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Abstract Craniofacial researchers have used anthropometric measurements taken
directly on the human face for research and medical practice for decades. With the
advancements in 3D imaging technologies, computational methods have been de-
veloped for the diagnoses of craniofacial syndromes and the analysis of the human
face. Using advanced computer vision and image analysis techniques, diagnosis and
quantification of craniofacial syndromes can be improved and automated. This pa-
per describes a craniofacial image analysis pipeline and introduces the computa-
tional methods developed by the Multimedia Group at the University of Washington
including data acquisition and preprocessing, low- and mid-level features, quantifi-
cation, classification, and content-based retrieval.
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1 Introduction to Craniofacial Analysis

Craniofacial research focuses on the study and treatment of certain congenital mal-
formations or injuries of the head and face. It has become a multi-disciplinary area
of expertise in which the players consist of not only oral and maxillofacial or plastic
surgeons, but also craniofacial researchers including a large array of professionals
from various backgrounds: basic scientists, geneticists, epidemiologists, develop-
mental biologists, and recently computer scientists.

It is important to represent the shape of the human face in a standard way that fa-
cilitates modeling the abnormal and the normal. Morphometrics, the study of shape,
has been a crucial toolbox for craniofacial research. Classical morphometrics-based
craniofacial analyses use anthropometric landmarks and require taking physical
measurements directly on the human face. These measurements are then used in a
numerical analysis that compares the patient’s measurements with the normal pop-
ulation to detect and quantify the deformation. Another technique for measuring the
severity of shape deformations involves having clinical experts qualitatively match
the shape of the patient’s head to a set of templates. Template-matching is a common
method in clinical practice, but it heavily depends on human judgment.

As the field of computer vision has progressed, its techniques have become in-
creasingly useful for medical applications. Advancements in 3D imaging technolo-
gies led craniofacial researchers to use computational methods for the analysis of the
human head and face. Computational techniques aim to automate and improve es-
tablished craniofacial analysis methods that are time consuming and prone to human
error and innovate new approaches using the information that has become available
through digital data.

This paper describes a set of computational techniques for craniofacial analysis
developed by the University of Washington Multimedia Group. Section 2 describes
the craniofacial syndromes whose analyses we have performed. Section 3 summa-
rizes our previous work in craniofacial research and describes our image analysis
pipeline, including preprocessing, feature extraction, quantification, and classifica-
tion. Section 4 introduces our new work on the comparison of different features in
similarity-based retrieval, and section 5 concludes the paper.

2 Craniofacial Syndromes

We will describe three relevant syndromes: deformational plagiocephaly, 22q11.2
deletion syndrome, and cleft lip and palate.



Craniofacial Image Analysis 3

2.1 Deformational Plagiocephaly

Deformational plagiocephaly can be defined as abnormal head shape (parallelogram
shaped skull, asymmetric flattening, misalignment of the ears) due to external pres-
sure on the infant’s skull [17]. Fig. 1 shows photographs of several infants’ heads
from the top view, with and without plagiocephaly. Although considered a minor
cosmetic condition by many clinicians, if left untreated, children with plagiocephaly
may experience a number of medical issues, ranging from social problems due to
abnormal appearance to delayed neurocognitive development.

(a) (b) (c)

Fig. 1 Deformational Plagiocephaly– (a) (b) Top views of heads of children with deformational
plagiocephaly. (c) Top view of a child’s head without deformational plagiocephaly

The severity of plagiocephaly ranges from mild flattening to severe asymmetry
along a wide spectrum that is difficult to quantify. Clinical practices to diagnose
and quantify plagiocephaly involve identifying anthropometric landmark points and
taking measurements between the points. In one approach, the clinician determines
the areas with the greatest prominence on the right and left sides of the head and
measures diagonally the distances from these sites to the back of the head. The
smaller length is subtracted from the larger resulting in an asymmetry number called
the transcranial diameter difference [10]. Another technique compares the infant’s
skull shape to four templates: normal skull [score 0], mild shape deformation [score
1], moderate shape deformation [score 2], and severe shape deformation [score 3].

As an alternative to taking physical measurements directly on the infant’s head,
a technique called HeadsUp developed by Hutchinson et al. performs automated
analysis of 2D digital photographs of infant heads fitted with an elastic head circum-
ference band that has adjustable color markers to identify landmarks [13]. Although
this semi-automatic approach is less intrusive and faster, it is still subjective, and
the analysis is only 2D. There are some recently proposed techniques that use 3D
surface data: Plank et al. [22] use a laser shape digitizer to obtain the 3D surface of
the head, but still require manual identification of the landmarks. Lanche et al. [14]
use a stereo-camera system to obtain a 3D model of the head and propose a method
to compare the infant’s head to an ideal head template.
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2.2 22q11.2 Deletion Syndrome

22q11.2 deletion syndrome (22q11.2DS) is a disorder caused by a 1.5-3MB deletion
on chromosome 22 and occurs in 1 of every 4000 individuals [21]. Over 180 pheno-
typic features are associated with this condition, including well-described craniofa-
cial features such as asymmetric face shape, hooded eyes, bulbous nasal tip, tubular
appearance to the nose, retrusive chin, prominent nasal root, small nasal alae, small
mouth, open mouth and downturned mouth, among others. Some manifestations of
facial features are very subtle, and even craniofacial experts find them difficult to
identify without measurements and analysis. Fig. 2 shows example manifestations
of the syndrome on the face.

Fig. 2 22q11.2DS craniofacial features– Example 3D face mesh data of children with 22q11.2
deletion syndrome.

Early detection of 22q11.2DS is important, because the condition is known to
be associated with cardiac anomalies, mild-to-moderate immune deficiencies and
learning disabilities. Similar to the detection of deformational plagiocephaly, the
assessment of 22q11.2DS has commonly been through physical examination and
craniofacial anthropometric measurements. After identification of the symptoms,
genetic tests can be conducted to confirm and complete the diagnosis.

There has been little effort to automate the diagnosis and analysis of 22q11.2DS.
Boehringer et al. [7] used Gabor wavelets to transform 2D photographs of the in-
dividuals and PCA to classify the dataset. However, the method requires manual
placement of anthropometric landmarks on the face. Hammond et al. [12] proposed
a dense surface model method followed by the application of PCA on 3D surface
mesh data, which also requires manually placed landmarks to align the meshes.

2.3 Cleft Lip and Palate

Cleft lip is a birth defect that occurs in approximately 1 in every 1000 newborns
and can be associated with cleft palate [2]. The deformity is thought to be a result
of the failure of fusion in utero and may be associated with underdevelopment of
tissues. Cleft lip and palate can range from multiple deep severe clefts in the palate
to a single incomplete or hardly noticeable cleft in the lip. Fig. 3 shows examples
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of deformations on infants’ faces caused by cleft lip and/or palate. The condition
can be treated with surgery and the treatment can produce a dramatic change in
appearance of the lip depending on the severity of the cleft. Since the potential
results and treatment options depend on the severity of the cleft, it is important to
have an objective assessment of the deformity.

Fig. 3 Cleft lip – Example 3D face mesh data of children with cleft lip. Cleft of the lip can cause
a wide range of deformations from mild to severe.

The assessment of cleft deformities relies on a clinical description that can be
subjective and landmark-based measurements that can be time consuming and dif-
ficult to perform on young infants. Additionally, there is no “gold standard” for
evaluation and the correlation between the scores given by different medical experts
can be very low [26].

There has not been much computational work done towards the quantification of
the cleft lip using the face shape. Nonetheless, some work has been done on face
symmetry, which can be used in cleft assessment, in computer vision. Although not
applied to cleft assessment, Benz et al. introduced a method for 3D facial symmetry
analysis using the iterative closest point algorithm to register the mirrored mesh
to the original [5]. This method is reliable when the data is properly aligned and
heavily depends on the choice of the initial plane about which the data is mirrored.

3 Craniofacial Image Analysis Pipeline

Our pipeline consists of data acquisition and preprocessing, feature extraction, and
high-level operations of quantification, classification and content-based image re-
trieval. Fig. 4 summarizes the steps of the pipeline and their relationships, as dis-
cussed in this section.

3.1 Data Acquisition and preprocessing

With the developments in 3D imaging technologies, the use of 3D information has
become widespread in research and applications. Craniofacial research greatly ben-
efits from these developments due to the lower cost and higher accuracy of new
imaging technologies like laser scanners and stereo-photography, in comparison to
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Fig. 4 The craniofacial image analysis pipeline overview.

traditional methods such as direct measurements on the patient or 2D image-based
techniques. Stereo imaging systems are popular among medical researchers, since
they make it possible to collect large amounts of data in a non-invasive and conve-
nient way.

(a) (b) (c)

Fig. 5 3D Face Mesh Acquisition– (a) 3dMD R© system with multiple cameras, (b) The texture
images from 4 different cameras on front, back, left and right, (c) The 3D mesh produced with the
stereophotography technique.

The 3dMD R© system is a commercial stereo-photography system commonly used
for medical research. It uses texture information to produce a 3D mesh of the hu-
man face that consists of points and triangles. Fig. 5 shows an example 3dMD setup
where multiple pods of cameras are placed around a chair and simultaneously ob-
tain photographs of the patient from different angles. Since the resulting mesh is not
aligned and contains pieces of clothing, it needs to be processed before further anal-
ysis. It is usually an expert who cleans the mesh to obtain the face and normalizes
the pose, so that the head faces directly front. The accuracy and efficiency of this
step is crucial to any analysis conducted on the data.

Wu et al. proposed a method for automated face extraction and pose-normalization
from raw 3D data [25]. The method makes use of established face detection algo-
rithms for 2D images using multiple photographs produced by the stereo system.
Fig. 6 shows the steps of the algorithm starting from original mesh (a). Using the lo-
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(a) (b) (c) (d) (e)

Fig. 6 Automated mesh cleaning – (a) Original mesh acquired by 3DMD R©, (b) Frontal snapshot
of the rotated mesh, (c) Facial landmarks detected by 2D face detection algorithm, (d) Pose nor-
malized mesh using landmarks and Procrustes superimposition, (e) Extracted face.

cal curvature around every point on the surface in a supervised learning algorithm,
candidate points are obtained for the inner eye corners and the nose tip (Section
3.2.1 describes the calculation of the curvature values). The true eye corners and
nose tip are selected to construct a triangle within some geometric limits. Using the
eye-nose-eye triangle, the 3D mesh is rotated so that the eye regions are leveled and
symmetric, and the nose appears right under the middle of the two eyes (Fig.6b).
The face detection algorithm proposed in [29] is used on a snapshot of the rotated
data and a set of facial landmarks are obtained (not to be confused with anthropolog-
ical landmarks used by medical experts) Fig. 6c). By projecting these 2D landmarks
to the 3D mesh and using the Procrustes superimposition method [11], the mesh
is rotated so that the distance between the landmarks of the head and the average
landmarks of the aligned data is minimal (Fig. 6d). After alignment, the bounding
box for the 3D surface is used to cut the clothing and obtain the face region. Ad-
ditionally, surface normal vectors are used to eliminate neck and shoulders from
images where the bounding box is not small enough to capture only the face (Fig.
6e). The automation of mesh cleaning and pose normalization is an important step
for processing large amounts of data with computational methods.

3.2 Feature Extraction

We describe both low-level and mid-level features used in craniofacial analysis.

3.2.1 Low-level Features

A 3D mesh consists of a set of points, identified by their coordinates (x, y, z) in
3D space, and the connections between them. A cell of a mesh is a polygon de-
fined by a set of points that form its boundary. The low-level operators capture local
properties of the shape by computing a numeric value for every point or cell on the
mesh surface. Low-level features can be averaged over local patches, aggregated
into histograms as frequency representations and convoluted with a Gaussian filter



8 Ezgi Mercan, Indriyati Atmosukarto, Jia Wu, Shu Liang and Linda G. Shapiro

to remove noise and smooth the values.
Surface Normal Vectors: Since the human head is roughly a sphere, the normal vec-
tors can be quantified with a spherical coordinate system. Given the normal vector
n(nx,ny,nz) at a 3D point, the azimuth angle θ is the angle between the positive x
axis and the projection n′ of n to the xz plane. The elevation angle φ is the angle
between the x axis and the vector n.

θ = arctan(
nz

nx
) φ = arctan

(
ny√

(n2
x +n2

z )

)
(1)

where θ ∈ [−π,π] and φ ∈ [−π

2 ,
π

2 ].
Curvature: There are different measures of curvature of a surface: The mean curva-
ture H at a point p is the weighted average over the edges between each pair of cells
meeting at p.

H(p) = 1/|E(p)| ∑
e∈E(p)

length(e)∗angle(e) (2)

where E(p) is the set of all the edges meeting at point p , and angle(e) is the angle
of edge e at point p. The contribution of every edge is weighted by length(e). The
Gaussian curvature K at point p is the weighted sum of interior angles of the cells
meeting at point p.

K(p) = 2π− ∑
f∈F(p)

area( f )/3∗ interior angle( f ) (3)

where F(p) is the set of all the neighboring cells of point p, and interior angle( f )
is the angle of cell f at point p. The contribution of every cell is weighted by
area( f )/3.

(a) (b) (c)

Fig. 7 Curvature measures– (a) Mean curvature, (b) Gaussian curvature and (c) Besl-Jain curva-
ture visualized. Higher values are represented by cool (blue) colors while lower values are repre-
sented by warm (red) colors.

Besl and Jain [6] suggested a surface characterization of a point p using the sign
of the mean curvature H and the Gaussian curvature K at point p. Their character-
ization includes eight categories: peak surface, ridge surface, saddle ridge surface,
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plane surface, minimal surface, saddle valley, valley surface and cupped surface.
Fig. 7 illustrates mean, Gaussian and Besl-Jain curvature on a head mesh.

3.2.2 Mid-level Features

Mid-level features are built upon low-level features to interpret global or local shape
properties that are difficult to capture with low-level features.
2D Azimuth-Elevation Histograms Azimuth and elevation angles, together, can de-
fine any unit vector in 3D space. Using a 2D histogram, it is possible to represent
the frequency of cells according to their orientation on the surface. On relatively flat
surfaces of the head, all surface normal vectors point in the same direction. In this
case, all vectors fall into the same bin creating a strong signal in some bins of the
2D histogram. Fig. 8 shows the visualization of an example 8×8 histogram.

Fig. 8 Visualization of an
8× 8 2D azimuth-elevation
histogram. The histogram
bins (left) with high values
are shown with warmer colors
(red, yellow). The image on
right shows the localization
of high-valued bins where the
areas corresponding to bins
are colored in a similar shade.

Symmetry Plane and Related Symmetry Scores Researchers from computer vision
and craniofacial study share an interest in the computation of human face symmetry.
Symmetry analyses have been used for studying facial attractiveness, quantification
of degree of asymmetry in individuals with craniofacial birth defects (before and
after corrective surgery), and analysis of facial expression for human identification.

(a) (b) (c)

Fig. 9 (a) Symmetry plane, (b) Front view of grid showing θ and z for indexing the patches, (c)
Top view of the grid showing the radius r and angle θ .

Wu et al. developed a two-step approach for quantifying the symmetry of the face
[24]. The first step is to detect the plane of symmetry. Wu described several methods
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for symmetry plane detection and proposed two methods: learning the plane by
using point-feature-based region detection and calculating the mid-sagittal plane
using automatically-detected landmark points (Section 3.2.3). After detecting the
plane, the second step is to calculate the shape difference between two parts of the
face. Wu proposes four features based on a grid laid out on the face (Fig. 9):

1. Radius difference:
RD(θ ,z) = |r(θ ,z)− r(−θ ,z)| (4)

where r(θ ,z) is the average radius value in the grid patch(θ ,z), and (−θ ,z) is
the reflected grid patch of (θ ,z) with respect to the symmetry plane.

2. Angle difference:
AD(θ ,z) = cos(β(θ ,z),(−θ ,z)) (5)

where β(θ ,z),(−θ ,z) is the angle between the average surface normal vectors of
each mesh grid patch (θ ,z) and its reflected pair (−θ ,z).

3. Gaussian curvature difference:

CD(θ ,z) = |K(θ ,z)−K(−θ ,z)| (6)

where K(θ ,z) is the average Gaussian curvature in the grid patch(θ ,z), and
(−θ ,z) is the reflected grid patch of (θ ,z) with respect to the symmetry plane.

4. Shape angle difference:

ED(θ ,z) = |#points(θ ,z)> T h
#points(θ ,z)

− #points(−θ ,z)> T h
#points(−θ ,z)

| (7)

where T h is a threshold angle, and #points(θ ,z) is the total number of points
with dihedral angle larger than T h in patch (θ ,z).

These symmetry features produce a vector of length M×N where M is the num-
ber of horizontal grid cells and N is the number of vertical grid cells.

3.2.3 Morphometric Features

Most of the work on morphometrics in the craniofacial research community uses
manually-marked landmarks to characterize the data. Usually, the data are aligned
via these landmarks using the well-known Procrustes algorithm and can then be
compared using the related Procrustes distance from the mean or between individu-
als [11]. Fig. 10 (a) shows a sample set of landmarks. Each landmark is placed by a
medical expert using anatomical cues.

Auto-Landmarks

Traditional direct anthropometry using calipers is time consuming and invasive; it
requires training of the expert and is prone to human error. The invasiveness of the
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method was overcome with the development of cost-effective 3D surface imaging
technologies when experts started using digital human head data to obtain measure-
ments . However, manual landmarking still presents a bottleneck during the analysis
of large databases.

Liang et al. presented a method to automatically detect landmarks from 3D face
surfaces [15]. The auto-landmarking method starts with computing an initial set of
landmarks on each mesh using only the geometric information. Starting from a pose-
normalized mesh, the geometric method finds 17 landmark points automatically,
including 7 nose points, 4 eye points, 2 mouth points and 4 ear points. The geometric
information used includes the local optima points like the tip of the nose (pronasale)
or the sharp edges like the corners of the eyes. The sharp edges are calculated using
the angle between the two surface normal vectors of two cells sharing an edge. The
geometric method also uses information about the 17 landmarks and the human
face such as the relative position of landmarks with respect to each other and the
anatomical structures on the human face.

(a) (b) (c) (d)

Fig. 10 (a) 24 anthropometric landmarks marked by human experts. (b) Sellion and tip of the chin
are detected. (c) 2 parallel planes go through chin tip and sellion, 6 parallel planes constructed
between chin and sellion, and 2 above sellion. (d) On each plane, 9 points are sampled with equal
distances, placing the middle point on the bi-lateral symmetry plane. 90 pseudo-landmark points
calculated with 10 planes and 9 points.

The initial landmark set is used for registering a template, which also has initial
landmarks calculated, to each mesh using a deformable registration method [1]. The
17 landmark points (Fig. 11) provide a correspondence for the transformation of
each face. When the template is deformed to the target mesh, the distance between
the mesh and the deformed template is very small and every landmark point on the
template can be transferred to the mesh. The average distance between the initial
points generated by the geometric method and the expert points is 3.12 mm. This
distance is reduced to 2.64 mm after deformable registration making the method
very reliable. The method has no constraint on the number of landmarks that are
marked on the template and transferred to each mesh. This provides a flexible work-
flow for craniofacial experts who want to calculate a specific set of landmarks on
large databases.
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Pseudo-Landmarks

For large databases, hand landmarking is a very tedious and time consuming pro-
cess that the auto-landmarking method tries to automate. Moreover, anthropometric
landmarks cover only a small part of the face surface, and soft tissue like cheeks
or forehead do not have landmarks on them. This makes pseudo-landmarks an at-
tractive alternative. Hammond proposed a dense correspondence approach using
anthropometric landmarks [12]. The dense correspondence is obtained by warping
each surface mesh to average landmarks and finding the corresponding points using
an iterative closest point algorithm. At the end, each mesh has the same number of
points with the same connectivity and all points can be used as pseudo-landmarks.
Claes et al. proposed a method called the anthropometric mask [8], which is a set
of uniformly distributed points calculated on an average face from a healthy pop-
ulation and deformed to fit onto a 3D face mesh. Both methods required manual
landmarking to initialize the process.

(a) Nose points (b) Mouth points (c) Ear points (d) Eye points

Fig. 11 Initial landmarks detected by the geometric method.

Motivated by the skull analysis work of Ruiz-Correa et al. [23], Lin et al. [16]
and Yang et al. [27], Mercan et al. proposed a very simple, but effective, method
that computes pseudo-landmarks by cutting through each 3D head mesh with a set
of horizontal planes and extracting a set of points from each plane [18]. Corre-
spondences among heads are not required, and the user does no hand marking. The
method starts with 3D head meshes that have been pose-normalized to face front.
It computes two landmark points, the sellion and chin tip, and constructs horizontal
planes through these points. Using these two planes as base planes, it constructs m
parallel planes through the head and from each of them samples a set of n points,
where the parameters n and m are selected by the user. Fig. 10 shows 90 pseudo-
landmarks calculated with 10 planes and 9 points on a sample 3D mesh. Mercan et
al. show in [18] that pseudo-landmarks work as well as dense surface or anthropo-
metric mask methods, but they can be calculated without human input and from any
region of the face surface.
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3.3 Quantification

Quantification refers to the assignment of a numeric score to the severity of a disor-
der. We discuss two quantification experiments.

3.3.1 3D Head Shape Quantification for Deformational Plagiocephaly

Atmosukarto et al. used 2D histograms of azimuth-elevation angles to quantify the
severity of deformational plagiocephaly [4]. On relatively flat surfaces of the head,
normal vectors point in the same direction, and thus have similar azimuth and ele-
vation angles. By definition, infants with flat surfaces have larger flat areas on their
skulls causing peaks in 2D histograms of azimuth and elevation angles.

Using a histogram with 12× 12 bins, the method defines the sum of histogram
bins corresponding to the combination of azimuth angles ranging from −90◦ to
−30◦ and elevation angles ranging from −15◦ to 45◦ as the the Left Posterior Flat-
ness Score (LPFS). Similarly, the sum of histogram bins corresponding to the com-
bination of azimuth angles ranging from −150◦ to −90◦ and elevation angles rang-
ing from −15◦ to 45◦ gives the the Right Posterior Flatness Score (RPFS). Fig. 12
shows the selected bins and their projections on the back of the infant’s head. The
asymmetry score is defined as the difference between RPFS and LPFS. The asym-
metry score measures the shape difference between two sides of the head, and the
sign of the asymmetry score indicates which side is flatter.

(a) (b)

Fig. 12 On a 12×12 histogram (a), Left Posterior Flatness Score (red) and Right Posterior Flatness
Scores (blue) are calculated by summing the relevant histogram bins. Selected bins correspond to
points on the skull (b) that are relevant to the plagiocephaly.

The absolute value of the calculated asymmetry score was found to be correlated
with experts’ severity scores and the score calculated by Hutchinson’s HeadsUp
method [13] that uses anthropometric landmarks. Furthermore, the average flat-
ness scores for left posterior flattening, right posterior flattening and control groups
shows clear separation, providing a set of thresholds for distinguishing the cases.
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3.3.2 Quantifying the Severity of Cleft Lip and Nasal Deformity

Quantifying the severity of a cleft is a hard problem even for medical experts. Wu et
al. proposed a methodology based on symmetry features [26]. The method suggests
that the asymmetry score is correlated with the severity of the cleft. It compares the
scores with the severity of clefts assessed by surgeons before and after reconstruc-
tion surgery. Wu et al. proposed three measures based on asymmetry:

1. The point-based distance score is the average of the distances between points
that are reflected around the symmetry plane:

PDa =
1
n ∑

p
distance(ps,q) (8)

where n is the number of points and q is the reflection of point p.
2. The grid-based radius distance score is the average of the radius distance (RD)

over the grid cells:

RDa =
1

m×m ∑
θ ,z

RD(θ ,z) (9)

where m is the number of cells of a square grid, and RD is defined in (4).
3. The grid-based angle distance score is the average of the angle distance (AD)

over the grid cells:

ADa =
1

m×m ∑
θ ,z

AD(θ ,z) (10)

where m is the number of cells of a square grid, and AD is defined in (5).

(a) severe case pre-op (b) moderate case pre-op (c) mild case pre-op
RDa = 3.28 mm RDa = 2.72 mm RDa = 1.64 mm

(a) severe case post-op (b) moderate case post-op (c) mild case post-op
RDa = 1.03 mm RDa = 0.95 mm RDa = 1.22 mm

Fig. 13 RDa reduction after the surgery for three cases. The red and green colors show the big
difference between the left and right sides. Red means higher and green means lower. Blue means
small difference between the two sides.
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Three distances are calculated for infants with clefts before and after surgery
and compared with the rankings of the surgeons. The asymmetry scores indicate
a significant improvement after the surgery and a strong correlation with surgeons’
rankings. Fig. 13 shows the visualization of RDa scores for clefts with three different
severity classes given by surgeons and the comparison of before and after surgery
scores.

3.4 Classification

We describe two classification experiments.

3.4.1 Classifying the Dismorphologies Associated with 22q11.2DS

The craniofacial features associated with 22q11.2 deletion syndrome are well-
described and critical for detection in the clinical setting. Atmosukarto et al. pro-
posed a method based on machine learning to classify and quantify some of these
craniofacial features [3]. The method makes use of 2D histograms of azimuth and
elevation angles of the surface normal vectors calculated from different regions of
the face, but it uses machine learning instead of manually selecting histogram bins.

Fig. 14 Projections of 2D histograms of azimuth and elevation angles to the face. The projection
shows discriminating patterns between individuals with and without midface hypoplasia.

Using a visualization of the 2D azimuth-elevation angles histogram, Atmo-
sukarto pointed out that certain bins in the histogram correspond to certain regions
on the face, and the values in these bins are indicative of different face shapes. An
example of different midface shapes is given in Fig. 14. Using this insight, a method
based on sophisticated machine learning techniques was developed in order to learn
the bins that are indicators of different craniofacial features.

In order to determine the histogram bins that are most discriminative in classi-
fication of craniofacial features, Adaboost learning was used to select the bins that
give the highest classification performance of a certain craniofacial feature against
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others. The Adaboost algorithm is a strong classifier that combines a set of weak
classifiers, in this case, decision stumps [9]. Different bins are selected for different
craniofacial abnormalities. Note that the bins selected for each condition cover areas
where the condition causes shape deformation.

After selecting discriminative histogram bins with Adaboost, a genetic program-
ming approach [28] was used to combine the features. Genetic programming imi-
tates human evolution by changing the mathematical expression over the selected
histogram bins used for quantifying the facial abnormalities. The method aims to
maximize a fitness function, which is selected as the F-measure in this work. The
F-measure is commonly used in information retrieval and is defined as follows:

F(prec,rec) = 2× (prec× rec)
(prec+ rec)

(11)

where prec is the precision and rec is the recall metric. The mathematical expression
with the highest F-measure is selected through cross-validation tests.

3.4.2 Sex Classification using Pseudo-Landmarks

What makes a female face different from a male face has been an interest for com-
puter vision and craniofacial research communities for quite some time. A great
deal of previous work on sex classification in the computer vision literature uses 2D
color or gray tone photographs rather than 3D meshes.

Mercan et al. used pseudo-landmarks in a classification setting to show their
efficiency and the representation power over anthropometric landmarks [18]. L1-
regularized logistic regression was used in a binary classification setting where the
features were simply the x, y and z coordinates of the landmark points. In a compar-
ative study where several methods from the literature are compared in a sex clas-
sification experiment, it was shown that pseudo-landmarks (95.3% accuracy) and
dense surface models (95.6% accuracy) perform better than anthropometric land-
marks (92.5% accuracy) but pseudo-landmarks are more efficient in calculation than
dense surface models and do not require human input. L1-regularization also pro-
vides feature selection and in the sex classification setting, the pseudo-landmarks
around the eyebrows were selected as the most important features.

4 Content-Based Retrieval for 3D Human Face Meshes

The availability of large amounts of medical data made content based image re-
trieval systems useful for managing and accessing medical databases. Such retrieval
systems help a clinician through the decision-making process by providing images
of previous patients with similar conditions. In addition to clinical decision support,
retrieval systems have been developed for teaching and research purposes [20].
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Retrieval of 3D objects in a dataset is performed by calculating the distances be-
tween the feature vector of a query object and the feature vectors of all objects in the
dataset. These distances give the dissimilarity between the query and every object
in the dataset; thus, the objects are retrieved in the order of increasing distance. The
retrieval performance depends on the features and the distance measure selected for
the system. In order to evaluate the features introduced in Section 3.2, a synthetic
database was created using the dense surface correspondence method [12]. 3D sur-
face meshes of 907 healthy Caucasian individuals were used to create a synthetic
database. The principle components of the data were calculated and 100 random
synthetic faces were created by combining principle components with coefficients
randomly chosen from a multivariate normal distribution modeling the population.
Fig. 15 shows the average face of the population and some example synthetic faces.
Fig. 16 shows four example queries made on the random dataset with adult female,
adult male, young female and young male samples as queries. Although the retrieval
results are similar to the query in terms of age and sex, it is not possible to evaluate
the retrieval results quantitatively using randomly produced faces, since there is no
“ground truth” for the similarity.

Fig. 15 Average face (left) and some examples (right) from the synthetic database.

Fig. 16 Some queries made on the randomly produced synthetic dataset with the pseudo-landmark
feature calculated from the whole face. The query is an adult female in the first row, an adult male
in the second row, a young female in the third row and a young male in the fourth row.
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In a controlled experiment, the performance of the retrieval system can be mea-
sured by using a dataset that contains a subset of similar objects. Then, using the
rank of the similar object in a query, a score based on the average normalized rank
of relevant images [19] is calculated for each query:

score(q) =
1

N×Nrel
× (

Nrel

∑
i=1

Ri−
Nrel× (Nrel +1)

2
) (12)

where N is the number of objects in the database, Nrel is the number of objects
relevant to the query object q, and Ri is the rank assigned to i-th relevant object.
The evaluation scores range from 0 to 1, where 0 is the best and indicates that all
relevant objects are retrieved before any other objects. To create similar faces in a
controlled fashion, the coefficients of the principle components were selected care-
fully, and 10 similar faces were produced for each query. For the synthesis of similar
faces, we changed the coefficients of 10 randomly chosen principle components of
the base face by adding or subtracting 20% of the original coefficient. These values
are chosen experimentally by taking the limits of the population coefficients into
consideration. Fig. 17 shows a group of similar faces. Adding 10 new face sets with
1 query and 10 similar faces in each, a new dataset of 210 faces was obtained. The
new larger dataset was used to evaluate the performance of shape features by run-
ning 10 queries for each feature-region pair. The features were calculated in four
regions: the whole face, nose, mouth and eyes. Low-level features azimuth angles,
elevation angles and curvature values were used to create histograms with 50 bins.
2D azimuth-elevation histograms were calculated at 8× 8 resolution. Landmarks
were calculated with our auto-landmarking technique. Pseudo-landmarks were cal-
culated with 35 planes and 35 points. Both landmarks and pseudo-landmarks were
aligned with Procrustes superimposition, and pseudo-landmarks were size normal-
ized to remove the effect of shape size. Table 1 shows the average of the evaluation
scores for each feature-region pair. Fig. 18 shows a sample retrieval.

Fig. 17 A query face (left) and 10 similar faces (right) produced by changing the coefficients of
the principle components of the query face.

The pseudo-landmarks obtained the best (lowest) retrieval scores for the nose,
mouth and eyes, while the 2D azimuth-elevation angle histogram obtained the best
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Fig. 18 Top 30 results of a query with the pseudo-landmark feature calculated from the whole
face. The top left face is the query and the manually produced similar faces are marked with white
rectangles. The faces without white rectangle are random faces in the database that happen to be
similar to the query.

Table 1 Evaluation results for
different features and face re-
gions in retrieval experiments
on a synthetic database.

face nose mouth eyes
azimuth angles 0.077 0.150 0.226 0.168

elevation angles 0.099 0.159 0.107 0.185
Gaussian curvature 0.223 0.386 0.333 0.385

2D azimuth-elevation histogram 0.046 0.109 0.087 0.142
landmarks 0.164 NA NA NA

pseudo-landmarks 0.102 0.028 0.041 0.094
pseudo-landmarks (sized) 0.054 0.041 0.042 0.118

score for the whole face. However, the sized pseudo-landmarks were a close second
for whole faces.

5 Conclusions

This paper presents several techniques that automate the craniofacial image analysis
pipeline and introduces methods to diagnose and quantify several different cranio-
facial syndromes. The pipeline starts with the preprocessing of raw 3D face meshes
obtained by a stereo-photography system. Wu et al. [25] provided an automatic pre-
processing method that normalizes the pose of the 3D mesh and extracts the face.
After preprocessing, features can be calculated from the 3D face meshes, including
azimuth and elevation angles, several curvature measures, symmetry scores [24],
anthropometric landmarks [15] and pseudo-landmarks [18]. The extracted features
have been used in the quantification of craniofacial syndromes and in classification
tasks. Our new work, a content-based retrieval system built on multiple different fea-
tures, was introduced, and the retrievals of similar faces from a synthetic database
were evaluated.

Medical imaging has revolutionized medicine by enabling scientists to obtain
lifesaving information about the human body – non-invasively. Digital images ob-
tained through CT, MR, PET and other modalities have become standards for di-
agnosis and surgical planning. Computer vision and image analysis techniques are
being used for enhancing images, detecting anomalies, visualizing data in different
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dimensions and guiding medical experts. New computational techniques for cranio-
facial analyses provide a fully automatic methodology that is powerful and efficient.
The techniques covered in this paper do not require human supervision, provide ob-
jective and more accurate results, and make batch processing of large amounts of
data possible.

References
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