A key must be an immutable object: number, string,
or tuple

• Lists cannot be keys (they are mutable)

• The key should be the item you'll use to do look-ups

Key examples

Phone book: we have a name, we want a number

Name is the key

Crank call prevention: we have a number, we want a name

Number is the key

Creating a dictionary

#create an empty dictionary

myDict = {}

#create a dictionary with three entries

myDict = {"Curly":4123, "Larry":2057, "Moe":1122}

#add another entry

myDict["Shemp"] = 2232

#change Moe's phone number

myDict["Moe"] = 4040

#delete Moe from dictionary

del myDict["Moe"]

Using a dictionary

>>> myDict = {"Curly":4123, "Larry":2057, "Moe":1122}

>>> myDict["Moe"]

1122

>>> myDict.keys()

['Larry', 'Moe', 'Curly']

>>> "Curly" in myDict

True

>>> "curly" in myDict

False

>>> myDict.values()

[2057, 1122, 4123]

>>> len(myDict)

3

unlike a list, the key:value pairs
are not in any particular order

curly is not the same as Curly

Using a dictionary

birthdays = { "George":"June 12", "W":"July 6", "Barack":"Aug 4" }

for person in birthdays.keys():

print "Send", person, "a card on", birthdays[person]

or possibly

for person in birthdays.keys():

if person == "Barack"

print "Send", person, "a card on", birthdays[person]

else

print "Send", person, "a bomb on", birthdays[person]

dictionary.keys() returns a list of the keys!

Sorting a dictionary

sortkeys = birthday.keys()

sortkeys.sort()

for person in sortkeys:

print "Send", person, "a card on", birthdays[person]

Use the list.sort() method -
if the list contains strings,

they will be sorted
alphanumerically

Making a useful dictionary
Suppose we have a file that gives the alignment score for a
large number of sequences:

seq1 <tab> 37

seq2 <tab> 182

etc.

import sys

myFile = open(sys.argv[1], "r")

scoreDict = {}

for line in myFile:

fields = line.strip().split("\t")

scoreDict[fields[0]] = float(fields[1])

myFile.close()

we now have a dictionary where we can look up a score for any name

Sample problem #1

The file "scores.txt" (linked from news on web site) contains blastn
scores for a large number of sequences with a particular query.
Write a program that reads them into a dictionary (this was given on
the previous slide), sorts them by sequence name, and prints them.

>python sort_dict.py scores.txt

seq00000 293

seq00001 315

seq00002 556

seq00003 556

seq00004 617

seq00005 158

etc.

Solution #1
import sys

myFile = open(sys.argv[1], "r")

make an empty dictionary

scoreDict = {}

for line in myFile:

fields = line.strip().split("\t")

record each value with name as key

scoreDict[fields[0]] = float(fields[1])

myFile.close()

get sorted key list

sort_keys = scoreDict.keys()

sort_keys.sort()

print based on sorted keys

for key in sort_keys:

print key + "\t" + scoreDict[key]

Sample problem #2

Suppose you have a list of sequence names whose scores you are
interested in extracting from the large list of scores (in the same
file scores.txt). Modify your previous program to read the list of
sequence names from a file and print just those values. A sample
seq_names.txt is also linked from news on web site.

>python get_scores.py scores.txt seq_names.txt

seq00036 784

seq57157 523

seq58039 517

seq67160 641

seq76732 44

seq83199 440

seq92309 446

import sys

first get a list of the names of interest

seqNameFile = open(sys.argv[2], "r")

seqNameList = []

for line in seqNameFile:

seqNameList.append(line.strip())

seqNameFile.close()

now make a dictionary of the scores, keyed on name

dictFile = open(sys.argv[1], "r")

scoreDict = {}

for line in dictFile:

fields = line.strip().split("\t")

scoreDict[fields[0]] = int(fields[1])

dictFile.close()

finally, use the dictionary

for seqName in seqNameList:

print seqName + "\t" + scoreDict[seqName]

Solution #2

Challenge problem

Sort the list of scores in the same file (scores.txt) by score,
with the highest scoring first. Print the sequence name and
its score in that order. You can easily do this using a
dictionary (don't worry about the fact that more than one
sequence will have the same score, so some will get lost).

import sys

dictFile = open(sys.argv[1], "r")

scoreDict = {}

for line in dictFile:

fields = line.strip().split("\t")

scoreDict[int(fields[1])] = fields[0]

dictFile.close()

sortKeys = scoreDict.keys()

sortKeys.sort()

sortKeys.reverse() # sort makes ascending sort for numbers

for key in sortKeys:

print scoreDict[key] + "\t" + key

