
functions

Genome 559: Introduction to Statistical
and Computational Genomics

Prof. James H. Thomas

import sys

matrixFile = open(sys.argv[1], "r")

matrix = [] # initialize empty matrix

line = matrixFile.readline().strip() # read first line

while len(line) > 0: # until end of file

fields = line.split("\t") # split line on tabs, giving a list of strings

intList = [] # create an int list to fill

for field in fields: # for each field in current line

intList.append(int(field)) # append the int value of field to intList

matrix.append(intList) # after intList is filled, append it to matrix

line = matrixFile.readline().strip() # read next line and repeat loop

matrixFile.close()

for row in matrix: # go through the matrix row by row

for val in row: # go through each value in the row

print val, # print each value without line break

print "" # add a line break after each row is done

Take a deep breath and think how much you've learned.

4 weeks ago, this would have been gibberish:

Problem Set 3 - code clarity

Pick names that make sense:

count for counting something
index for an index in a list or string
xFileName for a file name
xFile for a file

Use a counter in a loop only if you need one:

for line in lineList:

line.do-something

rather than

for index in range(0, len(lineList):

line[index].do-something

Once you have a program that is bug-free and
works, look for ways to make it simpler:

How about:

myText = myFile.read()

finalText = myText.replace("\n", "")

(or just finalText = myFile.read().replace("\n", "")

myText = myFile.read()

myList = myText.split("\n")

finalText = myList[0]

for index in range(1:len(myList)):

finalText += myList[index]

Instead of:

(Hmm, all this does is replace new lines in original text…)

query = "foo"

for index in len(seq):

pos = seq.find(foo, index)

or

query = "foo"

while pos >= 0:

pos = seq.find(foo)

seq = seq(1:)

These loops "work" to find every instance
of foo in seq, but what is wrong with them?

Review

• Start paying attention to program robustness and
speed.

• During program development, use print liberally to
see intermediate values. (then remove them)

• Dictionaries - key : value pairs.

• Dictionaries are useful when you want to look up
some data (value) based on a key.

Dictionary and List access times

• Accessing a list by index is very fast.

• Accessing a dictionary by key is very fast.

• Accessing a list by value (e.g. list.index(myVal)
or list.count(myVal)) can be SLOW.

0 val1

1 val2

2 val3

3 val4

4 val5

…

max last_val

by value:

is myVal == val1 ?

is myVal == val2 ?

is myVal == val3 ?

is myVal == val4 ?

is myVal == val5 ?

is myVal == last_val ?

0 val1

1 val2

2 val3

3 val4

4 val5

…

max last_val

by index:
4

(index points directly to
position in memory)

What is a function?

• Reusable piece of code

• Takes defined inputs (arguments) and may produce
(return) a defined output

• Helps simplify and organize your program

• Helps avoid duplication of code

- write once, use many times

What a function does

things happen

stuff goes in (arguments)

other stuff comes out (return)

Other than the arguments and the return, everything else inside the
function is invisible outside the function (variables assigned, etc.).

The function doesn't need to have a return - if it does something to
one of the arguments, this may be visible outside the function (for
example: if the argument is a list, the function could sort the list).

What is a function?

import math

def jc_dist(rawdist):

if rawdist < 0.75 and rawdist > 0.0:

newdist = (-3.0/4.0) * math.log(1.0 - (4.0/3.0)* rawdist)

return newdist

elif rawdist >= 0.75:

return 1000.0

else:

return 0.0

def <function_name>(<arguments>):

<function code block>

<usually return something>

define the function and
argument(s) names

do something

return a computed
value

Using a function

<function defined here>

import sys

rawDist = sys.argv[1]

correctedDist = jc_dist(rawDist)

Building a function

import sys

import math

rawdist = float(sys.argv[1])

if rawdist < 0.75 and rawdist > 0.0:

newdist = (-3.0/4.0) * math.log(1.0 - (4.0/3.0)* rawdist)

print newdist

elif rawdist >= 0.75:

print 1000.0

else:

print 0.0

Jukes-Cantor distance correction written directly in program:

import sys

import math

def jc_dist(rawdist):

rawdist = float(sys.argv[1])

if rawdist < 0.75 and rawdist > 0.0:

newdist = (-3.0/4.0) * math.log(1.0 - (4.0/3.0)* rawdist)

print newdist

elif rawdist >= 0.75:

print 1000.0

else:

print 0.0

Building a function - step 1

add a function
definition

import sys

import math

def jc_dist(rawdist):

rawdist = float(sys.argv[1])

if rawdist < 0.75 and rawdist > 0.0:

newdist = (-3.0/4.0) * math.log(1.0 - (4.0/3.0)* rawdist)

print newdist

elif rawdist >= 0.75:

print 1000.0

else:

print 0.0

add a function
definition

Building a function - step 2

delete line - use function
argument instead of argv

import sys

import math

def jc_dist(rawdist):

if rawdist < 0.75 and rawdist > 0.0:

newdist = (-3.0/4.0) * math.log(1.0 - (4.0/3.0)* rawdist)

return newdist

elif rawdist >= 0.75:

return 1000.0

else:

return 0.0

add a function
definition

deleted line - use function
argument instead of argv

Building a function - step 3

return value rather
than printing it

Use the function

raw = 0.23

corrected = jc_dist(raw)

print corrected

Once you've written the function, you can forget
about it and just use it!

log()

readline(), readlines(), read()

sort()

split(), replace(), lower()

We've used lots of functions before

Note - some of these are functions attached to objects (called object
"methods") rather than stand-alone functions. We'll cover this soon.

These functions are part of the Python programming environment
(in other words they are already written for you).

Function names and access
Giving a function an informative name is very important!
Long names are fine if needed.

def makeDictFromTwoLists(keyList, valueList):

def translateDNA(dna_seq):

def getFastaSequences(fileName):

• For now, your function will have to be defined within your program and
before you use it.

• Later you'll learn how to save a function in a module so that you can load
your module and use the function just the way we do for Python modules.

• Usually, potentially reusable parts of your code should be written as
functions.

• Your program (outside of functions) will often be very short - largely
reading arguments and making output.

Sample problem #1

import sys

myFile = open(sys.argv[1], "r")

make an empty dictionary

scoreDict = {}

for line in myFile:

fields = line.strip().split("\t")

record each value with name as key

scoreDict[fields[0]] = float(fields[1])

myFile.close()

Below is part of the program from a sample problem last class. It reads
key - value pairs from a tab-delimited file and makes them into a
dictionary. Rewrite it so that there is a function called makeDict that
takes a file name as an argument and returns the dictionary.

Use:
scoreDict = makeDict(myFileName)

seq00036<tab>784

seq57157<tab>523

seq58039<tab>517

seq67160<tab>641

seq76732<tab>44

seq83199<tab>440

seq92309<tab>446

etc.

Here's what the file
contents look like:

import sys

def makeDict(fileName):

myFile = open(fileName, "r")

myDict = {}

for line in myFile:

fields = line.strip().split("\t")

myDict[fields[0]] = float(fields[1])

myFile.close()

return myDict

myFileName = sys.argv[1]

scoreDict = makeDict(myFileName)

Solution #1

Two things to notice here:
- you can use any file name (string) when you call the function
- you can assign any name to the function return

(in programming jargon, the function lives in its own namespace)

name used
inside function

name used to
call function

Sample problem #2

Write a function that mimics the <file>.readlines() method. Your
function will have a file object as the argument and will return a list
of strings (in exactly the format of readlines()). Use your new
function in a program that reads the contents of a file and prints it to
the screen.

You can use other file methods within your function - just don't use
the <file>.readlines()method directly.

This isn't a useful function, since Python developers already did it
for you, but the point is that the functions you write are just like
the ones we've already been using. BTW you will learn how to attach
functions to objects a bit later (things like the split function of
strings, as in myString.split()).

Solution #2

import sys

def readlines(file):

text = file.read()

tempLines = text.split("\n")

lines = []

for tempLine in tempLines:

lines.append(tempLine + "\n")

return lines

myFile = open(sys.argv[1], "r")

lines = readlines(myFile)

for line in lines:

print line.strip()

Challenge problem
Write a program that reads a file containing a tab-delimited matrix of
pairwise distances and puts them into a 2-dimensional list of distances
(floats). Have the program accept two additional arguments, which are
the names of 2 sequences from the matrix, and print their distance.

Here's what the file contents look like:

names<tab>seq1<tab>seq2<tab>seq3

seq1<tab>0<tab>0.1<tab>0.2

seq2<tab>0.1<tab>0<tab>0.3

seq3<tab>0.2<tab>0.3<tab>0

Be sure it works with ANY matrix
file with this format! (the file will
always be a square matrix of size
N+1 x N+1 (N for each distance and 1
row and column for names)).

>python dist.py matrixFile seq2 seq3

0.3

Make the matrix reading a function.

Hints - use the first line to make a dictionary of names to list indices;
your function should return a 2-dimensional list of floats.

Challenge solution
import sys

def makeMatrix(fileName):

myFile = open(fileName, "r")

myMatrix = []

lines = myFile.readlines()

for rowIndex in range(1,len(lines)):

fields = lines[rowIndex].strip().split("\t")

matRow = []

for colIndex in range(1,len(fields)):

matRow.append(float(fields[colIndex]))

myMatrix.append(matRow)

myFile.close()

return myMatrix

def makeNameMap(line):

nameMap = {}

fields = line.strip().split("\t")

for index in range(1,len(fields)):

nameMap[fields[index]] = index - 1

return nameMap

distMatrix = makeMatrix(sys.argv[1])

nameMap = makeNameMap(open(sys.argv[1], "r").readline())

print distMatrix[nameMap[sys.argv[2]]][nameMap[sys.argv[3]]]

(this could be done more efficiently -
this way you open the file twice)

I wrote both complex parts
as functions; this makes the
point that once these are
written and debugged, the
program is simple and easy to
read (the last three lines).

looks up the argument string as the key in
nameMap, which returns the index of the name

in the 2-dimensional list of distance values

