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ABSTRACT
Craniosynostosis is the premature fusion of the bones of the
calvaria resulting in abnormal skull shapes that can be asso-
ciated with increased intracranial pressure. The goal of this
work is to analyze the various 3D skull shapes that mani-
fest in isolated single suture craniosynostosis. A logistic re-
gression is used to identify different types of synostosis and
quantify the differences. Due to the high-dimensionality of
the feature data, a sophisticated feature selection technique
is required to avoid overfitting and to improve the classi-
fication accuracy on the unseen data. In addition, feature
selection allows the identification of surface areas that con-
tribute to the major skull deformations that characterize iso-
lated synostosis. We applied three sparse feature selection
methods: L1 regularization (lasso [9]), fused lasso ([10]) and
a novel regularization method we have developed called the
clustering lasso (cLasso). L1 regularized logistic regression
locates important surface points, and the fused lasso groups
these points into regions. The cLasso was designed to as-
sign similar weights to groups of correlated shape features.
Experimental results indicated that the regularized logistic
regression models achieve a significantly lower misclassifica-
tion rate than unregularized logistic regression.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]; I.5.1 [Pattern Recog-
nition]: Models; I.5.4 [Pattern Recognition]: Applica-
tions; I.4.9 [Image Processing and Computer Vision]:
Applications
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1. INTRODUCTION AND MOTIVATION
This paper is focused on 3D shape analysis of the skulls of

patients with craniosynostosis. Craniosynostosis is a com-
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mon congenital condition in which one or more of the fibrous
sutures in an infant’s calvaria fuse prematurely. This results
in restricted skull and brain growth. Because the brain can-
not expand perpendicular to the fused suture, it redirects
growth in the direction of the open sutures, often resulting
in an abnormal head shape and facial features. Some cases
of craniosynostosis may result in increased intracranial pres-
sure on the brain and developmental delays [8]. It is esti-
mated that craniosynostosis affects 1 in 2,000 live births [7].

The motivation for this work is two-fold. First, as in pre-
vious work [3] [5], we propose methods for classification and
quantification of three different types of isolated single su-
ture craniosynostosis: coronal, metopic and sagittal. Sec-
ond, in order to help physicians and researchers to better
understand specific shape deformations, we pursue our anal-
ysis further to determine the local area of the skull in which
the shape deformation was the most salient.

In our work, we built a system that automatically gener-
ates a shape representation called the cranial image (CI) [3]
from the CT image of a patient’s skull. The cranial images
are used as features to distinguish between skulls of patients
with different types of craniosynostosis. A logistic regression
is used for this classification task, as well as for quantifica-
tion of the shape deformation of the different types of cran-
iosynostosis. Then, three variations of the logistic regression
model are applied: L1 regularized logistic regression [9], the
fused lasso [10] and the clustering lasso (cLasso), which is
proposed in this paper. These models select subsets of fea-
tures from the cranial image, which represent skull regions
that cause major shape differences among the three types of
craniosynostosis.

2. RELATED LITERATURE
Calvarial (skull) abnormalities are frequently associated

with severely impaired central nervous system functions due
to brain abnormalities, increased intra-cranial pressure and
abnormal build-up of cerebrospinal fluid. In [6], the authors
introduced several different craniofacial descriptors that have
been used in studies for two craniofacial disorders: 22q11.2
deletion syndrome (a genetic disorder) and deformational
plagiocephaly/brachycephaly. They provided feature extrac-
tion tools for the study of craniofacial anatomy from 3D
mesh data obtained from the 3dMD active stereo photogram-
metry system. These tools produce quantitative represen-
tations (descriptors) of the 3D data that can be used to
summarize the 3D shape as pertains to the condition being
studied and the question being asked. This work is different
from ours in that it analyzed the shape of the midface and
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Figure 1: Framework of the system for automatic
CI generation: with an input of 3D volume data in
random pose, the system first extracts the skull and
performs pose normalization, so that it is symmetric
with respect to the right and left sides. Then, a base
plane is located based on several landmarks that are
biologically important. After that, one or multiple
planes that are parallel to the base plane are ex-
tracted and a distance matrix (CI [3]) is composed
from the pairwise distance between evenly spaced
points on the skull contours.

back of the head, while our work focuses on the shape of the
skull.

Previous studies have also examined the specific skull shapes
of patients. In [3] a novel approach to efficiently classify skull
deformities caused by metopic and sagittal synostoses using
symbolic shape descriptors was developed. In [5] a novel
set of scaphocephaly severity indices (SSIs) for predicting
and quantifying head- and skull-shape deformity in chil-
dren diagnosed with isolated sagittal synostosis (ISS) was
described, and their sensitivity and specificity was compared
with those of the traditional cranial index.

These efforts differ from our approach in that they were
not fully automatic and therefore required human interac-
tion for selecting planes and landmarks from the skull for
the purpose of extracting shape features. They use machine
learning tools, but not a logistic regression approach.

3. CRANIAL IMAGE (CI) GENERATION

3.1 System Framework
A system was built for automatic generation of the cranial

image [3]. The framework of the system is shown in Fig. 1.
The following sections give a detailed explanation of each
module of the system.

3.2 Base Plane Localization
In the first module, a base plane is located on the skull

based on two important landmarks: the nasion and the
opisthion (Fig. 2). The nasion is the intersection of the
frontal and two nasal bones of the human skull [1]. Its man-
ifestation on the visible surface of the face is a distinctly
depressed area directly between the eyes, just superior to
the bridge of the nose. The opisthion is the mid-point of the
posterior margin of the foramen magnum on the occipital
bone [1]. The two points were chosen because of their sig-
nificance for analysis of the human skull, and because they
are stable during the human growth process.

The approach to finding the nasion and opisthion includes
several steps. First, the plane of symmetry of the left and
right sides of the skull is extracted. The landmarks are ex-
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Figure 2: Nasion, opisthion and the base plane of the
skull: the nasion is the intersection of the frontal
and two nasal bones of the human skull [1]; the
opisthion is the mid-point on the posterior margin of
the foramen magnum on the occipital bone [1]; the
base plane is the plane that goes through the nasion
and the opisthion and is perpendicular to the middle
plane of the head.

pected to be on the intersection of this plane with the skull,
which forms an outline as shown in Fig. 1. Then, three
points are found; the tip of the nose, the nasion and the
opisthion. These three points are detected in an order such
that the location of each point is based on that of the previ-
ous one. The tip of the nose is first and is located by finding
the point with the smallest horizontal value (x value in the
Cartesian coordinate system) of the skull outline. The na-
sion is located as the point closest to the tip of the nose,
which is above it and which has a zero curvature in the
vertical direction. The opisthion is located as the point in
the left part of the outline, which has the closest distance
to the nasion of all points below the nasion. After that, a
base plane is identified as the one that goes through the na-
sion and the opisthion and is perpendicular to the plane of
symmetry of the head, as shown in Fig. 2.

3.3 Plane Selection
Our shape measure is based on the distances between

points on the surface of the skull. The second module se-
lects planes on which the points are located. The top plane
of the skull is a plane that has intersection with the skull and
which is parallel to the base plane but has the furthest dis-
tance to the base plane. Our system can extract any plane
that is parallel to the base plane and located between the
base plane and the top plane of the skull, based on the ratio
of its distance to these two planes. Multiple planes may be
selected and used together.

The selection of planes is related to our previous studies,
which have proven the effectiveness of three planes in the
skull: A-plane, F-plane and M-plane. The A-plane is at the
top of the lateral ventricle, the F-plane is at the foramen
of Munro, and the M-plane is at the level of the maximal
dimension of the fourth ventricle [3]. In [3], these planes
were manually selected using anatomical knowledge. In our
approach, these three planes are automatically located be-
tween the base plane and the top plane of the skull with
certain ratio values. The ratio values are estimated as 0.27,
0.36 and 0.54.

Our software allows users to select any planes according
to their distance from the base plane. The three planes from
[3] (A-plane, F-plane and M-plane) were used individually in
the first set of experiments (section 5.2) in order to simulate



the experiments in [3]. Then in the rest of our experiments,
10 planes that are evenly distributed across the whole skull
were used to provide a more general 3D shape descriptor.

3.4 Point Extraction and CI Generation
In the third and last module of the system, the outlines

of the skulls are extracted on the planes from the previous
module, and N points are evenly extracted along the out-
lines (N = 100). Pairwise distances among these points are
calculated, forming an N by N distance matrix. The num-
ber at position (i, j) of the matrix represents the distance
between point number i and point number j. The matrix is
symmetric, thus the name cranial image (CI) [3].

4. SHAPE ANALYSIS USING CI
Our work on classification and shape quantification strongly

differs from [3]. This section describes our methodology.

4.1 Logistic Regression for Classification
The cranial image is used for further analysis of the shape

of the skulls. The first task is to classify the skulls into
different types of craniosynostosis: coronal, metopic, and
sagittal. Specifically, we consider all pixel values in a cranial
image as features of a skull, and use logistic regression for
classification.

Logistic regression is a workhorse in machine learning that
uses a generalized linear model for binomial regression.

p(y|x,w) =
1

1 + exp(−y(wTx + w0))
(1)

where vector x contains the feature values of a data sample;
y is its class label (for example, y = 1 refers to coronal
and y = −1 refers to metopic), w contains the coefficients
for x, and w0 is the intercept. Furthermore, w0 and w are
model parameters, and p(y|x,w) is the probability that a
data sample belongs to a certain class.

Coefficients w0 and w in this model are the optimal pa-
rameters that minimize the following loss function:

l(w0,w) =

n∑
i=1

log(1 + exp(−yi(wTxi + w0))) (2)

{w0,w} = min
w0,w

l(w0,w) (3)

where yi is the actual class label of a sample xi. The pre-
diction of a sample data x is class label 1 if this criteria is
true: p(y = 1|x,w) > 0.5.

4.2 L1 Regularized Logistic Regression
Due to the high-dimensionality of the data (i.e. a large

number of features and a modest size of samples), learning
the unregularized logistic regression [3] will result in overfit-
ting. To avoid overfitting, we applied L1 regularization that
induces sparsity in the solution w such that many of the
coefficients in w are set to exactly zero. L1 regularization
[9] has been rigorously proven to be effective in selecting
relevant features when there are exponentially many irrele-
vant ones [2]. The log-likelihood of L1 regularized logistic
regression is as follows.

l(w0,w) =
n∑

i=1

log(1+exp(−yi(wTxi+w0)))+λ
m∑
i=1

|wi| (4)

where λ is a regularization parameter for the L1-norm. Ge-
ometrically, each feature corresponds to two points on the
skull surface; thus, the selected features - those correspond-
ing to non-zero coefficients - can represent the skull points
that contribute most to the shape deformation of the skulls.

4.3 The Fused Lasso for Selecting Feature Com-
binations

One problem with L1 regularization for our purpose is that
when features are highly correlated, it arbitrarily chooses
one of many correlated features. Thus, although there are
likely to be “regions” - involving multiple features that are
physically close - that are predictive of the abnormalities,
our results show that surface points corresponding to the se-
lected features are usually scattered on the skull. This makes
it hard to derive a medically relevant conclusion. Here, we
propose to use a variation of L1 regularization that better
reflects the underlying structure of our feature data. Specif-
ically, we use the fused lasso to induce bias such that the
selected points that are close to each other form salient re-
gions on the skull.

The fused lasso [10] places a constraint on the weights
of the features that are geographically related - sharing the
same or neighboring surface points. The loss function of the
fused lasso is,

l(w0,w) =

n∑
i=1

log(1 + exp(−yi(wTxi + w0)))

+λ

m∑
i=1

|wi|+ µ
∑

{wi,wj}∈M

|wi − wj | (5)

where µ is a regularization parameter for the new penalty
term. M is a set that contains all pairs of features that are
neighbors, whose endpoints are the same or next to each
other. In equation [5], λ

∑m
i=1 |wi| penalizes large feature

weights, and µ
∑

{wi,wj}∈M |wi −wj | penalizes large weight

differences between neighboring features. This new penalty
term induces geographically related features to be assigned
similar weights.

4.4 cLasso for Forming Feature Clusters
L1 regularized logistic regression tends to assign different

weights to highly correlated features. When features are
highly correlated, it arbitrarily chooses one of them and as-
signs a non-zero weight only to it. The fused lasso places
constraints on the weight differences base on their geograph-
ical relationships. Another option is to penalize the weight
differences of correlated features. We propose a new form
of regularized logistic regression, namely the clustering lasso
(cLasso). The model for the clustering lasso is:

p(y|x,w,wc) =
1

1 + exp(−y(wTx + wcT + w0))
(6)

where x contains the feature values of a data sample; y is
its class label (for example, y = 1 refers to sagittal and
y = −1 refers to non-sagittal); w contains the coefficients
for x; wc contains the coefficients for c (the cluster centers
of x); and w0 is the intercept. Furthermore, w0, w and wc

are model parameters, while p(y|x,w,wc) is the probability
that a data sample belongs to a certain class.



Then the loss function for the cLasso becomes

l(w0,w,w
c) =

n∑
i=1

log(1 + exp(−yi(wTxi + wcT ci + w0)))

+λ

m∑
i=1

|wi|+ ν

k∑
i=1

|wc
i | (7)

where ci (i ∈ [1, k]) is the centroid of a group of features
{xi1 ,xi2 ,...,xik} (its feature value is their average); wc

i is the
weight for ci; and ν is the regularization parameter for the
weights of the cluster centers.

This loss function is designed to cluster the features based
on their correlation, and penalize their shared weights (wc

i )
and individual weights (wi1 , wi2 , ..., wik ) respectively. When
ν is small and λ is large, individual weights are penalized,
and features tend to be split into groups based on their cor-
relation and to share the same weights. When λ is large
enough, this model is equivalent to the model of L1 regular-
ized logistic regression (equation [4]).

Parameter wc
i encourages correlated features to share the

same weight, and wi allows unique features to be used.
Therefore, the cLasso is equivalent to using only shared
weights (wc

i ) when each centroid ci (i ∈ [1, k]) is computed as
a weighted average with the weights determined by (wi1 , wi2 ,
. . . , wik ).

5. EXPERIMENTS

5.1 Medical data
Our approach for analysis of skull shape was tested on 3D

CT images of children’s heads from hospitals in four different
cities in the US. The children each had one of the three types
of craniosynostosis: coronal, metopic or sagittal. In total we
examined 70 CT images, each comprising a stack of image
slices.

The experiments were designed to test the ability of our
system to identify different types of craniosynostosis. Cra-
nial images were generated using our system with one or
multiple planes. Logistic regression, L1 regularized logistic
regression, the fused lasso and the cLasso were used for clas-
sification, quantification and interest region localization. In
the following, we first tested the ability to classify different
types of craniosynostosis using only one plane. Then mul-
tiple planes were used for classification and interest region
localization. Regularization parameters in the models were
analyzed, and classification results were compared using dif-
ferent models. Implementation of L1 regularized logistic re-
gression is from the authors of [2], and implementation of
the fused lasso is the machine learning package SLEP [4].

5.2 Single-Plane Classification
In the first experiment, we tested the cranial images gen-

erated using only one plane: the A, F or M plane (introduced
in section 3.3). 100 points were extracted on each plane to
calculate the distance matrix. Misclassification rates were
measured using 3-fold cross validation. A logistic regression
model was used as the classifier.

The results of single-plane classification are shown in Ta-
ble 1. The classifier was first tested on each pair of classes
and then for all three classes at once, using all features.
Based on the experimental results, the lowest misclassifica-
tion rates are achieved using the A-plane or F-plane alone.

One Plane C vs M M vs S S vs C 3-Classes
A-Plane 3.29% 12.67% 26.29% 10%
F-Plane 4.39% 17.57% 25.57% 10%
M-Plane 6.29% 17.14% 27.14% 10%

Table 1: Misclassification rates using a single plane:
C represents coronal; M represents metopic; S rep-
resents sagittal. Classification is run for both pairs
of classes and multiple classes.

Although the three planes are biologically meaningful, the
misclassification rates of sagittal versus coronal are high,
over 25% using any of the 3 planes. Improvements are
needed for the results to be able to help with craniosyn-
ostosis research.

5.3 Parameter Selection
In the second experiment for multi-plane classification,

the cranial images were generated from 10 planes that were
evenly spaced across the skull. 10 points were extracted
from each plane, and a cranial image with 10,000 features
was used for classification using logistic regression and its
variations with different regularization terms. Misclassifica-
tion rates were measured using 3-fold cross validation.

The first problem in conducting these tests was to deter-
mine the value of the regularization parameters λ, µ and ν in
equations [4], [5] and [7]. The effect of these regularization
parameters on classification accuracy was explored by test-
ing the misclassification rate of sagittal versus coronal with
fixed training and testing sets. Fig. 3 examines the rela-
tionship of λ, µ, ν and the misclassification rate in equation
[4], [5] and [7]. Based on the observation in the figures, the
classification error is the lowest when 0.5 ≤ λ ≤ 1, µ ≈ 0.2
and ν < 0.1.

In the classification task, the regularization parameters
were found using 10-fold cross validation on the training
set. Specifically, the training set for each test was divided
into 10 sub-folds. Nine of them were used for training with
certain regularization parameters, and the other fold was
used for testing the misclassification rate. The parameter
setting with the lowest average rate across all 10 sub-folds
was chosen.

5.4 Classification Results & Visualization
Classification results using equally-spaced boundary points

from 10 planes with the four different models are shown in
Table 2. The results of logistic regression are modest despite
the large number of features it uses. This substantiates the
overfitting problem when using this model. The misclassi-
fication rate greatly improves when regularization is used
in the logistic regression model. Specifically, the clustering
lasso, which was proposed in this paper, exhibits a signifi-
cant improvement in the misclassification rate, particularly
for the sagittal class. The interest region localization results
using the fused lasso are shown in Fig. 4.

6. CONCLUSIONS
In this work, we built a system that performed automatic

analysis of skull shape. A shape measure called the cranial
image (CI) is automatically generated by our system. Lo-
gistic regression, L1 regularized logistic regression, the fused
lasso and the clustering lasso, which is a model proposed in
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Figure 3: Misclassification rate vs regularization pa-
rameters: the x axis is value of regularization pa-
rameter λ, µ and ν; the y axis is the misclassification
rate achieved using the value.

this paper, are used for classification of different types of
isolated single suture craniosynostosis. Our experimental
results show a significant improvement in the misclassifica-
tion rate using the model we proposed. The clustering lasso
is also used for quantification of different syndromes. L1 reg-
ularized logistic regression and the fused lasso are used to
select features from the CI. With these selected features, the
most representative deformed shape regions can be shown on
the surfaces of patient skulls.

We expect our methodology to be useful in craniofacial
research. The interest region location and quantification
results help researchers interested in clinical outcomes re-
search. The classification results may provide a convenient
tool to assist with remote diagnostics.
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Multiple Planes C vs M M vs S S vs C 3-Classes
Logistic regression 13.57% 13.57% 23.93% 10%
L1 regression 7.14% 5% 6.43% 8.57%
Fused lasso 5.71% 5.71% 4.29% 18.57%

Clustering lasso 4.29% 4.29% 5.71% 7.14%

Table 2: Misclassification rates using multiple
planes: C represents coronal; M represents metopic;
S represents sagittal. Classification is run for both
pair of classes and multiple classes.

Coronal Metopic Sagittal

Figure 4: Visualization of selected points together
with their pairwise distances using the fused lasso.
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