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Abstract—This paper proposes an image classification
method based on extracting image features using Haar random
forests and combining them with a spatial matching kernel
SVM. The method works by combining multiple efficient, yet
powerful, learning algorithms at every stage of the recognition
process. On the task of identifying aquatic stonefly larvae, the
method has state-of-the-art or better performance, but with
much higher efficiency.
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I. INTRODUCTION

Image classification has evolved from the use of simple
features, such as line segments and regions, and simple
algorithms, such as graph matching, to the use of rich
features and complex machine learning algorithms. A typ-
ical classification methodology begins with detection of
interesting points or regions [1], encodes them to obtain a
descriptor [2], and uses the descriptors (and sometimes their
spatial locations) for classification. The evaluation of random
forests (RF) [3] [4] has been proposed as a way of speeding
up classification feature extraction [5] and segmentation [6].

Insect classification is important for monitoring ecosystem
health and for supporting ecological research. Previous work
on insect identification includes the ABIS system [7] for bee
identification, the work of Wen et al. [8] on identification
of orchard pests, and some systems that perform species
identification from acoustic data (songs, wing-beat frequen-
cies, etc.) [9]. Automated stonefly identification from images
has been the subject of several recent papers [10] [11] [12].
All of these papers used multiple low-level features encoded
with SIFT descriptors [2]. In [10], an occurrence histogram
of EM cluster assignments was generated from the SIFT
vectors and used in classification by a bagging ensemble of
decision trees. In [12], evidence trees were employed, and in
[11], multiple non-redundant codebooks were used. All of
these approaches are computationally intensive, due to the
feature extraction process.

This paper describes a new image classification method-
ology designed to improve classification efficiency while
achieving high accuracy. The method is based on powerful
yet efficient feature extraction and a kernel for SVM classifi-
cation that combines the evaluation of Haar-like features [13]
of image patches and their image positions. The bag-of-
words approach for image classification is extended to
discriminative feature extraction with a RF that evaluates
Haar-like features on densely sampled image patches. This
is able to capture highly-detailed information while reducing
training and classification feature computation time. The
depth levels of each RF tree form a semantically meaningful
implicit cluster hierarchy. Each extracted image patch is rep-
resented by its CIELab color channels and by image planes
containing the bins to accumulate the gradient magnitudes of
a particular orientation range. Additional accuracy gains are
obtained by pairing the learning of each Haar-like feature
with the image “channel” that they will be evaluated on.
The generated histograms are adapted to be evaluated by a
combined feature and spatial pyramid-match kernel. The aim
of our kernel is to correlate the geometric correspondence
of the window locations in image space with the occurrence
count in each tree node from two different images.

II. OVERVIEW

Our approach has five parts: 1) preprocessing, 2) image
patch extraction and description, 3) Haar random forest
generation, 4) Haar random forest feature extraction, and
5) image classification. The stonefly images were captured
through an automated process that snaps images of an insect
as it passes through a mechanical apparatus with a blue
background. In the preprocessing phase, the insect is auto-
matically segmented from the background and oriented in a
horizontal direction with head facing left. Next, rectangular
patches of three different sizes, each relative to the insect
size, are extracted. From each patch, 12 feature bands, each
the same size as the patch, are produced: 3 color bands in



the CIELab color space, and 9 gradient-orientation bands
(every 20 degrees from 0 ◦ to 180 ◦).

A random sampling of labeled patches from the training
images is used to generate the Haar random forest. Using
bootstrap sampling, M subsets of the set of training patches
are produced, and each subset is used to construct a decision
tree for deciding if a given image patch comes from a
particular insect species or not. At each branch node, one
Haar feature along with one of the twelve bands is chosen
as the decision mechanism. The resulting M trees form the
Haar random forest.

Figure 1. (a) HRF consisting of M trees with splitting function f at each
internal node evaluated on image channel window wb. (b) Haar feature hi

of l × l size.

The HRF works as a discriminative codebook to define
image feature vectors (histograms) that are then employed
to train an SVM classifier. The codebook extraction phase
uses a regular sampling of patches from the training images,
rather than the random subsets that were used to create the
random forest. Square patches are sampled in three scale
ranges: from the base length of the Haar-like feature mask
(l = 26 pixels) to 0.1% of the stonefly image length and
in the [0.1 − 0.2) and [0.2 − 0.3) ranges relative to image
length. For some few small images where 0.1% image length
is smaller than 26 pixels, the initial scan is replaced by a
single pass extracting l × l patches. In this phase, for each
training image, the patches are put through each of the M
trees of the random forest. This generates, at each node of
each tree, a count of how many patches passed through
that node. In addition, to find spatial correspondences, a
count of how many of these patches came from each image
subregion at each scale is kept. Thus a node contains a full
patch count and multiple subregion counts corresponding to
the partitions of a spatial pyramid. Once all patches from
a given image have gone through the random forest, M
combined histograms, one from each tree, are extracted,
concatenated to produce a single feature vector per training
image, and employed to train an SVM image classifier. This

paper describes HRF generation and image feature extraction
(Section III), a HRF-feature spatial matching kernel (Sec-
tion IV), and our experiments and results (Section V).

III. HRF GENERATION & FEATURE EXTRACTION

A Haar random forest is an ensemble of M decision
trees learned by a randomized learning algorithm [14]. HRFs
are powerful codebooks used as an intermediate image
representation to cluster image patches into semantically
relevant categories. Each HRF tree records the path traversed
by each patch being evaluated. This path is generated by
recursively branching left or right down the tree depending
on the learned decision function associated with each node,
until the patch arrives at a leaf node. Figure 1(a) illustrates
a HRF with the highlighted path followed by the evaluation
of a patch w through the nodes it visits. Figure 1(b) shows
a Haar-like feature hi from the set Hl×l; the set of extended
Haar-like features [13] of l × l size applied to a patch wb.

Haar Random Forest Generation: The training set W
consists of pairs (x, y) where x = {w1, . . . wB} is a feature
vector formed by the patches of the training sample window
from B different image transforms, and y ∈ {0, 1} is the
sample class label. The transforms include the three channels
of the CIELab color space and nine gradient-orientation bin
image planes. Each tree in the forest is learned using a
multiset W ′ obtained by sampling |W| pairs with replace-
ment from the full training set W . The learning algorithm
proceeds in a top-down manner, recursively spliting the
training data while adding new nodes to the tree. Each
node n is defined by its associated decision function f and
threshold τ . When a new node n is being added, several
candidate functions f ′ = hi(wb) ∀i ∈ In, b ∈ B are
generated, where In is a set of random Haar-like feature
indices considered for node n. The indices for each feature
have uniform probability and |In| =

√
|Hl×l|. As indicated,

all the existing image transform patches are considered for
each feature; thus at each node, |In| ×B candidate features
f ′ are considered.

The candidate f ′ that maximizes the information gain of
label y is selected. The training dataWn that arrives at node
n is divided into subsets W ln and Wrn assigned to the left
and right children of n according to the optimal threshold
τ ′ in the information gain sense for that particular f ′.

W ln = {w ∈ Wn|f ′ < τ ′}, (1)

Wrn =Wn\W ln (2)

The information gain for a particular f ′ is

∆Hf ′ = −|W
ln |

|Wn|
H(y|W ln)− |W

rn |
|Wn|

H(y|Wrn), (3)

where H(y|W) is the Shannon entropy of the label variable
y given the samples from set W ′. The recursive process
continues until a depth limit D is reached or the number of



examples falls below four instances. The values of D and
M determine the number of nodes in a HRF.

HRF Image Feature Extraction: The HRF feature ex-
traction process represents the image as a histogram Q. Each
bin Q[η, j, r] in Q corresponds to an image subregion j
of spatial level r and index η across all the nodes n of
the HRF trees. The histogram is computed by scanning a
sliding window across the image (represented as a set of
channels as described above). To obtain insect-part infor-
mation at different sizes, the three different window-scale
ranges mentioned in Section II are computed. At each sliding
window scale, a HRF trained over patches extracted at that
scale range is employed. The histograms from each scale
are concatenated as the final image descriptor. To compute
the bin counts at each window position, the window w
is “dropped” through each tree. As w traverses the tree,
each node n that it visits increases the count of the bins
corresponding to n and to the various spatial pyramid cells
(j, r) to which w belongs. In order to save space, only the
spatial grid at the finest level r = R is stored explicitly—the
bins at coarser spatial levels r < R are computed on-the-
fly when the histograms are being evaluated by the spatial
match kernel. Hence each image histogram Q associated
with an HRF tree is composed of the concatenation of all the
patch counts Q[η, j, r]. Note that the bins have a hierarchical
structure, so that bins of every split node n and its children
ln and rn satisfy Q[η, j, r] = Q[lη, j, r] +Q[rη, j, r].

Feature Vector Dimensionality: The HRF learning has
a fixed limit on split nodes per tree Nt = 70, and a total
fixed number of split nodes of the forest Nrf = 700. Each
HRF has around ten trees, each with Nt+1 = 71 leaves and
an average depth of log2(Nt + 1) (≈ 21). Since the vectors
are length 710 (total number of leaves) times the number of
spatial regions at the deepest level (4 × 4 = 16), there are
approximately 11360 independent dimensions. This is large,
but similar to vectors in current computer vision systems
[15] [16], which show no over-fitting issues.

IV. MATCHING-KERNEL SVM CLASSIFIER

Our method uses an SVM classifier with a specialized
non-linear kernel to take advantage of the discriminative hi-
erarchy of the HRF trees and the spatial correlations between
the image features. Our kernel is based on the pyramid match
kernel [17]; it returns a similarity measure between image
histograms and an approximate correspondence between two
sets of elements. We extend this framework by combining
methods using spatial [18] and tree based partitionings [16].

The learning algorithm uses a standard SVM implemen-
tation with a specialized kernel. Consider the unnormalized
matching kernel K̃ for just one tree t. Let P and Q be
the pair of HRF feature histograms computed across two
images; then

Figure 2. Example images of different stonefly larvae species in the
STONEFLY9 dataset. From left-to-right and top-to-bottom: Cal, Dor, Hes,
Iso, Mos, Pte, Swe, Yor and Zap. See [12] for the full species names.

K̃t(P,Q) =
D−1∑
d=0

1
2D−d

Sd+1(P,Q), (4)

where d indexes across tree depth levels, D is the maximum
depth, and Sd is equivalent to performing a spatial pyramid
match across all the nodes at depth d. Hence Sd is

Sd(P,Q) =
R−1∑
r=0

1
2R−r

(
I(P dr , Q

d
r)− I(P d+1

r , Qd+1
r )

)
.

(5)
I(P dr , Q

d
r) is the histogram intersection distance across

all bins of nodes n at depth d and spatial cells j at
level r. The normalized kernel of one tree, which can
handle images of different sizes, is Kt = 1√

Z K̃t where
Z = K̃t(P, P )K̃t(Q,Q). The kernel receives the vectors
containing only the information at the deepest level, so all
the internal split node bins are calculated and evaluated at
runtime. The evaluation of these internal bins improves the
similarity measure by functioning as a partial match that
smoothes the harsher matches of the deepest level. The final
kernel over all trees in the forest is calculated as K =
1
M

∑
tKt, which is very efficient to evaluate. Furthermore,

given that all the bin values in the histogram intersection
distance I are non-negative, they can be pre-multiplied
by their corresponding weight. After some manipulation,
the kernel evaluation then becomes a summation of the
minimum weighted values of corresponding pair of bins of
P and Q of the form

∑
k min(Pweightedk, Qweightedk).

V. EXPERIMENTS

To assess the performance of our method, we compared
our algorithm with the best stonefly-species classifier in the
literature [12], which uses stacked-evidence trees (SET).
These experiments were performed on the STONEFLY9
dataset, which consists of 3826 images obtained by imaging
773 stonefly larvae specimens (See [12] for more details of
the dataset). Figure 2 contains example images with individ-
uals of each of the nine species to illustrate the challenges



posed by this classification task. Table I shows the results
obtained in nine binary-classification experiments defined
for this comparison. Our new algorithm (HRF Lab+G) has
lower average error and is much more accurate on the most
difficult pair of species, Calineuria and Doroneuria (cal vs.
dor), which are closely related. We also show the relevance
of the gradient channel information by performing these
classification experiments only using the color channels
(HRF Lab). The classification error with color alone is much
higher than the error when using color plus gradient features.
With respect to timing, our algorithm (HRF Lab+G) was
compared to the SET algorithm on the overall prediction
time for new test images in the cal vs. dor experiment
under the same conditions. All the timing experiments were
performed on a 2.8GHz processor computer with 8GB of
memory. The SET algorithm requires three separate local-
feature detection/decription processes ([Hessian-Affine, KB-
Salient, PCBR]+SIFT), which take on average several min-
utes per image (≈ 0.15 + 6.5 + 8.6 minutes). The average
processing time of the HRF algorithm, from image load to
histogram generation, is two orders of magnitude smaller
(5.03 seconds) on the same data set. In both HRF and SET,
the classification stage, operating only on histogram feature
vectors, takes only about 0.2 seconds.

Table I
CLASSIFICATION ERROR. SET, HRF ON (LAB) COLOR CHANNELS

ONLY AND WITH GRADIENT-ORIENTATION PLANES (LAB+G).

Error% SET HRF Lab HRF Lab+G
cal vs. dor 6.26 10.16 4.60
hes vs. iso 3.74 9.05 3.55
pte vs. swe 2.71 8.75 2.80
dor vs. hes 2.25 8.09 2.20
mos vs. pte 2.06 7.95 1.92
yor vs. zap 1.52 6.89 1.60
zap vs. cal 1.52 7.02 1.76
swe vs. yor 1.44 6.85 1.50
iso vs. mos 1.29 6.90 1.30

average 2.53 7.96 2.25

VI. CONCLUSIONS

Our new HRF algorithm combines efficient low-level
feature evaluation with discriminative learning, obtaining
a semantic codebook-quantized image representation in a
single stage. By applying learning from the initial low-
level feature stage on, it is capable of obtaining lower
average error rates than SET in the stonefly classification
task, performing particularly well on the most difficult
task. The use of scale invariant, constant-time Haar-like
features in the branch nodes of the trees achieves a much
lower average processing time than general region detectors
with similar invariance characteristics. Future developments
will include addition of spatial position information at the
splitting functions and reduction of the dimensionality of the
feature vectors.
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