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Abstract 1. Introduction

A central concern of recent research in computer vi-
sion has been generic object recognition, as exemplified by

Current work in object categorization discriminates
among objects that typically possess gross differencesbenChmark datasets, such as PASCAL [7]. Such research

which are readily apparent. However, many applications seeks to understand the universal ability of humans to rec-
require making much finer distinctions’. We address an in- ognize that previously-unseen objects belong to generic ob

sect categorization problem that is so challenging thaheve ject clas_,ses. The object classes tend to be very_dlstmtbt, wi
trained human experts cannot readily categorize the irssect gross differences that are easy for humans to distinguish.
based on their images. The state of the art that uses visual While this addresses important fundamental questions in
dictionaries, when applied to this problem, yields medéocr computer vision, it does not solve any pressing application
results (16.1% error). Three possible explanations fosthi problem. In contrast, our research is focused on the problem
are (a) the dictionaries are unsupervised, (b) the dictio- of automating biodiversity studies to support biomonitgri
naries lose the detailed information contained in each key- (i.€., monitoring the health of ecosystems by monitorireg th
point, and (c) these methods rely on hand-engineered de-abundance and diversity of the species in the system) and
cisions about dictionary size. This paper presents a novel,fundamental ecological research (e.g., understanding pop
dictionary-free methodology. A random forest of trees is ulation dynamics, mapping species distribution and habi-
first trained to predict the class of an image based on indi- tat, measuring species’ response to climate change, assess
vidual keypoint descriptors. A unique aspect of these treesing the effectiveness of restoration and remediation tffor

is that they do not makeecisionsut instead merely record ~ Specifically, our goal is to develop general-purpose meth-
evidence—i.e., the number of descriptors from training ex- 0ds for categorizing images of arthropods (insects, spider
amples of each category that reached each leaf of the treeetc.) to the level of family, genus, or species. This is an
We provide a mathematical model showing that voting evi- under-explored domain of categorization — that of classify
dence is better than voting decisions. To categorize a newing extremely challenging images that show objects exhibit
image, descriptors for all detected keypoints are “drogped ing large intra-category variations and small inter-catgg
through the trees, and the evidence at each leaf is summedlifferences, so that even trained human experts cannot eas-
to obtain an overall evidence vector. This is then sent to a ily categorize them, as illustrated in Fig. 1.

second-level classifier to make the Categorization detisio For the past several years, we have been Co||ecting, pho-
We achieve excellent performance (6.4% error) on the 9-tographing, and manually-classifying stonefly larvae & cr

class STONEFLY9 data set. Also, our method achieves amjte a labeled database of images [10]. Stoneflies inhabit
average AUC of 0.921 onthe PASCALO6 VOC, which placesfreshwater streams, and they are known to be a sensitive and

it fifth out of 21 methods reported in the literature and robust indicator of stream health and water quality. While
demonstrates that the method also works well for generiCit is easy to collect Specimens, a h|gh degree of expertise

object categorization. is required to classify specimens according to species Thi
has severely limited their use in biomonitoring. An auto-



the dictionaries are constructed using purely unsupetvise
methods (although they are class-specific). As many re-
searchers have pointed out, the regions of descriptor space
that have high probability density—that is, the ones found
by K-means or Gaussian mixture model clustering—are
not necessarily the most useful for discriminating among
categories. Second, when detected regions are mapped
\ to dictionary entries, much information is lost. A 128-
Figure 1. Sample images from our STONEFLY9 dataset. The top dimensional SIFT descriptor captures detailed infornmatio
and bottom rows show two distinct stonefly species, diffitalt ~ about the intensity texture of the detected region. Mapping
classify even for trained human experts. In addition to $meer- this to one entry in a 2700-word dictionary (as we did for
class differences, STONEFLY9 presents additional chgésrto STONEFLY9) retains at most 12 bits of information (vs.
object categorization: (1) The images show imperfectdetews 8. 128=1024 bits for SIFT). Third, the dictionary approach

of insects which may be only partially visible; (2) The gedriee o4 jires manual tuning to select the number of clusters and
and photometric properties (e.g., size, color, and texiange the method for mapping descriptors to clusters (Euclidean

significantly with the insect’s age; blob-like parts of thesécts . L2
may contain specularities; multiple legs and antennaevahese dlstanc_e.,_MahaIanobls distance, keyword counts, keyword
probabilities, etc.).

highly articulated insects to appear in a wide range of poses
Several researchers have developed quasi-supervised
methods for creating visual dictionaries [14, 16, 17, 19].
mated system for photographing, classifying, and sorting Winn, et al. [16] first learn a very large number of clusters
specimens could greatly advance biomonitoring for water via K-means clustering and then merge clusters to maxi-
quality and basic ecological research. mize their discriminative power. Moosmann, et al. [14]

In previous work [10], we applied the standard bag-of- build a forest of extremely randomized decision trees that
keypoints dictionary approach [4, 16, 1, 8] to this prob- attempt to classify the image directly from individual de-
lem. Our first dataset, STONEFLY2, consisted of images scriptor vectors. They then define one dictionary entry for
of two categories of stoneflies (known as Cal and Dor). We €ach leafin these trees. This method is discriminativeitbut
applied three different interest operators to identify key creates a very large dictionary which can be unweildy and
points and extracted SIFT descriptors from each keypointlead to overfitting. Yang, et al. [17] construct a sequence
region. These were then clustered (by fitting a Gaussianof “visual bits” through a boosting algorithm. Each visual
mixture model via EM) to create a separate visual dictio- bit provides a boolean feature that can be input to a clas-
nary for each combination of class and detector. Each im-sifier. Zhang and Dietterich [19] post-process an unsuper-
age was then re-represented as a histogram of the numbefised dictionary with relevant component analysis to im-
of occurrences of each dictionary entry (for each dictio- prove the discriminative power of each cluster. While all of
nary), and these histograms were concatenated to create #1€se methods improve on the dictionary construction pro-
feature vector which was then fed to a classifier to perform cess, they do notaddress the other two sources of the failure
the categorization. We applied various classifiers incigdi  the loss of information when mapping to the dictionary and
boosted decision trees and boosted logistic model trees. Orthe problem of manual engineering of the system.
STONEFLY2, this bag-of-keypoints approach achieves an  |n this paper, we pursue a simple and elegant approach
error rate of 20.3%. To assess this level of performance, wethat is able to address all three shortcomings of the bag-
measured the ability of people (26 students and faculty from of-keypoints approach. Like Moosmann [16], the method
the zoology department) to perform the same task with theconstructs a randomized forest of trees that directly ana-
same images and discovered that they exhibited an error rat,ze the descriptor vectors. However, instead of using the
of 21.4%, which was statistically indistinguishable frooro  trees to define a dictionary, we view the trees as a way of
system. Subsequently, we have enlarged our database to indiscriminatively structuring the evidence in the trainse.
clude images of 9 stonefly categories to create the STONE-Each leaf of each tree stores a histogram of the number of
FLY9 database. On this database, the bag-of-keypoints aptraining examples from each category that reached that leaf
proach achieves an error rate of 16.1%, which is consideredro classify a new image, the detected keypoint descriptors
by our entomology collaborators to be mediocre. are dropped through all of thesgidence treesEach time a

Based on this work, we conclude that state-of-the-art keypointreaches a leaf, the evidence stored in that leafis a
generic object categorization methods are not sufficient tocumulated into an overall histogram. After normalization,
achieve high performance on difficult categorization prob- this histogram is then passed to a second level (“stacked”)
lems such as STONEFLY9. We hypothesize that there areclassifier to make the final category prediction. In effect,
three reasons for the failure of these techniques. First,each keypoint votes for the category of the object, but the
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Figure 2. Block diagram of our approach: Descriptors of rinte
est points and edges are directly input to a random foregts wi
out computing a visual dictionary. Each leaf node in the dore
stores a histogram of the class labels of the training detecs

that reached this leaf. Descriptors for a new image are ‘fordp
through the forest until they reach a leaf node. The class his
tograms at all such leaves are summed to produce a singke clas
histogram which is then provided as a feature vector to atedos
ensemble of decision trees that makes the final prediction.

Figure 3. The top and bottom rows show different species from
STONEFLY9, which are also different from those shown in Big.
(left) A sample original image; (middle) Detected edges ahd
lipses fitted to pixels of each edge; and (right) Zoomed-itaitle
marked by a white box in (left). The large ellipse localizkes in-
sect and provides information about the insect’s main taitén.

vote is based on the corresponding evidence from the trainKeypoints: On each image, we apply the following detec-
ing set. We call this method “Voting Evidence”. tors to extract interest points: the Harris and Hessian de-
We also studied a strategy whereby when a keypointtec_tors [13]_, the PCBR detector [5], and the Kadir-Brady
reaches a leaf of a tree, it places a single vote for the mostalient region detector [9]. The PCBR detector, intro-
frequent class in that leaf (according to the training set), duced in [5], detects stable watershed regions surrounded
which is the standard way that decision trees work. ThesebY curvilinear structures. These are particularly weltesli
votes are accumulated and passed to the stacked classifiel® the shapes found in our biological images. Our studies
We call this method “Voting Decisions”. We provide exper- ON STONEFLY4 showed that c_omblnmg multiple detectors
imental evidence and a mathematical model showing thatdave better results than any single detector [10]. Each de-
voting evidence is better than voting decisions. tected keypoint is repre.sented by the SIFT descriptor [12]
An added benefit of the stacked classifier is that we canfor subsequent processing.
easily fuse different kinds of descriptors as well as aapjtr ~ Edgesare extracted by the Canny edge detector. L efe-
image-level information. In this paper, in addition to key- note the set of detected edgés= {e1,...,en,...,en}.
points, we also extract contour features and build evidencelntrinsic and spatial-layout properties of each edge are
trees for them. The evidence accumulated from these treeghen used to define its descriptor vectgy. Many of these
is provided to the stacked classifier as additional features properties are defined relative to the entire insect’s taien
Our voting evidence method achieves an error rate of tion in the image. To identify the spatial extent and orienta
6.4% on STONEFLY9 using only keypoint descriptors. tion of the insect, we make use of the fact that each image
With the additional contour-based descriptors, the eatwr r ~ contains only one insect and that the background is nearly
improves to 5.6%. Our entomologists view this as ex- uniform. This means that most edges detected in the image
tremely good accuracy—more than sufficient to provide a belong to the insect. In particular, we expect that an elips
basis for a practical biomonitoring system. A, fitted to all pixels that belong t&', will localize the in-
This paper is Organized as follows. Sec. 2 describes fea_SGCt and prOVide useful information about the insect’s head
tures and their associated descriptors. Sec. 3 explaiaiiet tail, and main orientation. After estimatingg, we com-
of the “Voting Evidence” and “Voting Decisions” methods Pute the following: angleg g, that the major principal axis
and the stacked classifier. Sec. 4 presents experimental redf Ag subtends with the: axis of the image; length/; of
sults on STONEFLY9 and PASCALO6; Sec. 5 presents a the intercept of the major principal axis withe; and length
theoretical analysis of voting evidence and shows that un-m g Of the intercept of the minor principal axis withz.
der reasonable assumptions it gives lower error than votingThe parameter§g, Mg, mp) of A are taken to represent

decisions. Section 6 presents our concluding remarks.  the orientation, length, and width of the insect, as illatsd
in Fig. 3. To specify intrinsic and spatial-layout propesti
2. Feature Extraction of each edge¢,, € F, we fit an ellipse,A,, to all pixels

belonging toe,, and estimate the parametées,, M,,, m,,)
This section explains the image features and descriptorsn the same way as fat. For estimating the spatial layout
we use. properties, we define a neighborhood system among the de-



tected edges based on their Delaunay triangulation. To thistree is constructed in the usual top-down way as in C4.5

end, each edge, is represented as point corresponding to
the center(z,,, y,) of the ellipseA,,. Neighbors ofe,, are
all those edges to which,, is connected in the Delaunay
triangulation.

For each edge,, we compute the following intrinsic and
spatial layout properties: (1) Area coverage= 2¢2o0;
(2) Orientation¢,, measured relative t@g, to achieve
rotation-in-plane invariance; (3) Contragt estimated as
the average gradient magnitude aleng (4) Signed curva-
ture k,, estimated on a piecewise linear estimate gf (5)
Displacement vectad,, between the centér:x, yz) of el-
lipse A and the centefz,,, y,,) of ellipseA,,; (6) Number
of neighbors/,, estimated from the Delaunay triangulation
of all edges; (7) Meam,, and variancer,, of strengths of
interaction between,, and its neighbors, where each inter-
action strength is inversely proportional to the lengthhaf t

[15], but with two modifications. First, the training data fo
each tree is obtained by taking a bootstrap sample [6] of
S. (A bootstrap sample of siz& is created by drawingv
points uniformly at random with replacement fra@) Sec-
ond, recall that each nodeof a decision tree compares the
value of a chosen attribute(e.g.,2¢,[a]) against a chosen
threshold),, and branches leftif; ;[a] < 6,, and right oth-
erwise. When growing a standard decision tree, all possible
attributesa and all reasonable threshol@sare considered
and the(a, #) combination with the highest discriminative
power is chosen. In a random foresteath node random
subset of sizé + |log A] is chosen (wherd is the number

of attributes; 128 for SIFT). Then the most discriminative
combination(a, ) is chosen by evaluating only this ran-
dom subset. These two forms of randomization, bootstrap
subsampling of the training data and random subsetting of

Delaunay arc connecting the two corresponding neighbors;the attributes at each node, act together to create a diverse

(8) Context vectory,, computed as the standaié x 16

ensemble of decision trees. In a standard random forest, a

log-polar descriptor that counts the number of edge pixelsnew instance is classified by a vote of the decisions of the

in the neighborhood of,,, where the descriptor is centered
and scaled with respect to ellipas,.

In summary, the descriptor associated with each
edge e, contains the following propertiese,,

{anv ¢n77na K, A,y Vn, Hns On,y Xn}'

3. Overall Classification Architecture

Fig. 2 shows the overall architecture of the system. We
first describe the classification process and then the train

ing process. The architecture is parameterized by a set o

Q of (detector, descriptor) paits= 1,...,C, where the

detectors may detect keypoints, edges, etc. and the descrip
tors can be SIFT, filter banks, edge descriptor defined above,

etc. To classify a new imagk we iterate over each (detec-
tor, descriptor) pait in @, apply the detector td, and then
represent each detection using the descriptor. This pesduc
a bag of descriptor vecto$f = {z{ ;,..., 2% y, }.

For each combinatior, let REF'° denote a previous-

individual trees.

We modify this random forest learning algorithm in sev-
eral ways. First, to construct the training s&tfor RE,
we start with each bag of descriptoBy for each image
I (with category label;) and create one training example
for each descriptor vector(z{ ;,yr). Then, we generate
the bootstrap samples by drawimgageswith replacement
from the set of training images. Second, we constrain the
growth of the tree so that every leaf node contains at least
0 training examples. Finally, in each leafwe store the
istogramh, of the number of training examples belonging
o each class.

For each detector/descriptor combinatignwe train a
random forest? /¢ containing 100 evidence trees.

Creating the stacked training set.Once the initial random
forests are built based on individual descriptor vectoes, w
then construct a second-level (“stacking”) training seit th
contains one example per image. The stacking example for

learned random forest of evidence trees. Each descriptoran imagel is computed as follows. Because each tree is

vectorz§ ; is “dropped through” each tree iRF“ until
it reaches a leaf. That leaf/ stores a histogramg such
thath§[k] is the number of training examples from cldss

grown on a bootstrap sample, there is a set of so-called “out
of bag” images that weneotused to grow that tree because
they were not members of the bootstrap sample. First, we

that reached the leaf during training. These histograms arenitialize a histogranm,. for each detector/descriptor com-

summed over all trees to obtairj and over allj to obtain
h.. Eachh, is normalized (to sum to 1), and then thehis-

binationc. Then, for each imagé, we take its descriptors
and “drop” them through each tree for whi¢hwas “out

tograms are concatenated to form the second level featuref bag”. Each time a descriptor reaches a Iléaf random
vector. This is then processed by the stacked classifier toforest RF, we take the histograi, and add it into a his-

assign a category to the image.

togramh.. Finally, for eache, we divideh, by the sum of

The learning process involves three steps: (a) learningits components to normalize. This gives us one histogram

the random forests, (b) constructing the second-levai+rai
ing set, and (c) learning the stacked classifier.

Learning a random forest. A random forest [2] is a set of
decision trees all created from a single training$eEach

for each detector/descriptor combination. These histogra
are concatenated to form the feature vector for the stacking
example. The class label of imagés then assigned to be
the class label of this stacking example. Note that when we



concatenate the various normalized histogramswe are
fusing the information from both keypoint and edge fea-
tures. Any other source of image-level information could
be included in the stacking examples at this point. ‘
Training the stacked classifier. We apply the Adaboost R ‘ (
algorithm to train an ensemble of 200 decision trees.

This architecture addresses the three problems tha
plague the dictionary approach. First, because the evidenc
trees examine the individual attributes of the descripéar v
tors, no information is lost in quantization. Second, thie ev
dence trees are grown discriminatively, so there are no-unsu
pervised steps. Third, the only parameters to be determined
in the architecture are (a) the minimum number of training Figure 4. Examples of most discriminative patf:hes for S‘I_’ONE
examples in each leaf node, (b) the number of trees in eacH:LYg' The rows corre:.;pon.d to the 9 classes in alph.abetleall or
random forest, and (c) the number of boosting iterations for der from the top. .The first f'.VG COIumn§ gre the most Inforneativ
the stacked classifier. Our experiments have shown that thed atches for Kadir; the next five for Harris; the last five forRe
results are insensitive to all of these parameters.
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) that fall exclusively within the bounding box for that ob-
4. Experimental Results ject. Detections from regions where the bounding boxes

We evaluated our categorization approach on the overlap are discarded. In testing, we must of course use all

STONEFLY9 [10] and PASCALO6 datasets [7]. STONE- detectionsinthe image. To reduce the effect of background
FLY9 consists of 3826 images obtained by imaging 773 NOISe the stacked datase_t is cre_zated by_addmg up for each
stonefly larvae specimens, examples of which are shown incl2ssk only the N detections with the highest;[+] val-

Figs. 1 and 3. The dataset contains nine classes referred t4€S- The value oV was estimated for each class from the
as Cal, Dor, Hes, Iso, Mos, Pte, Swe, Yor and Zap. The training set from: 25, 50, 100, 200, 400, 600 and all de-

experimental setup for STONEFLY9 consists of a stratified {€Ctions. For most classes, all the detections on the images
3-fold cross validation using two folds for training and one Were used. Note that unlike most work with PASCALOG,
for testing. Images from the same specimen are constrained’® train a single multi-class system rather than training a
to belong to the same fold. PASCALO6 consists of 5304 Separate classifier for each category.

images of natural scenes that contain 10 object classes of o

interest. The object classes in PASCALOS, as in other pop-4-1. Qualitative Results

ular benchmarks, differ from one another significantly. Fig. 4 shows the most discriminative patches of the test
For STONEFLY9, we apply three keypoint detectors groNgFLY9 images as selected by our classifier. The

(Hessian, Kadir-Brady, PC_BR interest points) and the atches shown are those with the high&stk] values.
Canny edge detector. Keypoints are represented using SIFpare are patches of many different scales. The PCBR de-

descriptors, and edges are represented using the edge dgscior has selected whole-bug images for Mos and Yor. Our
scriptor presented in Sec. 2. Four random forests ar€gyperts confirm that these two classes are best recognized
trained. For PASCALOG, we apply four detectors (Har- ' their overall shape. For Hes, PCBR has picked out an
ris, Hessian, PCBR and regularly sampled image patcheg e resting 2-lobed area in the center of the back. Although

of sizes 24, 32, and 64 pix.els) and represent each resulting, ; nreviously noticed by entomologists, subsequent exam-
keypoint using 3 detectors: SIFT, Color SIFT, and the fil- jnation of specimens reveals that this area is sufficient to

ter bank descriptor employed by Winn et al. [16]. Twelve giseriminate among Cal, Hes, and Dor. Other informative
random forests are trained (one for gach combination of de'patches found in this figure correspond to “hairs” (actyally
tector and d_escrlptor). When growing the random forestsgms) emerging from body joints, regions of the head, and
for the Hessian anq Harris detections in PASCALOG6, there various textures and spots.
are so many detections (ovef - 10°) that we cannot use all
of them when growing any single tree. Hence, for each tree, o
we draw a random subsample of 40% (for Hessian) and 35%4'2' Quantitative Results
(for Harris) of the detections prior to growing each tree. Table 1 shows the results of applying both our stacked
Each PASCALO6 image can contain several objects from random forest classifier and a visual dictionary classibier t
the same category or from multiple categories. We treat STONEFLY9. The dictionary approach employed K-means
each object in each image as a separate instance, and, whatustering to define a 100-element dictionary separately fo
training the classifiers, we consider only those detectionseach combination of detector/descriptor and class. Hence,



Table 1. Classification Error on STONEFLY9. Because keyjpoin
dictionaries cannot incorporate edge features, no reavdtse-
ported for configurations involving them.

QMUL_LPSCH (93.6)
QMUL_HSLS  (93.3)
XRCE (93:2)

INRIA_Marzszalek
(92.6)

Ours (92.1)
Stacked Visual
Detector R. Forest Dict.
Hessian 15.552.8 | 34.063.1 INRIA_Nowak (30.8)
Kadir 11.14+1.1 | 23.9+1.3
PCBR 11.2+£1.8 | 28.1£1.0
Edges 36.3+1.1 -
Hessian + Edges | 11.4+1.9 -
Kadir + Edges 9.8+:0.4 -
PCBR + Edges 9.2£1.8 N INRIA_Moosmany
Hessian + Kadir 8.141.5 | 19.0:2.5 ‘ -
Kadir + PCBR 7.8+£1.6 | 19.2+1.7 RS S S T e S
PCBR + Hesalff 7.8£2.3 | 20.2£2.6 @ < & T
All keypoints 6.4+1.8 | 16.1+1.8 . .
Edges + all keypoints| 5.6+2.1 - Figure 5. AUC on the PASCALOG test set for the top 6 published

method plus our method. For clarity, max/min AUC values have
been rescaled separately for each task. Average AUC is shown
between parentheses.
there were x9x 100 = 2700 words in the combined dictio-
nary, and hence 2700 attributes in the feature vectors. SIFT
descriptors were separately mapped to the nearest clusteysing spatial pyramid [11] or learning more complex im-
center in each dictionary and accumulated into a histogramage classifiers [18]. All of these methods learn a separate
for classification by a boosted decision-tree classifier con classifier for each category, which probably gives them an
taining 200 trees—the same size as the second-level stackeddvantage over our results, which are generated from a sin-
classifier in our architecture. gle, multi-class classifier.

On STONEFLY9, the error rate for stacked random
forests is substantially below the error rate of the visi@ld 5 Mathematical Model
tionaries. When only keypoints are used, our classification
error is 6.4%, versus 16.1% for the visual dictionaries. In-  In standard random forests, a new instance is classified
deed, the performance of stacked random forests using onlyoy voting the decisions of each tree in the forest. However,
a single detector beats the performance of visual dictionar we found that voting evidence was more accurate than vot-
ies when trained on keypoints from all three detectors. ing decisions. For example, the error rate on STONEFLY9

The ability to fuse edges improves the stacked randomwith Hessian, Kadir and PCBR is 16.4%, 12.0% and 12.3%
forests. The effect s largest when edge information isduse respectively for voting decisions as compared with 15.5%,
with SIFTs from a single detector (e.g., Hessian alone has11.1% and 11.2% for voting evidence. This was surpris-
15.5% error, whereas Hessian + edges has 9.8%). Theréng, because the conventional wisdom has been that voting
is still a gain when edges are fused with SIFTs from all decisions works best for ensemble learning algorithms (i.e
keypoints—the error rate of the stacked random forests in-bagging, boosting, etc). To understand why voting evidence
corporating all information is 5.6%. leads to improved classification accuracy in object recogni

The time required to train our system is much less than tion, we developed the following mathematical model.
for the standard visual dictionary approach. The random Let us consider the simple case where there are two cat-
forest for the PCBR detector( 400,000 detections) is egories of objects and each image contains exactly one in-
trained in 127 min. (amd64 with 2.8 MHz CPU and 4GB stance of an object. In each image, suppose therel are
memory). It takes only a few minutes to train the stacked detections, and hencé,SIFT descriptor vectors. We will
classifier. Note that the number of attributes that the stdick assume that a fractiom of these are “informative” SIFT
classifier receives is small (only 36: 9 classed descrip-  vectors in the sense that they are much more likely to have
tors). In contrast, the time to build the final classifier for come from only one of the two classes. The remaining
visual dictionaries on the three keypoint detectors is over (1 — 7)d SIFT vectors are assumed to be uninformative,
200 min. because of the large number of attributes (2700).because they capture irrelevant regions in the background
Note that this time does not include the construction of the or foreground regions whose appearance is constant across
visual dictionary, which requires several hours. the classes.

Figure 5 shows the results for PASCALO6 [7, 18, 11]. We will first analyze the case of a single decision tree.
Each line corresponds to one published method, and eaclSuppose we have constructed a tree where every leaf has
column shows the (rescaled) AUC. Our method ranks 5th a true probabilistic margin of, by which we mean that if
out of 21 (including ours). The best performing methods we consider only the informative SIFTs that reach a leaf,
are either exploring the spatial distribution of the keyptei  then fraction% + ~ of them belong to one class aéd— ~



of them belong to the other class. In our training set, sup-and have probability /2 of being labeled as class 1. Col-
poseC SIFT vectors reach each leaf. By assumptiof,of lecting these terms and simplifying, the probability thas
them are informative. If we consider only these informative predicted to belongto class 1 is

SIFTs, what is the probability that the majority class of

the training SIFTs does not match the true class of the leaf? - (% + 7) (1—e) +m (1 _ 7) e+ (1— W)% =

The Chernoff bound [3] provides an approximate answer: 2
1

e < exp[—27Cv?] . (1) 5T (1~ 2¢)
Unfortunately, our training data also includes the- 7)C Hence, the effective margin of is 77(1 — 2¢). We can
uninformative SIFTs. These have the effect of reducing the treat each detection as an independent draw of a binomial
margin fromry to 7. random variable with this margin and apply the Chernoff
Lemma 1. If the fraction of informative SIFTs isr, the ~ boundto complete the prodf]
fraction of uninformative SIFTs i3 — =, and the margin Suppose instead that we make our classification decision
of the informative SIFTs at a leaf is, then the effective Py summing the counts (the evidence) computed when the
margin of all of the SIFTS isy tree was constructed:

Proof: Suppose the tr_qe class of a leaf is qlass 1. Let Proposition 2. The error rate., (for *
us compute the probability that a SIFT reaching that leaf
is labeled with class 1. With probability, the SIFT is in-
formative, and with probability, + ~ it belongs to class 1.
With probability 1 — 7, a SIFT is uninformative, and we €ve < exp[—8dC(ym)d]. (3)
assume uninformative SIFTS have probabilifi2 of being

labeled as class 1. Consequently, the probability that @ SIF Proof: Once again, we will start by computing the effective

voted evidence”) of
accumulating the leaf histograms for each SIFT vector and
then taking the class with the highest count is bounded by

is labeled as class 1 is margin and sample size for a Bernoulli random variable,
which we will callv. In this case, the value afis gener-
T (1 + 7> +(1—m) 1 1 + 7. ated by choosing a random SIFT veciofrom the image,
2 2 2 dropping it through the tree to find a leaf, choosing one

of the training SIFTs stored at that leaf, and taking thesclas
label of that training SIFT. Suppose the image belongs to
class 1, what is the probability thatwill be labeled as be-
longing to class 1?

With probability w, 2 is informative, so with probabil-
ity % + ~ it will be routed to a class 1 leaf. There, with
Proposition 1. The error rate,, (for “voted decisions”) of ~ probability 3 + 7 it will be labeled as belonging to class
classifying each SIFT vector separately and then taking thel (based on Lemma 1). With probabilify— , = will be

Hence, the effective margin isy. [

Now let us consider classifying a new image using this
decision tree- by classifying each of thé SIFT vectors in
the new image and taking the majority vote of these indi-
vidual classification decisions.

majority vote is bounded by routed to a class 2 leaf, where it will be labeled as belonging
to class 1 with probability% — 7. With probabilityl — 7,
€vd < exp[—2d(my(1 — 2¢€))?]. (2) x is uninformative, so it will be routed to a leaf at random

and be labeled as belonging to class 1 with probabilit.
Proof: Lete = exp[—2C(vy7)?] be the probability that each Combining these quantities, we obtdffy = 1] =
leaf in the decision tree was incorrectly labeled during the

training process. For concreteness, suppose the objée in t T <% + 7) <1 + 7T’Y) 4+ (1 _ 7> (1 _ 7T7> +

image belongs to class 1 anddebe a SIFT vector selected 2 2 2

uniformly at random from the detections in the image. We “(1-m) = =+2(yn)?

will compute the probability that will be predicted by the 2

decision tree to belong to class 1. Hence, the effective margin afis 2(y7)2, which is very

With probability 7, = is informative. With probability =~ small. By summing the count vectors for all of tieletec-
% + v, = will reach a leaf node whose true majority class is tions, the effect (ignoring sampling without replacement)
class 1. With probabilityy — ¢, 2 will be correctly labeled is to takedC trials of this random variable. Applying the
as class 1. With probabilitx%' —~,z willreach aleafwhose  Chernoff bound completes the proaf.
true majority class is class 2. With probabilitythat leaf It is difficult to compare analytically the bounds in equa-
will be incorrectly labeled, sa will be correctly predicted  tions 2 and 3. Figure 6 shows the relative performance
to belong to class 1. Finally, with probability— =, x is of the two classification methods far = 40, d = 200.
uninformative, so it will be sent to a randomly-selected lea The method of voting evidence performs much better than
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Figure 6. Comparison of error upper bounds for voting evigen

vs voting decisions as a function ofy for C' = 40 andd = 200.

the method of voting decisions.

7 = 1/d = 0.005 andmy = 0.002 for an excellenty = 0.4.

Notice that the model
predicts that neither method would work well in the pure
multiple-instance classification case where exactly one of
the detections is informative. This would correspond to
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