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Abstract— This paper introduces a new method to quantify
and characterize shape changes during early facial development
without the use of landmarks. Landmarks are traditionally
used in morphometric analysis, but very few can be iden-
tified reliably across all stages of embryonic development.
This method uses deformable registration to produce a dense
vector field describing the point correspondences between two
images. Low and mid-level features are extracted from the
deformable vector field to find regions of organized differences
that are biologically relevant. These methods are shown to
detect regions of difference when evaluated on chick embryo
images warped with small magnitude deformations in regions
critical to midfacial development.

I. INTRODUCTION
Facial development involves the coordinated growth of

multiple three-dimensional structures, which grow towards
each other in pairs and fuse into a single craniofacial
structure [5]. Any disruption of these structures or the
timing of their growth can result in deformations of the
midface. These disruptions can be caused by a complex
combination of genetic and environmental factors. A detailed
characterization of developmental shape change is needed to
provide information on which factors play a major role.

Study of the developing face is complicated by the diffi-
culty of measuring its three-dimensional growth. Traditional
craniofacial shape analysis methods rely on landmarks that
are manually placed on an image by an expert [8] [9].
Landmarks are chosen at locations that are easy to identify
across individuals, so the relative difference in position of the
landmarks can be compared. However, for embryos, very few
landmarks are available that can be reliably identified across
samples from different developmental stages.

This work introduces a new method for comparing shape
differences without the use of landmarks, developed for
the analysis of optical projection tomography (OPT) images
of chick embryos at different developmental stages. OPT
imaging is highly suited for imaging small specimens up to
2cm in diameter with isotropic resolutions up to 3 microns.
In this method, deformable registration is used to provide
a dense vector field describing the point correspondences
between two images at each point. This is equivalent to
using continuous landmark data. The use of this vector field
to describe shape differences poses a challenge in terms
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of dimensionality. This challenge is addressed by novel
measures to identify regions where the shape changes are
likely to be biologically relevant.

II. RELATED WORK

A. Geometric Morphology

Geometric morphometrics (GM) is the most commonly
used method for measuring the difference in shape between
two biological samples. This method relies on the use of
landmarks, which can be precisely identified on each indi-
vidual and are placed manually by an expert. Landmarks are
typically located at the junctures of identifiable structures.
The gold standard for aligning landmarks across samples and
obtaining their relative shape information is the Procrustes
method [2], [6]. Comparisons between aligned landmarks can
be made across groups using statistical analysis [8], [9].

B. Deformation-Based Morphology

Ashburner et al. introduced the term deformation-based
morphology to describe a method for analyzing group differ-
ences in brain shape using deformation vector fields, which
arose as a spin-off from the problem of brain registration [1].
The deformation vector field of each individual describes the
spatial normalization of that image to a standard anatomical
space. In [1] multivariate statistics similar to those used in
traditional GM analysis are applied to the vector field pa-
rameters of a group. These statistics are used to discriminate
between groups with different gross morphometry.

Deformation morphology has also been applied to more
standard morphometric measurement applications. Olafsdot-
tir et al. present a computational mouse atlas in [4] that
represents the average of a group of normal, wild-type mice.
This atlas is warped to each subject from a normal or mutated
strain. Principal Component Analysis (PCA), Independent
Component Analysis (ICA) and Sparse Principal Component
Analysis (SPCA) are all applied to reduce the data dimen-
sionality and find the modes of the deformation that can
discriminate between groups.

III. DATA AND PREPROCESSING

To investigate facial shape differences of chick embryos,
the external contour of a sample needs to be extracted from
the OPT scan image. Noise in the image can cause bright
pixels that are reflected outside the object, gaps or holes, or
indistinct borders between the object and the background.
In addition, the internal structure of the sample, such as
the brain cavity and eye lenses, can result in a complex
segmentation rather than the external contour that is desired.



For this application, a method based on geodesic active
contours is used to address these issues and locate the surface
of the sample [3]. Once the contours have been extracted,
an affine transformation is applied to align the images and
remove differences in pose.

IV. METHODOLOGY

The goal of the method presented in this work is to find
and describe significant differences between a pair of chick
embryo images. A deformable registration is used to assess
local differences at every point between two images, or an
image and a mirrored copy. Regions of interest are identified
and features are extracted that will be used to characterize
the regions.

The deformable registration determines the spatial trans-
form mapping points from a source to homologous points on
an object in a target image. The output is a dense deformation
vector field in which the vector at each point describes the
spatial transformation of that point. When applied to three-
dimensional images of two objects, these vectors reflect the
structural differences between the source and target objects.
For this application, a B-spline deformable transform using
a mutual information metric was chosen, since it is widely
applicable and computationally efficient.

To interpret the deformation vector field in a meaningful
way, it is necessary to define which differences between two
images are significant. For this application, differences in a
region showing organization are assumed to be significant.
This may indicate areas where an underlying process is
directing the difference in shape, in contrast to random
fluctuations. While all vectors in such a region may not have
similar values for properties such as magnitude or angle,
variations should occur smoothly over the surface.

A. Low-Level Vector Field Properties

To locate regions in the deformable vector field with some
form of organization, three low-level vector properties were
chosen. The properties selected are:

1) deformation vector magnitude,
2) cosine distance between the deformation vector and the

surface normal vector,
3) cosine distance between the deformation vector and a

predefined reference vector.
Each property can be extracted from the vector field and

used as low-level features or to calculate mid-level features.

B. Mid-Level Vector Field Properties

Once the low-level features have been extracted from the
vector field, they can be used to calculate mid-level features
which identify areas of organization.

1) Average Neighborhood Similarity Measure: The av-
erage neighborhood similarity is defined as the average
difference between a point and its neighbors within a radius
r. When the local similarity is calculated for a vector field
property, the value at each point represents the difference
between that point and its neighborhood average. A low value
of average neighborhood difference indicates that the voxels

surrounding the center point are similar in value. Groups of
points that are spatially connected and have a low level of
neighborhood difference indicate a region of interest.

2) Local Entropy Measure: Entropy can be interpreted as
a measure of disorder or unpredictability, so it is a natural
choice for a metric when looking for organization in a data
set. Given N observations {x1, x2, ..., xN}, which occur
with probabilities {p1, p2, ..., pN}, the Shannon entropy is
inversely proportional to the log of the probability of obser-
vation i, which indicates that the less likely the observation,
the higher its entropy will be [7]. A set of observations where
all values are equally likely will have low predictability,
since there are no dominant values, which results in high
entropy. Conversely, a group of observations with higher
predictability, which are clustered around a few values, will
have lower entropy.

The local entropy measure is used at each point to cal-
culate the entropy of a neighborhood with radius r centered
on that point. Points with low entropy are centered on a
neighborhood where the values contain a high degree of
predictability or order. Spatially connected regions that have
similar, low levels of entropy indicate areas of interest.

C. Clustering and Merging Similar Regions

Once low-level or mid-level features have been identified
they are clustered to form regions. For low-level features,
these are regions of similarity. For mid-level features, the
regions represent areas with feature organization. K-means
clustering was chosen for this task because it is computa-
tionally efficient and effective. One of the main challenges
in using the conventional K-means algorithm is that the value
of K needs to be estimated or known in advance. This
problem was avoided by choosing a value of K higher than
the expected value, since similar regions will be merged in a
later step. Spatial constraints can be enforced so that spatially
disconnected clusters are split apart and clusters with a very
small number of voxels can be eliminated.

The last step of the algorithm merges clusters with differ-
ent means that are part of the same spatially varying pattern.
The goal is to identify neighboring clusters where the voxels
on the cluster borders have a high level of similarity. To
accomplish this, the edge set of voxels from each cluster
border is identified. For each pair of neighboring clusters,
the vector property values for neighboring voxels on each
side of the border are compared to get a value expressing
the similarity at the border of the two clusters. Lastly, a
similarity threshold is applied to the border similarity values
and this determines whether the clusters should be merged.

V. EXPERIMENTAL RESULTS

In this section, results are presented which motivate the use
of the methods described in the previous section. Examples
of results from the K-means clustering method of low-
level vector characteristics, average neighborhood similarity
measure, and local entropy measure are shown.



A. Synthetic Images

To test the methods presented in this work, a synthetic data
set was created. One image of a real chick embryo head
was chosen as a reference and deformed to create images
with predetermined differences. The synthetic images were
generated using landmark warping to create small magnitude
deformations in regions critical to the development of the
midface. In landmark warping, a set of landmarks are iden-
tified in an image and their desired location in the deformed
output image is specified. The transformed landmark points
are interpolated to define a transformation that is applied to
the whole image. Figure 1 shows initial landmark placement,
interpolated warping magnitude, and deformation vectors for
three landmark-warped images used for evaluation.

(a) Landmark
placement and
warping magnitude
for image 1

(b) Landmark
placement and
warping magnitude
for image 2

(c) Landmark
placement and
warping magnitude
for image 3

(d) Side view of
deformation vectors
for image 1

(e) Side view of
deformation vectors
for image 2

(f) Side view of
deformation vectors
for image 3

Fig. 1. Figures 1(a) through 1(c) show landmark points marked in white.
Image color indicates the interpolated transform magnitude, with highest
values shown in red and lowest in blue. The deformation vectors for these
three images are shown in figures 1(d) through 1(f).

B. K-means Clustering of Low-Level Vector Characteristics

For these experiments, each landmark-warped image was
registered to the original image, resulting in a vector field
describing their differences. Vector characteristics were ex-
tracted from the fields and the K-means clustering method
was applied with K = 5. The merging step was omitted so
initial cluster mean values could be compared across images
and related back to ground truth values. Figure 2 shows
examples of the results for clustering of the vector magnitude
and the reference vector angle. In all figures, clusters with
the highest mean value are shown in red and those with the
lowest mean value are shown in blue. In figures 2(a) through
2(c) it can be seen that the vector magnitude clusters with
the highest mean are located in areas of high magnitude
of the original warping transforms, shown in figures 1(a)
through 1(c). In figures 2(d) through 2(f), the reference
vector angle values find clusters around similar regions.

The area incorporated is larger, since it includes regions
where the transform magnitude is lower but the angle is
similar as it is interpolated across the image. In these images
the cluster means represent direction rather than magnitude.
The first two images show the cluster around the warped
region in red. The third image shows this region in cyan,
indicating the different direction of its landmark warping.
Normal vector angle results are not shown, since they are
not suited to landmark-warped images, which are deformed
without respect to surface curvature.

(a) Magnitude clus-
ters for image 1

(b) Magnitude clus-
ters for image 2

(c) Magnitude clus-
ters for image 3

(d) Reference vec-
tor angle clusters for
image 1

(e) Reference vec-
tor angle clusters for
image 2

(f) Reference vec-
tor angle clusters for
image 3

Fig. 2. Magnitude and reference vector clusters for three landmark-warped
images.

To validate the findings, the clusters can be compared to
the transformation used to create the data set. The vector
magnitude cluster with the highest mean should occur where
the magnitude of the transform used to deform the original
image is highest. To show this, a synthetic data set of 25 im-
ages was developed by placing a 5x5 grid over the midface.
A warped image was generated for each grid square using
4 landmarks placed in that square. Table I shows the ranked
magnitude clusters, mean value of the landmark transforma-
tion magnitude for the cluster regions averaged across the 25
regions, and standard deviation of the mean values. It also
indicates the total number of deformation landmark locations
in each cluster. The cluster rank corresponds to increasing
average landmark transformation magnitude. Furthermore,
the cluster with the highest rank identifies the location of
all the landmarks used to define the transformations.

C. Neighborhood Similarity Measure

Figures 3(a) through 3(c) show example results from the
neighborhood similarity measure. This measure is shown
applied to the reference vector values for each of the three
warped images. High values of neighborhood similarity
indicating regions of interest are shown in red. Clusters with
low values are shown in blue. The landmark-warped regions
have high levels of neighborhood similarity in each case,
with the highest values located near the landmark points.



TABLE I
RELATIONSHIP BETWEEN VECTOR MAGNITUDE CLUSTERS AND

LANDMARK WARPING TRANSFORMS, AVERAGED OVER 25 IMAGES

Cluster
Rank

Mean Warping
Transform Average

Mean Warping
Transform STD

Landmarks in
cluster (100 total)

1 2.026 0.577 100
2 0.474 0.217 0
3 0.206 0.069 0
4 0.087 0.025 0
5 0.022 0.004 0

D. Local Entropy Measure

Figures 3(d) through 3(f) show example results from the
local entropy measure applied to the reference vector angle
values for the three warped images. For local entropy, low
values indicate regions of interest, so clusters with the lowest
mean values are highlighted in red and clusters with the
highest mean values are shown in blue. It can be seen that
the landmark-warped regions are surrounded by clusters with
the lowest entropy in each case.

(a) Reference
vector angle
neighborhood
similarity clusters
for image 1

(b) Reference
vector angle
neighborhood
similarity clusters
for image 2

(c) Reference
vector angle
neighborhood
similarity clusters
for image 3

(d) Reference vec-
tor angle local en-
tropy clusters for
image 1

(e) Reference vec-
tor angle local en-
tropy clusters for
image 2

(f) Reference vector
angle local entropy
clusters for image 3

Fig. 3. Neighborhood similarity and local entropy of reference vector
angles for three landmark-warped images.

VI. CONCLUSION AND FUTURE WORK

In this paper, a new method is introduced and shown to be
capable of detecting differences between two images without
the use of landmarks. Planned future work will extend this
method towards the goal of developing a framework to
produce quantitative characterizations of normal embryonic
growth patterns.

The experimental results, summarized in table II, show
that the vector field features, K-means clustering method,
average neighborhood difference measure, and local entropy

TABLE II
SUMMARY OF FEATURE CLUSTERING RESULTS

Feature Results
Magnitude Landmark-warped regions identified by clusters

with highest mean
Reference
Vector Angle

Regions similar to magnitude identified, mean rep-
resents direction

Normal Vector
Angle

Not suited to landmark warping

Local Similar-
ity

Highest mean clusters located in landmark-warped
region

Local Entropy Landmark-warped region identified by clusters with
highest mean

measure are capable of detecting regions of significant dif-
ference between two images. Future work will explore how
the clusters detected by each technique can be combined to
identify regions of organized differences between images.
Features will be extracted to describe these regions and their
spatial relationships and will be used to calculate an average
distance between two images.

The ability to describe and differentiate between
developmental stages and between normal and abnormal
growth patterns will provide an important tool to further
the understanding of the complex and interrelated
genetic and environmental factors that lead to common
defects of the midface. This method will also be
used in the future to analyze tooth and bone shape
variation. It can be used to assess shape change in
many applications and is especially relevant when the
specimens are highly curved or have few definite landmarks.
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