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ABSTRACT
Facial symmetry analysis is complex in both computer vi-
sion and medicine. This paper presents a method to com-
pute the plane of symmetry for 3D meshes of the human
head and face through learning. The two steps of processing
include: 1) landmark-related region detection and 2) sym-
metry plane computation in the learning stage, which uses
the landmarks and the standard symmetry planes identified
by medical experts for training. Experimental results show
that our method performs better than the existing mirror
method [1], and is robust to rotation and noise.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence—
Learning ; I.4.9 [Computing Methodologies]: Image Pro-
cessing and Computer Vision—Applications; J.3 [Computer
Applications]: Life and Medical Sciences
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1. INTRODUCTION
Symmetry is a common phenomenon in nature, and there

are many applications based on analysis of symmetry in com-
puter vision and graphics, such as image editing [8, 12], sym-
metrizing deformations for 3D data [13], and data repair [15,
19]. Researchers from computer vision and medical imaging
share an interest in computation of human face symmetry.
Symmetry analyses have been used for studying facial at-
tractiveness [10], quantification of degree of asymmetry in
individuals with craniofacial birth defects (before and after
corrective surgery) [17], and analysis of facial expression for
human identification [11]. Benz et al. [1] introduced a com-
mon method for the 3D facial symmetry analysis in which
the original data is mirrored at an arbitrary plane, then
the original and the mirrored mesh are registered using the
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iterated-closest-point algorithm [2]. Based on the registered
data, the symmetry plane is determined from the centers of
associated points. This method is reliable when the data
is properly aligned [7], but the results rely heavily on the
choice of the initial plane about which the data is mirrored
and the method is not robust to noise [1].

In this paper, a two step approach for learning the plane of
symmetry is proposed. The first step is point-based region
detection, while the second step uses appropriate regions to
determine symmetry properties.

2. METHOD
The proposed method is based on machine learning. There

are two stages of processing: landmark-related region detec-
tion and symmetry plane computation.

2.1 Data Format and Training Set
The 3D data used in our study were collected by investiga-

tors in the Craniofacial Center of Seattle Children’s Hospital
(SCH) using the 3dMDcranialTM imaging system. The data
are 3D meshes without facial texture maps. 40 head meshes
from 40 individuals were used for training. Two medical ex-
perts labeled a set of landmarks on the original textured 3D
models and the average value for each landmark was used
for training. All training data were aligned to face forward
by a semi-automatic method [18].

2.2 Learning Landmark-related Points
The regions used in this work are related to facial land-

marks. The landmarks used here are a subset of the land-
marks used for craniofacial anthropometric measurements
for clinical and research applications [9]. Seven midline
points and four paired landmarks are used, as illustrated
in Fig. 1 (a). Multiple points in a small region around a
certain landmark are used for training instead of a single
point, because they have similar properties and are more
reliable. In the training set, points around expert-marked
landmark k are labeled as positive samples for that land-
mark, and points that are not near landmark k form the
pool of negative samples for that landmark.

Local properties are calculated to form a signature vector
at each surface point. The mean curvature H and Gaus-
sian curvature K [3] were estimated on both the original
data and on a sequence of smoothed data. Hamming win-
dows [6] with multiple sizes were used to smooth the data.
Signature vectors were used to train a REPTree (the Re-
duced Error Pruned Tree) [16] classifier ML to learn the
interesting points on the 3D surface mesh. The WEKA im-



(a) (b)

Figure 1: (a) The 3D head mesh data with land-
marks labeled by medical experts (b)Interesting re-
gion prediction for inner corner of eye

plementation of REPTree was used in all experiments [5].
After training was complete, each model ML,k was able to
label every point on a 3D head as either interesting or not
for each landmark k and to provide a confidence score for
that landmark. A threshold, T = 0.98, was applied to the
confidence scores. Figure 1(b) shows sample results of land-
mark classification for inner corner of eye (en). The false
positives will be removed in the next stage.

2.3 Learning Regions to Use in Computing the
Location of Symmetry Plane

The second training step, which is used to build the sym-
metry model, is based on the interesting regions. The points
obtained from the last step are extracted and used to form
connected components. Components less than 10 points are
removed. For each component m in landmark model k, the
center coordinates Cm are extracted, as well as the eigen-
values λm1, λm2 and λm3 of the matrix formed by the 3D
coordinates of all the points in component m. Eigenvalues
are used because they reflect the size of the interesting re-
gions and are invariant to rotation.

In the training set, the standard symmetry plane SSP is
determined from the 11 ground-truth landmarks. This plane
is selected by minimizing the distance of the plane to each
of the single landmarks and to the average of each of the
paired landmarks as shown in Figure 2(a).

(a)SSP (b)“Good” components

Figure 2: Training symmetry model.(a) Standard
symmetry plane (SSP ) ground truth (b) a “good”
single component and a good pair of components

A single component which lies on the symmetry plane
and pairs of components that are approximately symmet-
ric to the symmetry plane are marked as positive samples,
which means they are suitable for use in symmetry plane
construction. The rest of the components are negative sam-

ples. Figure 2(b) shows a good single component and a
good pair of components.

The feature vector to describe single component m in-
cludes the number of points in component m, as well as the
3 eigenvalues. The feature vector for paired components m
and n is designed to capture the difference between these
two components. It contains the distance between their ar-
eas, eigenvalues, and centers. Using the features Csingle
along with positive and negative samples for Goodsingle, a
REPTree classifier MS was trained to learn if a component
is suitable for construction of the plane of symmetry. Sim-
ilarly, using the features Cpair and positive and negative
samples for Goodpair, another REPTree classifier MP was
trained to learn if a pair of components is suitable.

The above two steps are performed on the training set.
Now for each landmark k, there is one landmark model
ML,k, one model for determining good single components
MS,k and one model for determining good pairs of compo-
nents MP,k.

2.4 Computing the Symmetry Plane
For new data classification, the steps to identify “good”

components are:

1. Smooth the data by Hamming windows of the designed
sizes

2. Compute curvatures for original data and all the smoothed
data for each point on the 3D head mesh

3. For every landmark type k

Identify interesting regions: use landmark model
ML,k to get a landmark-related confidence score
for every point on the mesh.

Compute features for components: pick all points
with score larger than T = 0.98 and form com-
ponents of 10 or more points. Compute Csingle
and Cpair for all components.

Classify components: run the model for good single
components MS,k and the model for good pair
components MP,k to label components as good
singles, good pairs, or neither.

4. Accumulate the good singles and good pairs for all the
landmark models

After all the “good” components have been classified, a
symmetry plane is determined that satisfies two criteria: 1)
the plane should be perpendicular to the line connecting
each good pair and lie along the centers of good pairs. 2),
the plane should be close to the centers of good single com-
ponents. The plane P was chosen to minimize the function
f

f =
∑

D(P,Cs) +
∑

D(P,Cp) + γAngle(P,Cp)

where D(P,Cs) is the distance of plane P to the centers of
good single components, D(P,Cp) is the distance of plane
P to the centers of good pairs of components, Angle(P,Cp)
stands for the angle between the normal of plane P and the
vector connecting a good pair of components, and γ is a
weight. In order to obtain the optimal plane, the RANSAC
[4] algorithm was applied to get rid of false positive “good”
components, which are not consistent with the others. (See
Figure 3.)



(a) Centers of (b) Computed
“Good” components symmetry plane

Figure 3: Centers of good singles and good pairs
and the plane of symmetry (a) RANSAC prunes out
false positives (green) (b) the plane of symmetry is
shown on an original 3D mesh

3. EXPERIMENTS AND RESULTS
Several experiments on different 3D data sets including

heads at different orientations, facial images with significant
asymmetry, and heads with asymmetrical shape were run.
We compared our method with the commonly used mirror
approach [1, 14].

3.1 Performance on Data Set one
This data set consists of 15 3D heads and landmarks la-

beled by medical experts. Using the landmarks, the stan-
dard symmetry plane (SSP ) was obtained for each 3D head
and served as its ground truth.

There are two metrics used to evaluate the result of the
computed symmetry plane (CSP ), both from our learning
method and the mirror method. The first metric is the angle
Difa between the SSP and the CSP . The second metric F-
measure reflects how the CSP and the SSP agree with each
other on a point by point basis. The closer the F-measure
value is to 1, the closer are the CSP and the SSP . Figure 4
gives the comparison of our learning method and the mirror
method on this data set. Our method does not result in
large errors and outperforms the mirror method in 60% of
the cases in this data set. The mirror method shows very
poor performance in two cases, both of which are caused by
improper initial position of the data.

3.2 Performance on Noisy, Rotated Data Set
With different sizes of volume blocks placed on one or both

sides of the face, one individual’s 3D image was taken ten
times to form the second data set. The landmarks labeled
by medical experts were used to compute the SSP (ground
truth) for each version of the data. In order to test each
method’s capability to handle random rotations, all data
were rotated in the yaw and roll directions for 30◦, 60◦ and
90◦. As such, 16 orientations were created per head in the
original data set, leading to 160 head meshes.

Our learning method and the mirror method were applied
to the rotated data. Figure 5 shows the capability for both
methods to handle rotated heads. The horizontal axis is the
rotation angle label. The vertical axes represent the angle
between the CSP and the SSP in (a) and F-measure in

(a) Difa (b) F-measure
(lower is better) (higher is better)

Figure 4: Comparison of our learning approach to
the mirror approach (a) Angle differences (b) F-
measure for point differences

(a) Difa (b) F-measure
(lower is better) (higher is better)

Figure 5: Comparison of our learning approach to
previous used mirror approach according to different
rotation angles (a) Angle differences (b) F-measure

(b). The numbers are the average of the 10 heads at each
particular rotation. The mirror method performs best with
yaw or roll in one direction within 30◦. The learning method
produced good results despite the effect of noise (asymmetry
created using volume blocks on cheeks) and rotation.

3.3 Performance on Cleft Data Set
The most challenging data set in our study included 3

individuals with unrepaired clefts of the lip and palate, 19
individuals who had undergone lip repair, and 18 individuals
with other craniofacial conditions, such as skull asymmetry.
The first column of Fig. 6 gives an example of a child with
a bilateral cleft of the lip and palate. Our learning method
can find the symmetry plane across the center of the mouth
even though it has an abnormal shape, while the mirror
method does not find the center well. In the second col-
umn of Fig. 6, the 3D mesh is missing data points on the
lower right. Our method can correctly find the symmetry
plane. In the last column of Fig. 6, the individual has an
asymmetrical head shape at the back of his head (poste-
rior plagiocephaly), which adversely affects the result of the
mirror method, but our learning method is able to perform
correctly despite this asymmetry. While there is no ground
truth SSP available for this data set, medical experts noted
that our results were highly correlated with their clinical
impressions of the midline plane of symmetry.



Figure 6: sample results of learning method (top
row) and mirror method (bottom row) of a bi-lateral
cleft, missing data and asymmetrical head shape.

4. CONCLUSIONS
We have developed a new methodology for automatically

computing the plane of symmetry for human faces. Our
method uses two stages of learning: landmark-related region
learning and symmetry region learning. Our experimental
results show that it performs better than the commonly used
mirror method. Furthermore, our method does not require
pose-alignment processing and is invariant to rotation.

Future work includes quantification of facial asymmetry,
which would have applications for medical research, and
could be used for more general tasks, such as face recogni-
tion and facial expression analysis. In addition, this learning
framework could be transferred to other 3D models to com-
pute the plane of symmetry or to look for partial or global
symmetry in 3D data.
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