
The Galax System

“The XQuery Implementation for

Discriminating Hackers”

Version 0.5.0

Mary Fernández Jérôme Siméon

February 15, 2005

2

Part I

User’s Manual

3

Chapter 1

Getting Started

5

6 CHAPTER 1. GETTING STARTED

1.1 What is XQuery 1.0?

XQuery 1.0 is a query language for XML, defined by the World-Wide Web Con-
sortium (W3C), under the XML activity. XQuery is a powerful language, which
supports XPath 2.0 as a subset, operations to construct new documents, SQL-
like operations to do selection, joins, and sorting, operations on namespaces,
and operations on XML Schema types. XQuery is a functional language, which
comes with an extensive library of built-in functions, and has support for user-
defined functions. More information about XQuery can be found of the XML
Query Working Group Web page at: http://www.w3c.org/TR/xquery.

1.2 What is Galax?

• Galax is a fully functional implementation of XQuery 1.0. Galax supports
XPath 2.0, including operations on document order, forward and back-
ward axis, support for namespaces, operations on types, and user defined
functions.

• Galax is based on the latest XQuery working drafts.

• Galax supports UTF-8 and ISO-8859-1 character encodings.

• Galax is portable and runs on most modern platforms.

• Galax supports a command-line interface, APIs for O’Caml, C, and Java,
and a simple Web form-based interface.

• Galax supports XML Schema validation, with the exception of XML
Schema facets and derivation by extension and restriction.

• Galax supports the complete XQuery static type inference system.

Alpha features:

• Galax supports the optional XQuery features: XML Schema import, static
type checking, and modules.

• Galax is designed for scalability. Although only a few optimization tech-
niques are available in this release, Galax already supports some prototype
optimizations and a SAX parser.

• Galax has an extensible data model interface. If you want to provide your
own implementation of the XML data model, for example, to support
querying of legacy data, Galax will be able to query that data as though
it were XML.

Limitations: See Chapter 10 for details on Galax’s alignment with the XQuery
and XPath working drafts.

1.3. DOWNLOADING AND INSTALLING GALAX 7

1.2.1 Specifications

Galax implements the October 2004 XQuery 1.0 and XPath 2.0 Working Drafts,
the XML 1.0 Recommendation, the Namespaces in XML Recommendation,
XML Schema Recommendation (Parts 1 & 2).

See Chapter 10 for detailed description of Galax’s alignment with October
2004 working drafts.

See Chapter 9 for changes made in version 0.5.0.

1.3 Downloading and installing Galax

Galax 0.5.0 distribution can be downloaded from http://www.galaxquery.org/distrib.html.
Detailed installation instructions are in Chapter 2.

1.4 How you can use Galax

The Galax query engine can be run from:

• Command-line tools.

• Application-programming interfaces (APIs) for O’Caml, C, or Java.

• A form-based Web interface.

1.4.1 Command-line tools

Galax supports the following stand-alone command-line tools:

galax-run The main Galax XQuery interpreter. The simplest way to use Galax
is by calling the galax-run interpreter from the command line.

For instance, the following commands from the Galax home directory:

% echo "<two> 1+1 </two>" > test.xq
% $(GALAXHOME)/bin/galax-run test.xq
<two>2</two>

evaluates the simple query <two> { 1+1 } </two> and prints the XML
value <two>2</two>.

galax-parse A stand-alone XML document parser and XML Schema valida-
tor. This tool is useful for checking whether an input document validates
against an XML Schema.

For instance, this command will validate the document in hispo.xml
against the schema in hispo.xsd:

% $(GALAXHOME)/bin/galax-parse -validate -xmlschema $(GALAXHOME)/examples/docs/hispo.xsd $(GALAXHOME)/examples/docs/hispo.xml

8 CHAPTER 1. GETTING STARTED

galax-mapschema A stand-alone tool that maps XML Schema documents
into the XQuery type system. This tools is useful for checking whether
Galax recognizes all the constructs in your XML Schema. It also eliminates
a lot of the “noise” in XML Schema’s XML syntax.

For instance, this command will print out the XQuery type representation
of the schema in hispo.xsd:

% $(GALAXHOME)/bin/galax-mapschema $(GALAXHOME)/examples/docs/hispo.xsd

Chapter 5 describes the command-line tools in detail.

1.4.2 Web interface

The Web interface is a simple and convenient way to play with Galax. It is
available on-line at: http://www.galaxquery.org/demo/galax demo.html

You can also re-compile the demo from the Galax source and install it on
your own system. You will need an HTTP server (Apache is recommended).
Follow the compilation instructions in Section 2.5.

1.4.3 Language API’s

Galax supports APIs for O’Caml, C, and Java. See Chapter 6 for how to use
the APIs.

If you have installed the binary distribution of Galax, all three API are
available.

If you have intalled the source distribution of Galax, you will need to select
the language(s) for which you need API support at configuration time. See
Chapter 2 for details on compiling Galax from source.

Examples of how to use Galax from those API’s are in the directories
$(GALAXHOME)/examples/caml api/, $(GALAXHOME)/examples/c api/, and $(GALAXHOME)/examples/java api/.

Chapter 2

Installation

9

10 CHAPTER 2. INSTALLATION

This chapter contains the following sections:

• Preliminaries (Section 2.1) : general requirements and portability infor-
mation.

• Source Distribution (Section 2.2) : requirements and installation instruc-
tions for the source distribution.

• Binary Distribution (Section 2.3) : requirements and installation instruc-
tions for the binary distribution.

• Operating-System Installation Notes (Section 2.4) : detailed installation
notes for each supported target.

• Website (Section 2.5) : requirements and installation instructions for the
web site.

2.1 Preliminaries

2.1.1 Platforms

Release 0.5.0 contains one source distribution and binary distributions for:

• Linux i686, Fedora (Red Hat Linux 9), with gcc 3.3.2

• Solaris/SunOS 5.8 with gcc 3.2 and GNU binutils

• Mac O/S (Darwin 7.5.0), with gcc 3.3

• Windows XP, with MinGW compilers

Note: The binary distribution was compiled with O’Caml version 3.08,
which is not backward compatible with earlier versions of O’Caml.

The source distribution is intended for Unix platforms with GNU compilers
and binary utilities, or Windows platforms with Cygwin or MinGW compilers.
There is no port for VC++ compilers or for non-GNU Unix compilers.

This release has been tested successfully with:

• Linux i686, Fedora (Red Hat Linux 9), with gcc 3.3.2

• Solaris/SunOS 5.8 with gcc 3.2 and GNU binutils

• Mac O/S (Darwin 7.5.0), with gcc 3.3

• Windows XP, with MinGW compilers

Others have compiled earlier versions of Galax on:

• BSD Unix

2.2. SOURCE-CODE DISTRIBUTION 11

We have tried to isolate all the platform-dependent configuration options in
config/Makefile.{unix,macos,mingw}. If you are trying to compile Galax on
a new Unix target, you will certainly have to make changes to config/Makefile.unix,
but you may also have to edit config/Makefile.gen.

Please send us the configuration options for your port and we will incorporate
them into the next release.

2.1.2 General Requirements

Both the source and binary distributions require:

Perl Compatible Regular Expression Library – PCRE (>= v4.5) Galax
requires the PCRE (Perl Compatible Regular Expression) Library version
4.5 or later. PCRE is standard on many Linux distributions (check your
version!) or can be downloaded from: http://www.pcre.org/.

2.2 Source-code Distribution

2.2.1 Source Distribution Requirements

See Section 2.1.2.
We recommend that you install these required tools in order , because there

are dependencies. For example, ocamlnet depends upon pcre-ocaml and findlib.

O’Caml (v3.08) The Objective Caml compiler can be downloaded from: http://caml.inria.fr/.
Installing on MacOS: See Section 2.4.4.

findlib (v1.0.4) The findlib O’Caml library management tool can be down-
loaded from: http://www.ocaml-programming.de/programming/findlib.html.

pcre-ocaml (v5.09) The pcre-ocaml O’Caml interface to PCRE library can
be downloaded from: http://www.ai.univie.ac.at/ markus/home/ocaml sources.html.

ocamlnet (v0.98) The ocamlnet network protocol and string processing li-
brary can be downloaded from: http://www.ocaml-programming.de/programming/ocamlnet.html.

Requires: findlib and pcre-ocaml. Installing on all targets: See Sec-
tion 2.4.

ulex (v0.5) The lexer generator for Unicode and O’Caml can be downloaded
from: http://www.cduce.org/download.html.

Requires: findlib. Installing on MacOS: See Section 2.4.4.

pxp (v1.1.95) The pxp polymorphic XML parsers can be downloaded from:
http://www.ocaml-programming.de/packages/documentation/pxp/index dev.html.

Requires: findlib and ulex. Installing on MacOS: See Section 2.4.4.

12 CHAPTER 2. INSTALLATION

MinGW or Cygwin If your target platform is Windows, you will need to
compile Objective Caml from its source under MinGW or Cygwin.

MinGW can be downloaded from: http://www.mingw.org/.

Cygwin can be downloaded from: http://sourceware.cygnus.com/cygwin/.

GNU Make The Makefiles for Galax require GNU make. If your Unix plat-
form’s default make, or the make in your default $PATH is not GNU make,
then your need to make sure GNU make is installed on your system and
use it instead.

gcc If you want to compile the C API, you will need a C compiler. Galax
has only been tested with recent versions of gcc and GNU binary utilities
(binutils) so there is no guarantee it will work with anything else (although
it has also been reported to work with Solaris standard compiler).

Java If you want to compile the Java API, you will need a recent JDK. Galax
0.5.0 has been tested with SUN Java 2, version 1.4. Earlier versions of
Galax have been reported to work with IBM(R) Developer Kit Version
1.3.1 and Blackdown Java 4.1 (SDK 1.3).

Jungle If you are installing the optional Jungle tool – Galax’s secondary storage
system for large XML documents (Section 7.2), you will need:

1. Berkeley DB Version 4.1.25. Berkeley DB comes standard on many
Linux distributions (e.g., RH 9.0 or Fedora) or can be downloaded
from: http://www.sleepycat.com.

2. The O’Caml IDL tool. You can download the O’Caml IDL tool from
http://caml.inria.fr/camlidl/.

2.2.2 Source Installation

To build Galax from the source distribution:

1. Copy the appropriate configuration file for your platform:

Unix: cp ./config/Makefile.unix ./config/Makefile

Windows: cp ./config/Makefile.mingw ./config/Makefile

Mac: cp ./config/Makefile.macos ./config/Makefile

2. Edit the configuration file ./config/Makefile and set up your environ-
ment:

Check the following required variables:

OCAMLHOME Objective Caml library directory

OCAMLBIN Objective Caml binaries

GALAXHOME Where to install the Galax system once it has been compiled.
Usually $(HOME)/Galax

2.3. BINARY DISTRIBUTION 13

CLIBPCRE Directory where libpcre.a (version 4.5+) is found. Usually
/usr/lib or /usr/local/lib

Check the following optional variables:

ENCODINGS Default character set is UTF-8, if you want additional encod-
ings, uncomment them.

OPTTOOLS If you are compiling an optional tool, uncomment the optional
tool. For example, uncomment OPTTOOLS=jungle if you want to
compile Jungle, Galax’s secondary storage system. All other (unsup-
ported) optional tools are listed in Makefile opttools.conf.

APIS Uncomment the APIs, if you want to build them. The O’Caml API
is compiled by default.

CC If you want to compile the C API, you should set CC to the C compiler.

JAVAHOME and JAVAINCLUDE If you want to compile the Java API, you
should set JAVAHOME to your Java development kit and JAVAINCLUDE
to the Java include directory.

If you are compiling for a Unix platform, uncomment the platform-specfic
variables for your target under O/S Dependent Compilation and
Linking Variables.

If you are compiling the optional Jungle tool, uncomment the following:

BERKELEYDBHOME Set to Berkeley DB installation directory, usually /usr/local/BerkeleyDB.4.1.

3. Compile Galax: In galax/, make world

4. Install Galax: make install

5. Check installation:

In galax/ directory, execute: make tests.

6. (Optional) Check Jungle installation:

In galax/examples/jungle directory, edit jungle1.xq and replace direc-
tory name by the path to your jungle directory, then execute: make tests.

2.3 Binary Distribution

2.3.1 Binary Distribution Requirements

See Section 2.1.2.

O’Caml (v3.08) If you plan to use the Galax O’Caml API, you will need the
Objective Caml compiler version 3.08. If you don’t plan to use the O’Caml
API, then you do not need to install O’Caml.

14 CHAPTER 2. INSTALLATION

The Objective Caml compilers can be downloaded from: http://caml.inria.fr/.
Note: The binary distribution was compiled with O’Caml version 3.08,
which is not backward compatible with earlier versions of O’Caml.

GNU Make The Makefiles for Galax require GNU make. If your Unix plat-
form’s default make, or the make in your default $PATH is not GNU make,
then your need to make sure GNU make is installed on your system and
use it instead.

gcc If you want to compile the C API, you will need a C compiler. Galax has
only been tested with recent versions of gcc, so there is no guarantee it
will work with anything else. Installing on Solaris: See Section 2.4.2.

Java If you want to compile the Java API, you will need a recent JDK. Galax
0.5.0 has been tested with SUN Java 2, version 1.4. Earlier versions of
Galax have been reported to work with IBM(R) Developer Kit Version
1.3.1 and Blackdown Java 4.1 (SDK 1.3). Installing on Solaris: See
Section 2.4.2.

2.3.2 Binary Installation

To install Galax, you should:

1. Uncompress the distribution:

Windows: unzip Galax-0.5.0-MinGW.zip

Linux: cat Galax-0.5.0-Linux.tar.gz | gunzip | tar xvf -

MacOS: cat Galax-0.5.0-MacOS.tar.gz | gunzip | tar xvf -

The directory Galax/ should contain:

README Pointer to documentation

LICENSE Terms of software licence

bin/ Command-line tools

doc/ This documentation

examples/ Galax API examples for calling Galax from Caml, C and Java

lib/ Galax libraries

usecases/ XML Query Use Cases and XMark benchmark queries

2. Set up your environment: Edit config/Makefile and initialize variables:

GALAXHOME The Galax directory. Usually $(HOME)/Galax

OCAMLHOME If you are compiling O’Caml API example, the Objec-
tive Caml library directory.

OCAMLBIN If you are compiling O’Caml API example, the Objective
Caml binaries directory.

2.4. OPERATING-SYSTEM INSTALLATION NOTES 15

CC If you are compiling the C API example, the C compiler.

JAVAHOME and JAVAINCLUDE If you are compiling the Java API
example, you should set JAVAHOME to your Java development kit
and JAVAINCLUDE to the Java include directory.

Add $(GALAXHOME)/bin to your PATH.

Add $(GALAXHOME)/lib/c:$(GALAXHOME)/lib/java to your
library path variable (LD LIBRARY PATH on Linux, DYLD LIBRARY PATH
on MacOS.

3. (Optional) Check installation:

In $(GALAXHOME)/usecases execute: make all

In $(GALAXHOME)/examples execute: make all

2.4 Operating-System Installation Notes

2.4.1 Linux

ocamlnet

If you have compiled O’Caml with no shared libraries, you will get an error when
compiling ocamlnet, because the src/netstring/tools/unimap to ocaml/unimap to ocaml
executable is a pre-compiled ocamlrun (bytecode) executable that assumes O’Caml
supports shared libraries.

Remove src/netstring/tools/unimap to ocaml/unimap to ocaml, remake
in that directory, then proceed with compilation and installation.

2.4.2 Solaris

2.4.3 APIs

The Solaris implementation requires gcc and the GNU binary utilities. If your
gcc compiler is configured to invoke the native binary utilities (e.g., as, ld, etc.)
and not the GNU utilities, you need to set up your environment so gcc will use
the GNU utilities. Set $LD LIBRARY PATH to gcc library directory and
$GCC EXEC PREFIX to the gcc binary utilities directory.

2.4.4 MacOS

O’Caml:

We recommend that when you configure the O’Caml compiler, use the -no-
shared-libs options, which means that the O’Caml compiler will only create
static libraries.

If you get linking errors when compiling the C API, you may have to rebuild
your O’Caml compiler using the -fno-common compiler option. Edit your

16 CHAPTER 2. INSTALLATION

O’Caml config/Makefile and add -fno-common to BYTECCCOMPOPTS and
NATIVECCCOMPOPTS.

ocamlnet

If you have compiled O’Caml with no shared libraries, you will get an error when
compiling ocamlnet, because the src/netstring/tools/unimap to ocaml/unimap to ocaml
executable is a pre-compiled ocamlrun (bytecode) executable that assumes O’Caml
supports shared libraries.

Remove src/netstring/tools/unimap to ocaml/unimap to ocaml, remake
in that directory, then proceed with ocamlnet compilation and installation.

If you get errors from ocamlfind, try:
ocamlopt -o unimap to ocaml $(OCAMLHOME)/str.cmxa unimap to ocaml.ml
I had to generate unimap to ocaml by hand, because ocamlfind did note find

str.cmxa correctly.

pxp

I was not able to build PXP successfully using the wlex and ulex lexers and
all the character encodings. Instead, I configured PXP with just two character
encodings and the standard lexers:

./configure -without-wlex -without-ulex -lexlist utf8,iso88591 -without-pp
Then proceed with compilation and installation.

2.4.5 Windows

2.5 Web-site Interface

The Galax website and on-line demo is in the source distribution, only.

2.5.1 Prerequesites for demo website

The Galax website has only been tested with Apache Web server. We recom-
mend you use Apache as some of the CGI scripts might be sensitive to the server
you are using. Apache can be downloaded from: http://www.apache.org/

2.5.2 Installation of Website Interface

1. Edit website/Makefile.config and initialize variables:

WEBSITE Location of the Apache directory for Galax.

CGIBIN PREFIX Prefix of directory that may contain CGI executa-
bles. If empty, then they are placed in WEBSITE.

2. Compile the the demo scripts: make world

3. Install the web site and demo scripts: make install

2.5. WEB-SITE INTERFACE 17

4. Configure your own Apache server: If all the galax demo files (HTML,
XML and CGIs) are placed in one directory where the HTTP daemon is
expecting to find them, then it is necessary to add the following config
info to the /etc/httpd/conf/http.conf file:

<Directory "/var/www/html/galax">
Options All
AllowOverride None
AddHandler cgi-script .cgi
Order allow,deny
Allow from all

</Directory>

This permits scripts with suffix .cgi in /var/www/html/galax to be exe-
cuted. The Galax demo is available at http://localhost/galax.

5. OR Configure an existing multi-user Apache server.

Your sysadmin may already have set up an Apache server for general use,
and allows CGI programs by any user. You can verify by finding directives
similar to the following in httpd.conf (wherever it might be located on your
system),

<DirectoryMatch "^/home/[^/]+/cgi-bin">
AllowOverride AuthConfig
Options ExecCGI
SetHandler cgi-script

</DirectoryMatch>

In that case, simply follow the comments in website/Makefile.config
to choose installation destinations for your CGI programs and the HTML
documents should suffice. The URL for accessing the installed site will
depend on how your webserver is set up. Consult your sysadmin or we-
badmin for further help.

18 CHAPTER 2. INSTALLATION

Chapter 3

Tutorial

19

20 CHAPTER 3. TUTORIAL

3.1 Executing a query

The simplest way to use Galax is by calling the galax-run interpreter from the
command line. This chapter describes the most frequently used command-line
options. Chapter 5 enumerates all the command-line options.

Before you begin, follow instructions in Section 2.3.2 for setting up your
environment. Run the following query to make sure your environment is set-up
correctly:

% echo "<two> 1+1 </two>" > test.xq
% galax-run test.xq
<two>2</two>

Galax evaluates the expression <two> { 1+1 } </two> in file test.xq and
prints the XML value <two>2</two>.

By default, Galax parses and evaluates an XQuery main module, which
contains both a prolog and an expression. Sometimes it is useful to separate the
prolog from an expression, for example, if the same prolog is used by multiple
expressions. The -context option specifies a file that contains a query prolog.

All of the XQuery use cases in $(GALAXHOME)/usecases are implemented by
separating the query prolog from the query expressions. Here is how to execute
the Parts usecase:

% cd $(GALAXHOME)/usecases
% galax-run -context parts_context.xq parts_usecase.xq

The other use cases are executed similarly, for example:

% galax-run -context rel_context.xq rel_usecase.xq

3.2 Accessing Input

You can access an input document by calling the fn:doc() function and passing
the file name as an argument:

% cd $(GALAXHOME)/usecases
% echo "fn:doc(’docs/books.xml’)" > doc.xq
% galax-run doc.xq

You can access an input document by referring to the context item (the “.”
dot variable), whose value is the document’s content:

% echo "." >dot.xq
% galax-run -context-item docs/books.xml dot.xq

You can also access an input document by referring to a variable, whose
value is the document’s content:

% echo "$doc" > var.xq
% galax-run -var doc=docs/books.xml var.xq

3.3. CONTROLLING OUTPUT 21

3.3 Controlling Output

By default, Galax serializes, or emits, the result of a query in the XQuery rep-
resentation of the XML value. For example, the result of this query is serialized
as the literal 2:

% echo "1+1">sum.xq
% galax-run sum.xq
2

If you want the output of your query to be a well-formed XML value, then
use the -serialize wf option:

% galax-run sum.xq -serialize wf

The result of this query is:

<?xml version="1.0" encoding="UTF-8"?>
<xq:result>2</xq:result>

Note that atomic values do not have a canonical representation in XML, so
Galax “wraps” atomic values in xq:result elements.

Try using the -serialize wf option on other examples:

% galax-run -var doc=docs/books.xml var.xq -serialize wf

By default, Galax serializes the result value to standard output. Use the
-print-xml option to serialize the result value to an output file.

% galax-run -var doc=docs/books.xml var.xq -print-xml output.xml

22 CHAPTER 3. TUTORIAL

Chapter 4

General

23

24 CHAPTER 4. GENERAL

4.1 The Galax Team

Galax project management and core development:

• Mary Fernández

• Jérôme Siméon

Contributors:

• Byron Choi

• Vladimir Gapeyev

• Amélie Marian

• Philippe Michiels

• Nicola Onose

• Douglas Petkanics

• Christopher Ré

• Michael Stark

• Gargi Sur

• Avinash Vyas

• Philip Wadler

4.2 Feedback

Feedback and bug reports can be sent by mail to: galax@lists.bell-labs.com
You can be subscribe to the Galax mailing list at: http://lists.bell-labs.com/mailman/listinfo/galax
You can report bugs at http://bugzilla.galaxquery.net/.

4.3 Copyright and License

Galax version 0.5.0 is distributed under the terms of the LUCENT PUBLIC
LICENSE VERSION 1.0 - see the LICENSE file for details.

Lucent Public License Version 1.0

THE ACCOMPANYING PROGRAM IS PROVIDED UNDER THE TERMS OF THIS PUBLIC
LICENSE ("AGREEMENT"). ANY USE, REPRODUCTION OR DISTRIBUTION OF THE
PROGRAM CONSTITUTES RECIPIENT’S ACCEPTANCE OF THIS AGREEMENT.

1. DEFINITIONS

4.3. COPYRIGHT AND LICENSE 25

"Contribution" means:

a.in the case of Lucent Technologies Inc. ("LUCENT"), the Original
Program, and

b.in the case of each Contributor,

i.changes to the Program, and

ii.additions to the Program; where such changes and/or additions to
the Program originate from and are "Contributed" by that particular
Contributor.

A Contribution is "Contributed" by a Contributor only (i) if it was
added to the Program by such Contributor itself or anyone acting on
such Contributor’s behalf, and (ii) the Contributor explicitly
consents, in accordance with Section 3C, to characterization of the
changes and/or additions as Contributions.

"Contributor" means LUCENT and any other entity that has Contributed a
Contribution to the Program.

"Distributor" means a Recipient that distributes the Program,
modifications to the Program, or any part thereof.

"Licensed Patents" mean patent claims licensable by a Contributor
which are necessarily infringed by the use or sale of its Contribution
alone or when combined with the Program.

"Original Program" means the original version of the software
accompanying this Agreement as released by LUCENT, including source
code, object code and documentation, if any.

"Program" means the Original Program and Contributions or any part
thereof

"Recipient" means anyone who receives the Program under this
Agreement, including all Contributors.

2. GRANT OF RIGHTS

a.Subject to the terms of this Agreement, each Contributor hereby
grants Recipient a non-exclusive, worldwide, royalty-free copyright
license to reproduce, prepare derivative works of, publicly display,
publicly perform, distribute and sublicense the Contribution of such

26 CHAPTER 4. GENERAL

Contributor, if any, and such derivative works, in source code and
object code form.

b.Subject to the terms of this Agreement, each Contributor hereby
grants Recipient a non-exclusive, worldwide, royalty-free patent
license under Licensed Patents to make, use, sell, offer to sell,
import and otherwise transfer the Contribution of such Contributor, if
any, in source code and object code form. The patent license granted
by a Contributor shall also apply to the combination of the
Contribution of that Contributor and the Program if, at the time the
Contribution is added by the Contributor, such addition of the
Contribution causes such combination to be covered by the Licensed
Patents. The patent license granted by a Contributor shall not apply
to (i) any other combinations which include the Contribution, nor to
(ii) Contributions of other Contributors. No hardware per se is
licensed hereunder.

c.Recipient understands that although each Contributor grants the
licenses to its Contributions set forth herein, no assurances are
provided by any Contributor that the Program does not infringe the
patent or other intellectual property rights of any other entity. Each
Contributor disclaims any liability to Recipient for claims brought by
any other entity based on infringement of intellectual property rights
or otherwise. As a condition to exercising the rights and licenses
granted hereunder, each Recipient hereby assumes sole responsibility
to secure any other intellectual property rights needed, if any. For
example, if a third party patent license is required to allow
Recipient to distribute the Program, it is Recipient’s responsibility
to acquire that license before distributing the Program.

d.Each Contributor represents that to its knowledge it has sufficient
copyright rights in its Contribution, if any, to grant the copyright
license set forth in this Agreement.

3. REQUIREMENTS

A. Distributor may choose to distribute the Program in any form under
this Agreement or under its own license agreement, provided that:

a.it complies with the terms and conditions of this Agreement;

b.if the Program is distributed in source code or other tangible form,
a copy of this Agreement or Distributor’s own license agreement is
included with each copy of the Program; and

4.3. COPYRIGHT AND LICENSE 27

c.if distributed under Distributor’s own license agreement, such
license agreement:

i.effectively disclaims on behalf of all Contributors all warranties
and conditions, express and implied, including warranties or
conditions of title and non-infringement, and implied warranties or
conditions of merchantability and fitness for a particular purpose;

ii.effectively excludes on behalf of all Contributors all liability
for damages, including direct, indirect, special, incidental and
consequential damages, such as lost profits; and

iii.states that any provisions which differ from this Agreement are
offered by that Contributor alone and not by any other party.

B. Each Distributor must include the following in a conspicuous
location in the Program:

Copyright (C) 2003, Lucent Technologies Inc. and others. All Rights
Reserved.

C. In addition, each Contributor must identify itself as the
originator of its Contribution, if any, and manifest its intent that
the additions and/or changes be a Contribution, in a manner that
reasonably allows subsequent Recipients to identify the originator of
the Contribution. Once consent is granted, it may not thereafter be
revoked.

4. COMMERCIAL DISTRIBUTION

Commercial distributors of software may accept certain
responsibilities with respect to end users, business partners and the
like. While this license is intended to facilitate the commercial use
of the Program, the Distributor who includes the Program in a
commercial product offering should do so in a manner which does not
create potential liability for Contributors. Therefore, if a
Distributor includes the Program in a commercial product offering,
such Distributor ("Commercial Distributor") hereby agrees to defend
and indemnify every Contributor ("Indemnified Contributor") against
any losses, damages and costs (collectively "Losses") arising from
claims, lawsuits and other legal actions brought by a third party
against the Indemnified Contributor to the extent caused by the acts
or omissions of such Commercial Distributor in connection with its
distribution of the Program in a commercial product offering. The
obligations in this section do not apply to any claims or Losses

28 CHAPTER 4. GENERAL

relating to any actual or alleged intellectual property
infringement. In order to qualify, an Indemnified Contributor must: a)
promptly notify the Commercial Distributor in writing of such claim,
and b) allow the Commercial Distributor to control, and cooperate with
the Commercial Distributor in, the defense and any related settlement
negotiations. The Indemnified Contributor may participate in any such
claim at its own expense.

For example, a Distributor might include the Program in a commercial
product offering, Product X. That Distributor is then a Commercial
Distributor. If that Commercial Distributor then makes performance
claims, or offers warranties related to Product X, those performance
claims and warranties are such Commercial Distributor’s responsibility
alone. Under this section, the Commercial Distributor would have to
defend claims against the Contributors related to those performance
claims and warranties, and if a court requires any Contributor to pay
any damages as a result, the Commercial Distributor must pay those
damages.

5. NO WARRANTY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, THE PROGRAM IS
PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT LIMITATION, ANY
WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is solely
responsible for determining the appropriateness of using and
distributing the Program and assumes all risks associated with its
exercise of rights under this Agreement, including but not limited to
the risks and costs of program errors, compliance with applicable
laws, damage to or loss of data, programs or equipment, and
unavailability or interruption of operations.

6. DISCLAIMER OF LIABILITY

EXCEPT AS EXPRESSLY SET FORTH IN THIS AGREEMENT, NEITHER RECIPIENT NOR
ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING
WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OR
DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. EXPORT CONTROL

4.3. COPYRIGHT AND LICENSE 29

The Recipient acknowledges that the Program is "publicly available" as
the term is defined under the United States export administration
regulations and is not subject to export control under such laws and
regulations. However, if the Recipient modifies the Program to change
(or otherwise affect) such publicly available status, the Recipient
agrees that Recipient alone is responsible for compliance with the
United States export administration regulations (or the export control
laws and regulation of any other countries) and hereby indemnifies the
Contributors for any liability incurred as a result of the Recipients
actions which result in any violation of any such laws and
regulations.

8. GENERAL

If any provision of this Agreement is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this Agreement, and without further
action by the parties hereto, such provision shall be reformed to the
minimum extent necessary to make such provision valid and
enforceable.

If Recipient institutes patent litigation against a Contributor with
respect to a patent applicable to software (including a cross-claim or
counterclaim in a lawsuit), then any patent licenses granted by that
Contributor to such Recipient under this Agreement shall terminate as
of the date such litigation is filed. In addition, if Recipient
institutes patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Program
itself (excluding combinations of the Program with other software or
hardware) infringes such Recipient’s patent(s), then such Recipient’s
rights granted under Section 2(b) shall terminate as of the date such
litigation is filed.

All Recipient’s rights under this Agreement shall terminate if it
fails to comply with any of the material terms or conditions of this
Agreement and does not cure such failure in a reasonable period of
time after becoming aware of such noncompliance. If all Recipient’s
rights under this Agreement terminate, Recipient agrees to cease use
and distribution of the Program as soon as reasonably
practicable. However, Recipient’s obligations under this Agreement and
any licenses granted by Recipient relating to the Program shall
continue and survive.

Lucent Technologies Inc. may publish new versions (including

30 CHAPTER 4. GENERAL

revisions) of this Agreement from time to time. Each new version of
the Agreement will be given a distinguishing version number. The
Program (including Contributions) may always be distributed subject to
the version of the Agreement under which it was received. In addition,
after a new version of the Agreement is published, Contributor may
elect to distribute the Program (including its Contributions) under
the new version. No one other than Lucent has the right to modify this
Agreement. Except as expressly stated in Sections 2(a) and 2(b) above,
Recipient receives no rights or licenses to the intellectual property
of any Contributor under this Agreement, whether expressly, by
implication, estoppel or otherwise. All rights in the Program not
expressly granted under this Agreement are reserved.

This Agreement is governed by the laws of the State of New York and
the intellectual property laws of the United States of America. No
party to this Agreement will bring a legal action under this Agreement
more than one year after the cause of action arose. Each party waives
its rights to a jury trial in any resulting litigation.

4.4 Bugs and Limitations

4.5 Known Bugs and Limitations

Galax’s error messages are often uninformative. We are working on this.
Namespace declarations in input and output documents and in input queries

are not handled consistently. We are working on this.
Although module declarations and module import statements are supported,

they are not well tested.

Bugs fixed in Version 0.4
~~~~~~~~~~~~~~~~~~~~~~~~~

Date: Reported By: Locus: Fixed by: Test in XQueryUnit:
----- ------------ ------ --------- -------------------
06 Nov Trevor Jim
Feature request: if no file arguments are given to galax, take input
from standard input; or at least provide a flag that allows this.

04Apr03 Mary Fernandez Datamodel/Node order
mff@research.att.com Jerome New data model
galax-dev/2003q2/000209.html



4.5. KNOWN BUGS AND LIMITATIONS 31

Node order

12Jul03 Mark Anderson Makefiles (MacOSX)
galax/2003q3/000285.html Mary

30Jul03 Michael Burbridge Makefiles (MacOSX)
galax/2003q3/000287.html Mary
galax/2003q3/000294.html

8Aug03 Michael Schlenker Extensible DM interface
galax/2003q3/000304.html

Bugs fixed in Version 0.3.1
~~~~~~~~~~~~~~~~~~~~~~~~~~~

Date: Reported By: Locus: Fixed by: Test in XQueryUnit:
----- ------------ ------ --------- -------------------
16Apr03 Carmelo Montanez Atomic types Mary

carmelo@nist.gov
galax/2003q2/000196.html
literal ints are int, not integer

29Jan03 Bard Bloom Optimization Mary [galax]Optimization_001.xq
<bardb@us.ibm.com>
galax/2003q1/000130.html

31Jan03 Bard Bloom Error messages Mary [Section3.1.4]Function_014.xq
<bardb@us.ibm.com>

galax/2003q1/000138.html

11Feb03 Clause Huempel Lexing Jerome
Claus Huempel
chuempel@orange.fr
galax/2003q1/000140.html

20Feb03 Jerome Simeon Context Jerome/Mary
simeon@research.bell-labs.com
galax-dev/2003q1/000180.html

13Mar03 Christopher Burdorf Galapi-ML Mary
cburdorf@imageworks.com
galax/2003q1/000156.html

22Mar03 Mike Tikiliainen Galapi-ML Mary
mt99@doc.ic.ac.uk
galax/2003q1/000157.html

32 CHAPTER 4. GENERAL

26Mar03 Steve Fortune Text constructor [Section3.7.2]ComputedTextConstructor_0012.xq

26Mar03 Steve Fortune Context/API Mary [galax]ExtContext_001,002.xq

16Apr03 Michael Burbidge Galapi-C Mary
mburbidg@adobe.com
galax/2003q2/000198.html

18Apr03 Michael Burbidge Command-line API Mary
mburbidg@adobe.com
galax/2003q2/000217.html

01May03 Bard Bloom Evaluation Mary [Section3.8]OrderClause_007.xq
<bardb@us.ibm.com>
galax/2003q2/000233.html
Order-by clause broken

05May03 Greg Pomerantz Serialization Jerome
gmp@alumni.brown.edu
galax/2003q2/000242.html

21Apr03 Michael Burbidge Unicode support Jerome Implemented some support for UTF-8,
mburbidg@adobe.com ISO-88591 and UTF16
galax/2003q2/000227.html

30Apr03 Mary Fernandez Document validate
mff@research.att.com
glx:document-validate
galax-dev/2003q2/000230.html

Bug fixed in Version 0.3
~~~~~~~~~~~~~~~~~~~~~~~~

Date: Reported By: Locus: Fixed by: Test in XQueryUnit:
----- ------------ ------ --------- -------------------
14 Oct Rajasekar Krishnamurthy Sorting Jerome [Section3.2.2]Predicates_012.xq

<sekar@cs.wisc.edu>
galax/2002q4/000054.html

04 Nov Trevor Jim Attr: single quotes Jerome [Section3.7.2]ComputedAttributeConstructor_009.xq
<trevor@research.att.com>



4.5. KNOWN BUGS AND LIMITATIONS 33

04 Nov Trevor Jim Attr constructors Mary [Section3.7.2]ComputedAttributeConstructor_010.xq
<trevor@research.att.com> [Section3.7.2]ComputedAttributeConstructor_011.xq

04 Nov Blavier, Andr Attribute constructors (Covered by ComputedAttributeConstructor above)
galax/2002q4/000062.html

05 Nov Blavier, Andr Function calls Mary [Section3.1.4]/FunctionCall_013.xq
<andre.blavier@caissedesdepots.fr>
galax/2002q4/000064.html

06 Nov Bard Bloom Whitespace in elem [Section3.7.1]ComputedElementConstructor_001.xq
constructor

<bardb@us.ibm.com>
galax/2002q4/000067.html

06 Nov Peter Patel-Schneider Namespaces Jerome Should reject wrongful rebindings of xml and xmlns

06 Nov Peter Patel-Schneider Namespaces Jerome
Requested support for xml:base and xml:lang special attributes

08 Nov Bard Bloom Sorting J/M [Section3.9.1]SortExpr_010.xq
<bardb@us.ibm.com>
galax/2002q4/000073.html

15 Nov Bernd Amann Def’n of fn:data on [Section3.5.2]GeneralComp_010.xq
complex content

25 Nov Bard Bloom Attr constructor (Covered by ComputedAttributeConstructor above)
<bardb@us.ibm.com>
galax/2002q4/000086.html

4 Dec Bard Bloom Print function Jerome Implemented glx:print-string, glx:print-item
<bardb@us.ibm.com>
galax/2002q4/000092.html

=======
STILL OUTSTANDING
~~~~~~~~~~~~~~~~~

Requested features
~~~~~~~~~~~~~~~~~~

Date: Requested by:
11Apr03 Bronneberg EM Schema support



34 CHAPTER 4. GENERAL

embronne@cs.vu.nl
galax/2003q2/000187.html
Attribute groups unsupported

14Apr03 MW Atomic types
onlymails@gmx.net
galax/2003q2/000194.html
literal ints are int, not integer

16Apr03 Carmelo Montanez Atomic types
carmelo@nist.gov
galax/2003q2/000203.html
All numeric types not supported

User contributions
~~~~~~~~~~~~~~~~~~

20 Nov Volker Stoltz
Free BSD compilation script

17Apr03 Michael Burbidge
mburbidg@adobe.com
Makefile changes for Mac OS X build...
galax/2003q2/000207.html

Bugs
~~~~

Date: Reported By: Locus: Fixed by: Test:
----- ------------ ------ --------- -----
30Jul03 Michael Burbridge MacOSX

galax/2003q3/000304.html
glx_serialize_to_file doesn’t work

06Nov02 Trevor Jim Error messages galax-bugs/error.xq
<trevor@research.att.com>
galax/2002q4/000066.html

17Nov02 Michael Good Win32 distribution
galax/2002q4/000077.html

03Dec02 Bard Bloom Error messages General error messages
<bardb@us.ibm.com>
galax/2002q4/000090.html

28Feb03 Bronneberg EM Parsing



4.5. KNOWN BUGS AND LIMITATIONS 35

<embronne@cs.vu.nl>
galax/2003q1/000144.html
Parse error in function definitions

06Mar03 Bard Bloom Windows installation
<bardb@us.ibm.com>
galax/2003q1/000147.html
Spaces in path to Galax installation

07Mar03 Palmer, Jim Windows installation
jim.palmer@certive.com
galax/2003q2/thread.html

10Apr03 Torsten Grust Static typing
Torsten.Grust@uni-konstanz.de
galax/2003q2/000183.html
Semantics of XPath axes and attributes

10Apr03 Sima Kdoshim Parsing
sigik@alum.cs.huji.ac.il
galax/2003q2/thread.html
Parsing entities in DTDs



36 CHAPTER 4. GENERAL



Part II

Reference Manual

37





Chapter 5

Command Line Tools

39



40 CHAPTER 5. COMMAND LINE TOOLS

Galax supports the following stand-alone command-line tools:

galax-run The Galax XQuery interpreter.

galax-parse XML document parser and validator.

galax-mapschema XML Schema validator. Outputs XML Schema in XQuery
type system.

5.1 galax-run : The Galax XQuery interpreter

The simplest way to use Galax is by calling the ’galax-run’ interpreter from the
command line. The interpreter takes an XQuery input file, evaluates it, and
yields the result on standard output.

Usage: galax-run options query.xq
For instance, the following commands from the Galax home directory:

% echo "<two> 1+1 </two>" > test.xq
% $(GALAXHOME)/bin/galax-run test.xq
<two>2</two>

evaluates the simple query <two> { 1+1 } </two> and prints the XML value
<two>2</two>.

The query interpreter has five processing stages: parsing an XQuery expres-
sion; normalizing an XQuery expression into an XQuery core expression; static
typing of a core expression; optimizing a core expression; and evaluating a core
expression.

Parsing is always enabled. By default, the other phases are:

-normalize on
-static off
-optim on
-dynamic on

By default, all result values (XML result, inferred type, etc.) are written to
standard output.

The command line options permit various combinations of phases, printing
intermediate expressions, and redirecting output to multiple output files. Here
are the available options. Default values are in code font.

-help,–help Display this list of options

5.1.1 Input options

-base-uri Sets the default base URI in the static context

-var var=filename, Binds the global variable var to document in filename



5.1. GALAX-RUN : THE GALAX XQUERY INTERPRETER 41

-context-item Binds the context item (“.” variable) to the document in file-
name or ’-’ for stdin

-context Load the context query from file or ’-’ for stdin

-xml-whitespace Preserves whitespace in XML documents [on/off]

-xml-pic Preserves PI’s and comments in XML documents [on/off]

xquery-whitespace Preserves whitespace in XQuery expressions [on/off]

5.1.2 Output options

-serialize Set serialization kind [wf, canonical, or xquery]

-serialize-namespaces Set serialization of namespace nodes [strip/preserve]

5.1.3 Evaluation options

-dynamic Evaluation phase [on/off]

-print-xml Print XML result [on/off]

-output-xml Output XML to result file

-print-expr Print input expression [on/off]

-output-expr Output expr to file.

5.1.4 Normalization options

-normalize Normalization phase [on/off]

-print-normalized-expr Print normalized expression [on/off]

-output-normalized-expr Output normalized expression to file.

5.1.5 Static typing options

-static Static analysis phase [on/off]

-typing Static typing behavior [none, weak, or strong]

-print-type Print type of expression [on/off]

-output-type Output type to file.

-print-typed-expr Print typed expression [on/off]

-output-typed-expr Output typed expression to file.



42 CHAPTER 5. COMMAND LINE TOOLS

5.1.6 Optimization options

-optim Optimization phase (use with -static on) [on/off]

-sbdo Document-order/duplicate-elimination optimization behavior [remove,
preserve, adhoc, or automata]

-print-optimized-expr Print optimized expression [on/off]

-output-optimized-expr Output optimized expression to file.

5.1.7 Miscellaneous printing options

-verbose Emit descriptive headers in output [on/off]

-output-all Output everything to file.

-print-error-code Print only the error code instead of the full error message

-print-context-item Serializes the context item at the end of query evaluation

-output-context-item Output the context item to the given file

-print-annotations Print expression annotations [on/off]

-print-logical-plan Print out the logical plan [on/off]

-output-logical-plan Output the logical plan to a file

-print-physical-plan Print the physical plan [on/off]

-output-physical-plan Output the physical algebraic plan to a file

5.1.8 Document projection options

-projection Document projection behavior [none, standard, or optimized]

-print-projection Prints the projection paths

-output-projection Output the projections paths to a file.

-print-projected-file Prints back the input document after projection

-output-projected-file Output the input document after projection into file.

-pretty-print-module Pretty printing the whole module

-pretty-print Pretty printing the query to file ’filename pretty.xq’



5.2. GALAX-PARSE: XML PARSER AND XML SCHEMA VALIDATOR 43

5.1.9 Miscellaneous options

-version Prints the Galax version

-debug Emit debugging [on/off]

-monitor Monitors memory and CPU consumption [on/off]

-monitor-mem Monitors memory consumption [on/off]

-monitor-time Monitors CPU consumption [on/off]

-output-monitor Output monitor actibity to file

-internal-encoding Set the input character encoding representation, e.g., utf8,
iso88591.

-output-encoding Set the output character encoding representation

5.2 galax-parse: XML parser and XML Schema
validator

galax-parse parses an XML document and optionally validates the document
against an XML Schema.

Usage: galax-parse options document.xml

-help,–help Display this list of options

-xml-whitespace Preserves whitespace in XML documents

-xml-pic Preserves PI’s and comments in XML documents

-validate Set validation on

-xmlschema Schema against which to perform validation

-dm Also builds the data model instance

-monitor Monitors memory and CPU consumption

-monitor-mem Monitors memory consumption

-monitor-time Monitors CPU consumption

-output-monitor Output monitor to file

-serialize-namespaces Set serialization of namespace nodes [strip/preserve]

-serialize Set serialization kind [canonical, wf, or xquery]

-print-error-code Print only the error code instead of the full error message

-output-encoding Set the output encoding representation



44 CHAPTER 5. COMMAND LINE TOOLS

5.3 galax-mapschema : XML Schema validator

galax-mapschema maps XML schemas in xmlschema(s) into XQuery type ex-
pressions.

Usage: galax-mapschema options schema.xsd

-prefix Namespace prefix

-verbose Set printing to verbose

-import-type Set XML Schema import

-normalize-type Set XQuery type normalization

-print-type Set printing ofXQuery type

-print-normalized-type Set printing of normalized XQuery type

-output-type Output XQuery type in file

-output-normalized-type Output normalized XQuery type in file



Chapter 6

Application Programming
Interfaces (APIS)

45



46 CHAPTER 6. APPLICATION PROGRAMMING INTERFACES (APIS)

The quickest way to learn how to use the APIs is as follows:

1. Read Section 6.1 “Galax API Support”.

2. Read Section 6.2 “Quick Start to the Galax APIs”.

3. Read the example programs in the galax/examples/ directory while read-
ing Section 6.2.

Every Galax API has functions for:

• Converting values in the XQuery data model to/from values in the native
programming language (O’Caml, C or Java);

• Accessing values in XQuery data model from the native programming
language;

• Loading XML documents into the XQuery data model;

• Creating and modifying the query evaluation environment (also known as
the dynamic context);

• Evaluating queries given a dynamic context; and

• Serializing XQuery data model values as XML documents.

This chapter describes how to use each kind of functions.

6.1 Galax API Functionality

Galax currently supports application-program interfaces for the O’Caml, C, and
Java programming languages.

All APIs support the same set of functions; only their names differ in each
language API. This file describes the API functions. The interfaces for each
language are defined in:

O’Caml $GALAXHOME/lib/caml/galax.mli

C $GALAXHOME/lib/c/{galax,galax util,galax types,itemlist}.h

Java $GALAXHOME/lib/java/doc/*.html

If you use the C API, see Section 6.5.1 “Memory Management in C API”.
Example programs that use these APIs are in:

O’Caml $GALAXHOME/examples/caml api

C $GALAXHOME/examples/c api

Java $GALAXHOME/examples/java api



6.2. QUICK START TO USING THE APIS 47

To try out the API programs, edit examples/Makefile.config to set up your
environment, then execute: cd $GALAXHOME/examples; make all.

This will compile and run the examples. Each directory contains a ”test”
program that exercises every function in the API and an ”example” programs
that illustrates some simple uses of the API.

The Galax query engine is implemented in O’Caml. This means that values
in the native language (C or Java) are converted into values in the XQuery data
model (which are represented are by O’Caml objects) before sending them to
the Galax engine. The APIs provide functions for converting between native-
language values and XQuery data-model values.

6.1.1 Linking and Running

There are two kinds of Galax libraries: byte code and native code. The C and
Java libraries require native code libraries, and Java requires dynamically linked
libraries. Here are the libraries:

O’Caml libraries in $GALAXHOME/lib/caml:

glx.cma Byte code

glx.cmxa Native code

C libraries in $GALAXHOME/lib/c:

libgalaxopt.a Native code, statically linked

libgalaxopt.so Native code, dynamically linked

Java libraies in $GALAXHOME/lib/java:

libglxoptj.so Native code, dynamically linked

Note that Java applications MUST link with a dynamically linked library
and that C applications MAY link with a dynamically linked library.

For Linux users, set LD LIBRARY PATH to $GALAXHOME/lib/c:$GALAXHOME/lib/java.
The Makefiles in examples/c api and examples/java api show how to com-

pile, link, and run applications that use the C and Java APIs.

6.2 Quick Start to using the APIs

The simplest API functions allow you to evaluate an XQuery statement in a
string. If the statement is an update, these functions return the empty list,
otherwise if the statement is an Xquery expression, these functions return a list
of XML values.

The example programs in $(GALAXHOME)/examples/caml api/example.ml,
$(GALAXHOME)/examples/c api/example.c, $(GALAXHOME)/examples/java api/Example.java
illustrate how to use these query evaluation functions.



48 CHAPTER 6. APPLICATION PROGRAMMING INTERFACES (APIS)

Galax accepts input (documents and queries) from files, string buffers, chan-
nels and HTTP, and emits output (XML values) in files, string buffers, channels,
and formatters. See $(GALAXHOME)/lib/caml/galax io.mli.

All the evaluation functions require a processing context. The default pro-
cessing context is constructed by calling the function Processing context.default processing context():

val default_processing_context : unit -> processing_context

There are three ways to evaluate an XQuery statement:

val eval statement with context item :
Processing context.processing context -> Galax io.input spec ->

Galax io.input spec -> item list

Bind the context item (the XPath ”.” expression) to the XML document in
the resource named by the second argument, and evaluate the XQuery statement
in the third argument.

val eval statement with context item as xml :
Processing context.processing context -> item ->

Galax io.input spec -> item list

Bind the context item (the XPath ”.” expression) to the XML value in the
second argument and evaluate the XQuery statement in the third argument.

val eval statement with variables as xml :
Processing context.processing context ->
(string * item list) list ->
Galax io.input spec -> item list

The second argument is a list of variable name and XML value pairs. Bind
each variable to the corresponding XML value and evaluate the XQuery state-
ment in the third argument.

Sometimes you need more control over query evaluation, because, for ex-
ample, you want to load XQuery libraries and/or main modules and evaluate
statements incrementally. The following two sections describe the API functions
that provide finer-grained control.

6.3 XQuery Data Model

6.3.1 Types and Constructors

In the XQuery data model, a value is a sequence (or list) of items. An item
is either an node or an atomic value. An node is an element, attribute,
text, comment, or processing-instruction. An atomic value is one of the
nineteen XML Schema data types plus the XQuery type xdt:untypedAtomic.

The Galax APIs provide constructors for the following data model values:



6.3. XQUERY DATA MODEL 49

• lists/sequences of items

• element, attribute, text, comment, and processing instruction nodes

• xs:string, xs:boolean, xs:int, xs:integer, xs:decimal, xs:float, xs:double,
xs:anyURI, xs:QName, xs:dateTime, xs:date, xs:time, xdt:yearMonthDuration,
xdt:dayTimeDuration, and xdt:untypedAtomic.

Atomic values

The constructor functions for atomic values take values in the native language
and return atomic values in the XQuery data model. For example, the O’Caml
constructor:

val atomicFloat : float -> atomicFloat

takes an O’Caml float value (as defined in the Datatypes module) and returns
a float in the XQuery data model. Similarly, the C constructor:

extern galax err galax atomicDecimal(int i, atomicDecimal *decimal);

takes a C integer value and returns a decimal in the XQuery data model.

Nodes

The constructor functions for nodes typically take other data model values as
arguments. For example, the O’Caml constructor for elements:

val elementNode : atomicQName * attribute list * node list * atomicQName -> element

takes a QName value, a list of attribute nodes, a list of children nodes, and the
QName of the element’s type. Simliarly, the C constructor for text nodes takes
an XQuery string value:

extern galax err galax textNode(atomicString str, text *);

Sequences

The constructor functions for sequences are language specific. In O’Caml, the
sequence constructor is simply the O’Caml list constructor. In C, the sequence
constructor is defined in galapi/itemlist.h as:

extern itemlist itemlist cons(item i, itemlist cdr);



50 CHAPTER 6. APPLICATION PROGRAMMING INTERFACES (APIS)

6.3.2 Using XQuery data model values

The APIs are written in an ”object-oriented” style, meaning that any use of a
type in a function signature denotes any value of that type or a value derived
from that type. For example, the function Dm functions.string of atomicvalue
takes any atomic value (i.e., xs string, xs boolean, xs int, xs float, etc.) and re-
turns an O’Caml string value:

val string of atomicValue : atomicValue -> string

Similarly, the function galax parent in the C API takes any node value
(i.e., an element, attribute, text, comment, or processing instruction node) and
returns a list of nodes:

extern galax err galax parent(node n, node list *);

6.3.3 Accessors

The accessor functions take XQuery values and return constituent parts of the
value. For example, the children accessor takes an element node and returns
the sequence of children nodes contained in that element:

val children : node -> node list (* O’Caml *)
extern galax err galax children(node n, node list *); /* C */

The XQuery data model accessors are described in detail in http://www.w3c.org/TR/query-datamodel.

6.3.4 Loading documents

Galax provides the load document function for loading documents.
The load document function takes the name of an XML file in the local

file system and returns a sequence of nodes that are the top-level nodes in the
document (this may include zero or more comments and processing instructions
and zero or one element node.)

val load document : Processing context.processing context ->
Galax io.input spec -> node list (* O’Caml *)

extern galax err galax load document(char* filename, node list *);
extern galax err galax load document from string(char* string, node list *);

6.4 Query Evaluation

The general model for evaluating an XQuery expression or statement proceeds
as follows (each function is described in detail below):

1. Create default processing context:

let proc ctxt = default processing context() in



6.4. QUERY EVALUATION 51

2. Load Galax’s standard library:

let mod ctxt = load standard library(proc ctxt) in

3. (Optionally) load any imported library modules:

let library input = File Input "some-xquery-library.xq" in let
mod ctxt = import library module pc mod ctxt library input in

4. (Optionally) load one main XQuery module:

let (mod ctxt, stmts) = import main module mod ctxt (File Input
"some-main-module.xq") in

5. (Optionally) initialize the context item and/or global variables defined in
application (i.e., external environment):

let ext ctxt = build external context proc ctxt opt context item
var value list in let mod ctxt = add external context mod ctxt ext ctxt
in

6. Evaluate all global variables in module context:

let mod ctxt = eval global variables mod ctxt

** NB: This step is necessary if the module contains *any* global vari-
ables, whether defined in the XQuery module or defined externally by the
application. **

7. Finally, evaluate a statement from the main module or one defined in the
application or call some XQuery function defined in the module context:

let result = eval statement proc ctxt mod ctxt stmt in

let result = eval statement from io proc ctxt mod ctxt (Buffer Input
some-XQuery-statement) in

let result = eval query function proc ctxt mod ctxt "some-function"
argument-values in

6.4.1 Module context

Every query is evaluated in a module context, which includes:

• the built-in types, namespaces, and functions;

• the user-defined types, namespaces, and functions specified in any im-
ported library modules; and

• any additional context defined by the application (e.g., the values of the
context item and any global variables).

The functions for creating a module context include:

val default processing context : unit -> processing context



52 CHAPTER 6. APPLICATION PROGRAMMING INTERFACES (APIS)

The default processing context, which just contains flags for controlling de-
bugging, printing, and the processing phases. You can change the default pro-
cessing context yourself if you want to print out debugging info.

val load standard library : processing context -> module context

Load the standard Galax library, which contains the built-in types, namespaces,
and functions.

val import library module : processing context ->
module context -> input spec -> module context

If you need to import other library modules, this function returns the mod-
ule context argument extended with the module in the second argument.

val import main module : processing context ->
module context -> input spec ->
module context * (Xquery ast.cstatement list)

If you want to import a main module defined in a file, this function returns
the module context argument extended with the main module in the second
argument and a list of statements to evaluate.

The functions for creating an external context (context item and global vari-
able values):

val build external context : processing context -> (item option) ->
(atomicDayTimeDuration option) -> (string * item list) list -> external context

The external context includes an optional value for the context item (known
as ”.”), the (optional) local timezone, and a list of variable name, item-list value
pairs.

val add external context : module context -> external context -> module context

This function extends the given module context with the external context.

val eval global variables : processing context -> xquery module -> xquery module

This function evaluates the expressions for all (possibly mutually dependent)
global variables. It must be called before calling the eval * functions otherwise
you will get an ”Undefined variable” error at evaluation time.

Analogous functions are defined in the C and Java APIs.



6.4. QUERY EVALUATION 53

6.4.2 Evaluating queries/expressions

The APIs support three functions for evaluating a query: eval statement from io,
eval statement, and eval query function.

Note: If the module context contains (possibly mutually dependent) global
variables, the function eval global variables must be called before calling
the eval * functions otherwise you will get an ”Undefined variable” error at
evaluation time.

val eval statement from io : processing context -> xquery module -> Galax io.input spec -> item list

Given the module context, evaluates the XQuery statement in the third ar-
gument. If the statement is an XQuery expression, returns Some (item list);
otherwise if the statement is an XQuery update, returns None (because update
statements have side effects on the data model store, but do not return values).

val eval statement : processing context -> xquery module -> xquery statement -> item list

Given the module context, evaluates the XQuery statement

val eval query function : processing context -> xquery module -> string -> item list list -> item list

Given the module context, evaluates the function with name in the string ar-
gument applied to the list of item-list arguments. Note: Each actual function
argument is bound to one item list.

Analogous functions are defined in the C and Java APIs.

6.4.3 Serializing XQuery data model values

Once an application program has a handle on the result of evaluating a query,
it can either use the accessor functions in the API or it can serialize the re-
sult value into an XML document. There are three serialization functions:
serialize to string, serialize to output channel and serialize to file.

val serialize : processing context -> Galax io.output spec -> item list -> unit

Serialize an XML value to the given galax output.

val serialize to string : processing context -> item list -> string

Serializes an XML value to a string.
Analogous functions are defined in the C and Java APIs.



54 CHAPTER 6. APPLICATION PROGRAMMING INTERFACES (APIS)

6.5 C API Specifics

6.5.1 Memory Management

The Galax query engine is implemented in O’Caml. This means that values
in the native language (C or Java) are converted into values in the XQuery
data model (which represented are by O’Caml objects) before sending them to
the Galax engine. Similarly, the values returned from the Galax engine are also
O’Caml values – the native language values are ”opaque handles” to the O’Caml
values.

All O’Caml values live in the O’Caml memory heap and are therefore man-
aged by the O’Caml garbage collector. The C API guarantees that any items
returned from Galax to a C application will not be de-allocated by the O’Caml
garbage collector, unless the C appliation explicitly frees those items, indicating
that they are no longer accessible in the C appliation. The C API provides two
functions in galapi/itemlist.h for freeing XQuery item values:

extern void item free(item i);

Frees one XQuery item value.

extern void itemlist free(itemlist il);

Frees every XQuery item value in the given item list.

6.5.2 Exceptions

The Galax query engine may raise an exception in O’Caml, which must be
conveyed to the C application. Every function in the C API returns an integer
error value :

• 0 if no exception was raised or

• -1 if an exception was raised.

The global variable galax error string contains the string value of the excep-
tion raised in Galax. In future APIs, we will provide a better mapping between
error codes and Galax exceptions

6.6 Java API Specifics

6.6.1 General Info

The Galax query engine is implemented in O’Caml. This means that values in
the native language (C or Java) are converted into values in the XQuery data
model (which represented are by O’Caml objects) before sending them to the
Galax engine.



6.6. JAVA API SPECIFICS 55

The Java API uses JNI to call the C API, which in turn calls the O’Caml
API (it’s not as horrible as it sounds).

There is one class for each of the built-in XML Schema types supported by
Galax and one class for each kind of node:

Atomic Node Item
xsAnyURI Attribute
xsBoolean Comment
xsDecimal Element
xsDouble ProcessingInstruction
xsFloat Text
xsInt
xsInteger
xsQName
xsString
xsUntyped

There is one class for each kind of sequence:

• ItemList

• AtomicList

• NodeList

• AttributeList

There is one class for each kind of context used by Galax:

• ExternalContext

• ModuleContext

• ProcessingContext

• QueryContext

Finally, the procedures for loading documents, constructing new contexts
and running queries are in the Galax class.

6.6.2 Exceptions

All Galax Java API functions can raise the exception class GalapiException,
which must be handled by the Java application.

6.6.3 Memory Management

All Java-C-O’Caml memory management is handled automatically in the Java
API.



56 CHAPTER 6. APPLICATION PROGRAMMING INTERFACES (APIS)

6.7 Caveats

Currently, Galax is not re-entrant, which means multi-threaded applications
cannot create multiple, independent instances of the Galax query engine to
evaluate queries.



Chapter 7

Accessing and Storing XML

57



58 CHAPTER 7. ACCESSING AND STORING XML

7.1 Accessing XML Documents with fn:doc()

7.2 Storing and Accessing XML Documents with
Jungle

Note: Documentation under construction
To try out Jungle, make sure you have set up your environment as described

in Section 2, then execute following:

% cd $(GALAXHOME)/examples/jungle
% make tests

Note: Don’t forget in galax/examples/jungle director, to edit jungle1.xq
and replace directory name by the path to your jungle directory, then execute:
make tests.

These commands will take a small XMark input document, create a Jungle
store, and run several example queries on the store.

7.2.1 jungle-load : The Jungle XML document loader

Usage: jungle-load options input-xml-file

-version Prints the Jungle loader version

-help,–help Display this list of options

-store dir Directory Path where store is to be created (default is current di-
rectory)

-store name Logical name of the store (default is Jungle).

-buff size Size of the buffer to be used (default is 256KB).

In $(GALAXHOME)/examples/jungle, execute following command to build a
Jungle store:

jungle-load -store dir tmp -store name XMark $(GALAXHOME)/usecases/docs/xmark.xml
After executing this command, the tmp directory will contain:

XMark-AttrIndex.db XMark-main.db
XMark-Namespace.db XMark-Qname2QnameID.db XMark-Text.db
XMark-FirstChildIndex.db XMark-Metadata.db
XMark-NextSiblingIndex.db XMark-QnameID2Qname.db

7.3 Implementing the Galax data model



Chapter 8

For Galax Developers

59



60 CHAPTER 8. FOR GALAX DEVELOPERS

8.1 Galax Source Code Architecture

The Galax source-code directories roughly correspond to each phase of the query
processor. (Put link to Jerome’s tutorial presentation here)

The processing phases are:

Document processing

Document Parsing =>
[Schema Normalization (below) =>]

Validation =>
Loading =>
Evaluation (below)

Schema processing

Schema Parsing =>
Schema Normalization =>
Validation (above)
Static Typing (below)

Query processing

Query Parsing =>
Normalization =>
[Schema Normalization (above) =>]

Static Typing (optional phase) =>
Rewriting =>
Compilation =>
[Loading (above) =>]

Evaluation =>
Serialization

8.1.1 General

Makefile

• Main Makefile

base/

• Command-line argument parsing

• Global variables (conf.mlp)

• XQuery Errors

• String pools



8.1. GALAX SOURCE CODE ARCHITECTURE 61

• XML Whitespace handling

ast/

• All ASTs: XQuery User & Core, XQuery Type User & Core

• Pretty printers for all ASTs

config/
monitor/

• CPU &/or memory monitoring of each processing phase

toplevel/

• Main programs for command-line tools (see ’Generated executables’ be-
low)

website/

• Local copy of Galax web site

8.1.2 Datamodel

datatypes/ (*** Doug)

• XML Schema simple datatypes – Lexers and basic operations

• datatypes lexer.mll To learn about O’Caml lex, read: http://caml.inria.fr/ocaml/htmlman/manual026.html
Sections 12.1 and 12.2 Other examples of lexers in lexing/*.mll

We are going to extend this module to include lexer for: xsd:date, xsd:time,
xsd:dateTime, xdt:yearMonthDuration, xdt:dayTimeDuration (Skip Gre-
gorian types for now, xsd:gDay, xsd:gMonth, etc)

• dateTime.ml,mli This module will implement the datatypes and basic op-
erations

namespace/

• XML Qualified Names (prefix:localname) – Lexer and basic operations –
QName resolution prefix =¿ URI

• Names of builtin functions & operators

dm/ (*** Doug)

• Abstract data model interface for Nodes

• Concrete data model implementation for AtomicValues

datamodel/



62 CHAPTER 8. FOR GALAX DEVELOPERS

• Main-memory implementation of abstract data model for Nodes ( Document-
Object Model or DOM)

jungledm/

• Secondary storage implementation of Galax datamodel (Jungle)

physicaldm/

• Physical data model

streaming/

• XML parser to untyped and typed SAX streams

• export datamodel to SAX stream

8.1.3 Processing Model

procctxt/

• Processing context contains all query-processor state:

– Parse context
– Normalization context
– Static context
– Rewrite context
– Dynamic context

procmod/

• Processing model dynamically ”glues” together phases (controlled by command-
line arguments or API)

8.1.4 Query Parsing

lexing/

• Lexers for XQuery (excludes all simple datatypes)

parsing/

• Parsing context

• Parsing phase

8.1.5 Normalization

normalization/

• Normalization context

• Normalization phase (XQuery AST =¿ XQuery Core AST)

• Overloaded functions



8.1. GALAX SOURCE CODE ARCHITECTURE 63

8.1.6 Static Typing

fsa/

• Finite-state Automata for checking sub-typing relation

typing/

• Static-typing context

• Static-typing phase

8.1.7 Schema/Validation

schema/

• Schema-validation context

• Schema normalization phase (XML Schema =¿ XQuery Core Types)

• Document validation phase

• Judgments(functions) for comparing XQuery types

8.1.8 Rewriting

cleaning/

• Logical optimization/rewriting phase

• Sort-by-document order (DDO) optimization

rewriting/

• Generic AST rewriter

8.1.9 Compilation

compile/

• Compilation phase

algebra/

• AST for compiled algebra

• Dynamic context

• Implementations (dynamic) of most built-in functions & operators



64 CHAPTER 8. FOR GALAX DEVELOPERS

8.1.10 Evaluation

evaluation/

• Evaluation phase

stdlib/

• Static typing of built-in functions & operators

• Implementations (dynamic) of built-in functions fn:doc, fn:error

• Signatures of built-in functions & operators (pervasive.xqp) Corresponds
to sections in http://www.w3c.org/TR/xpath-functions/

8.1.11 Serialization

serialization/

• Serialize SAX stream to XML document (in O’Caml formatter)

8.1.12 Testing

usecases/

• Tests of XQuery Usecases Implements examples in http://www.w3.org/TR/xquery-use-cases/

examples/

• Tests of O’Caml, C & Java APIs

regress/

• Regression tests (needs separate xqueryunit/ CVS package)

8.1.13 APIs

galapi/

• O’Caml, C & Java APIs to Galax processor

8.1.14 External libraries & tools

tools/
Required tools:

• http

• pcre

• pxp-engine

• netstring



8.1. GALAX SOURCE CODE ARCHITECTURE 65

Optional supported tools:

• Jungle

Optional unsupported tools:

• glx curl

• jabber

8.1.15 Extensions

extensions/

• apache

• jabber

8.1.16 Experimental Galax extensions

projection/

• Document projection

wsdl/
wsdl usecases/

• Web-service interfaces

8.1.17 Documentation

• Changes Change log!! Protocol: always document your changes in Changes
file; use log entry as input message to ’cvs commit’

• BUGS Out of date

• LICENSE

• README

• STATUS

• TODO



66 CHAPTER 8. FOR GALAX DEVELOPERS

8.1.18 Generated executables

ocaml-galax O’Caml top-level interpretor that loads Galax library. Usage:
ocaml-galax -I $(HOME)/Galax/lib/caml-devel

galax-run Complete XQuery engine For Usage: galax-run –help See also: all:
rule in usecases/Makefile

galax.a Library versions of Galax

galax.cma byte code

galax.cmxa machine code

galax-parse Syntax checking on query, validation on a document

galax-compile Parsing, normalization, optimization, and prints resulting ex-
pression

galax-mapschema Takes XML Schema and prints out internal XQuery type

Auxiliary research tools:

galax-mapwsdl Imports/exports Galax queries as WSDL Web Services

xquery2soap

galax-project Takes XQuery query and figures out what fragments of docu-
ments are necessary to evaluate the query



Chapter 9

Release Notes

67



68 CHAPTER 9. RELEASE NOTES

9.1 Galax 0.5.0 (February 2005)

Galax version 0.5 is a major release, and should be considered as an alpha
release. Galax 0.5.0 implements the XQuery 1.0 working draft published in
October 2004.

Among the most noticeable changes:

• Alignment with the XQuery 1.0, October 2004 working drafts.

• A much faster XML parser, based on Gerd Stolpmann’s PXP, fixing many
XML 1.0 conformance bugs as well.

• A completely new compiler, including a query optimizer that supports
join optimizations and should deliver much better performances than the
previous versions of Galax.

• “Document projection” is finally part of the main release, allowing to
process queries over large documents. (see the galax-project command-
line tool).

• Improved support for sorting by document order and duplicate removal in
the compiler.

• The Windows port is back, based on the MinGW compilers.

• New port for MacOS X.

Have contributed to this release: Mary Fernández, Nicola Onose, Philippe
Michiels, Christopher Ré, Jérôme Siméon, Michael Stark.

9.2 Galax 0.4.0 (August 2004)

Galax version 0.4 is a major release, and should be considered as an alpha
release. Galax 0.4.0 implements the latest XQuery 1.0 working draft published
in July 2004. It contains many improvements from the previous version, as well
as new features.

Among the most noticeable improvements and new features: Galax now
comes bundled with Jungle, a simple native XML store. It now supports XML
Schema and ”named typing”. Finally, it contains some prototype support for
Web services.

Have contributed to this release: Mary Fernández, Vladimir Gapeyev, Nicola
Onose, Philippe Michiels, Doug Petkanics, Christopher Ré, Jérôme Siméon,
Avinash Vyas.

Main changes over the previous version are listed below.
Language changes:

• Support for the latest XQuery 1.0’s specifications (July 2004 Working
Drafts).



9.2. GALAX 0.4.0 (AUGUST 2004) 69

• Support for XML Schema 1.0: schema import, validate, named typing,
sequence types and type tests.

• Preliminary support for modules. Import module statements without re-
cursion are supported. Details of the semantics will be fixed when issues
around modules are addressed by the XML Query working group.

• Support for dates and time.

• Support for string regular expressions.

Environment changes:

• A new set of command-line tools replace the old ones: galax-run: The
XQuery execution engine galax-parse: XML parsing and XML Schema val-
idation galax-project: To apply XML document projection galax-mapschema:
To map XML Schema to the XQuery type system ocaml-galax: The
OCaml interpretor bundled with Galax

• New command-line tools for Web services: galax-mapwsdl: To map WSDL
interfaces to an XQuery module xquery2soap: To deploy an XQuery mod-
ule as an apache Web service.

• Revisions to the Caml, C, C++ and Java APIs.

Architectural changes:

• A new extensible data model, making Galax easy to use over ’virtual’
XML documents.

• A completely new query compiler and evaluation engine that supports
an hybrid SAX-tuple-tree algebra. The new compilation infrastructure
should already show improved performances, although it performs little
optimizations yet. Expect more work in this area in future versions of the
system

New features:

• Alpha support for native XML storage with Jungle (on top of Sleepycat’s
BerkeleyDB).

• Alpha support for calling Web services from within XQuery.

Portability:

• Added Makefile for Mac OSX in config/Makefile.osx.

• Fixed numerous problems with Win32.



70 CHAPTER 9. RELEASE NOTES

9.3 Galax 0.3.5 (December 2003)

This is a bug-fix release:

• Now compiles with OCaml 3.07.

• Numerous bug fixes to the XML updates support.

• Added glx:document-save() function allowing to save the result of a query
(notably useful in the case of an existing document that has been updated).

• Fixed bug in the release of Caml values in the C-API.

• Fixed bug in pretty-printing of function application, and added pretty-
printing for the query prolog.

• Fixed index bug in fn:substring and fn:translate.

• Fixed serialization in canonical form.

• Fixed bug in parsing of PIs in the document root.

• Fixed bug in validation/casting of atomic values not dealing with whites-
pace properly.

• Fixed bug in key/keyref support introduced with the new API.

• Fixed bug in parsing of DTD declarations with the PUBLIC keyword.

9.4 Galax 0.3.1 (June 2003)

Language extensions:

• Alpha support for XML updates!

Command line:

• External variables and context items can be bound from the command-
line.

API:

• Brand new, hopefully complete Caml, C, and Java APIs. Check them out!

Parsing:

• Switched for good to the SAX parser. glx:document-sax is removed.

• Complete new support for character encodings. Now detects encoding in
XML declaration properly. Support for UTF-16.



9.5. GALAX 0.3.0 (JANUARY 2003) 71

9.5 Galax 0.3.0 (January 2003)

Bugs

• All reported and fixed bugs are documented in ’Bugs’ file.

Language: Numerous changes to align with Nov. 2002 and upcoming Feb
2003 WDs.

• Grammar alignment: ’as’ SequenceType in type declarations, function
signatures, typeswitch

• Implements element & attribute constructor semantics of Nov. 2002 WDs.

• Added positional variables to FLWOR

• Added support for order-by in FLWOR

• Implemented complete semantics of path expressions, including document
order and removing duplicates.

• Implemented dynamic function dispatch, promotion of arguments to arith-
metic operators

• Transitive ’eq’ operators

Galax features:

• Command-line options for monitoring memory and CPU usage.

Data model:

• Updated terminology to align with WDs.

Function library:

• Changed xf: to fn: prefix

• Added fn:error()

• Added support for fn:base-uri() and fn:lang()

• New semantics for fn:data() and fn:boolean()

9.6 Galax 0.2.0 (October 2002)

Parsing

• Fixed very large number of bugs. Support for entities and DTDs is still
missing.

• Support for ISO-8859-1 and UTF-8 character encodings.



72 CHAPTER 9. RELEASE NOTES

• Factorized XML and XQuery parsers. Results in more compact code,
easier to improve and maintain.

• Updated XQuery parser to align with latest grammar.

• Alpha support for SAX-based parsing.

Data model:

• Support for node identity.

• Fixed support for text nodes.

Language:

• Major revision based on August 16th 2002 working drafts.

• Full support for XPath expressions. Notably XPath parent, ancestor,
ancestor-or-self axis. See STATUS for some remaining deviations.

• Support for node-identity related operations (is, isnot distinct-nodes, union,
intersect, except, etc.).

• Support for type promotion in function calls, arithmetics, etc.

• Fixed many bugs in the semantics, through normalization.

• Added dynamic semantics for type operations through (simplified) form
of matching. Still some bugs there.

Namespaces:

• Fixed many bugs in namespace support and printing of namespaces.

• Implemented support for default function namespace.

XML Schema:

• *Very* alpha support for XML Schema import and validation. Basic
datatypes are now supported.

Type system:

• Updated type inference with the new language.

• Made sure all expressions are type checked, necessary for optimization.

• Fixed bugs in typing for typeswitch.

Function library:

• Most of F&O functions are now implemented. Some limitations apply to
XML Schema types not yet supported (notably date and time).

Optimizer:



9.6. GALAX 0.2.0 (OCTOBER 2002) 73

• Support for simple query simplification.

Compilation:

• Removed dependency to the stdlib file.

• Removed dependency to anything but OCaml compilers and standard unix
tools.

• Fixed compilation for both Cygwin and MinGW.

Tests:

• Added large number of regression tests.

Tools and interfaces:

• Removed Java API for now. Will be back soon.

• Added very limited user-level api (Galapi) in Caml.

• Changed galax command-lined interpretor. See the new syntax and op-
tions in ./README

• Major revision of the pretty-printer for types and XQuery expressions.
Added support for precedence in both cases.

Documentation:

• Added examples of calls to the Caml and C API’s in ./example.



74 CHAPTER 9. RELEASE NOTES



Chapter 10

Alignment with XQuery
Working Drafts

75



76 CHAPTER 10. ALIGNMENT WITH XQUERY WORKING DRAFTS

This chapter documents the relationship of Galax to the target W3C working
drafts. Galax 0.5.0 is a prototype implementation, and therefore it is not (yet)
completely aligned with the relevant W3C working drafts (WDs). This chapter
also document the non-standard features in Galax 0.5.0 and the known bugs
and limitations.

Galax 0.5.0 implements the October 2004 XQuery 1.0 and XPath 2.0 Work-
ing Drafts, the XML 1.0 Recommendation, the Namespaces in XML Recom-
mendation, and XML Schema Recommendation (Parts 1 and 2).

Galax 0.5.0 implements large parts, but not all of the following W3C working
drafts related to XQuery:

• XQuery 1.0 and XPath 2.0 Data Model. W3C Working Draft 23 October
2004. http://www.w3.org/TR/2004/WD-xpath-datamodel-20041029/.

• XQuery 1.0 : An XML Query Language. W3C Working Draft 23 October
2004. (http://www.w3.org/TR/2004/WD-xquery-20041029/).

• XQuery 1.0 and XPath 2.0 Formal Semantics. W3C Working Draft 11
February 2005. (http://www.w3.org/TR/2005/WD-xquery-semantics-20050211/).

• XQuery 1.0 and XPath 2.0 Functions and Operators. W3C Working Draft
23 October 2004. (http://www.w3.org/TR/2004/WD-xpath-functions-20041029/).

• XML Query Use Cases. W3C Working Draft 11 Februrary 2005. (http://www.w3.org/TR/xquery-use-cases/).

• XML Schema Part 1: Structures and Part 2: Datatypes. W3C Recommen-
dation 2 May 2001. http://www.w3.org/TR/xmlschema-1/, http://www.w3.org/TR/xmlschema-2/.

10.1 Data Model

Galax 0.5.0 fully supports the XQuery 1.0 and XPath 2.0 Data Model.
Galax 0.5.0 implements an xsd:float value as an xsd:double value.

10.2 XQuery

The alignment issues in this section follow the outline of the ”Expressions”
section in http://www.w3c.org/TR/xquery. If a subsection is not listed here,
it means that Galax 0.5.0 implements the semantics described in that section.

XQuery Section 2.1.1 Static Context

Galax 0.5.0 does not support:

• XPath 1.0 compatibility modes.

• Collations.



10.2. XQUERY 77

• The construction mode. Type annotations on copied elements are al-
ways erased/eliminated.

• The ordering mode. Input order is always preserved.

XQuery Section 2.1.2 Dynamic Context

The implicit timezone is set to the local timezone.

XQuery Section 2.2 Processing Model

Galax’s processing model is similar to XQuery’s abstract processing model. See
Section 8 for more information on Galax’s internal processing model.

XQuery Section 2.2.4 Serialization

XQuery Section 2.3.3 Effective Boolean Value

Galax 0.5.0 does not check that a numeric value is equal to NaN when computing
an effective boolean value.

XQuery Section 2.3.4 Input Sources

Galax 0.5.0 does not support the fn:collection() function.
The context item and values for external variables can be specified on the

command line or in the API. See Sections 5.1.1 and 6.2.

XQuery Section 2.4.4 SequenceType Matching

Galax requires that all actual types, that is, those types that annote input
documents be in the in-scope schema definitions. Galax will raise a dynamic
error if it encounters a type in a document that is not imported into the query
by an import schema prolog statement.

XQuery Section 2.6 Optional Features

Galax supports the Schema Import, Static Typing, and Full Axis features.

XQuery Section 2.6.4 Module Feature

Galax 0.5.0 does not support import of mutually recursive modules.

XQuery Section 2.6.5 Pragmas

Galax 0.5.0 does not support the Pragmas feature.



78 CHAPTER 10. ALIGNMENT WITH XQUERY WORKING DRAFTS

XQuery Section 2.6.6 Must-Understand Extensions

Galax 0.5.0 does not support must-understand extensions.

XQuery Section 2.6.7 Static Typing Extensions

Galax 0.5.0 does not support static typing extensions.

XQuery Section 3.1.1 Literals

Galax 0.5.0 implements an xsd:float value as an xsd:double value.

XQuery Section 3.2.1.1 Axes

Galax 0.5.0 supports all axes with the exception of the preceding and follow-
ing axes.

XQuery Section 3.2.1.2 Node Tests

Galax 0.5.0 does not support the DocumentTest, ElementTest, AttribteTest,
SchemaElementTest, or SchemaAttribteTest in path expressions. These
kind tests, however, are supported wherever else a SequenceType is expected.

XQuery Section 3.7 Constructors

When constructing a new element, Galax 0.5.0always erases/eliminates type
annotations on copied elements.

When constructing a new element, Galax 0.5.0requires that the new ele-
ment’s attributes precede its other content.

Galax 0.5.0does not permit document nodes in the content of a new element.

XQuery Section 3.7.4 In-scope Namespaces of a Constructed
Element

Namespace declarations in input and output documents and in input queries
are not handled consistently. We are working on this.

XQuery Section 3.9 Ordered and Unordered Expressions

Galax 0.5.0 will accept queries that contain the ordered or unordered expres-
sions, but they have no effect on query evaluation (i.e., they are no-ops).



10.3. XQUERY 1.0 FORMAL SEMANTICS 79

XQuery Section 4.2 Module Declaration

XQuery Section 4.2 Module Import

Although module declarations and module import statements are supported,
they are not well tested.

Galax 0.5.0 does not support recursive modules import.

XQuery Section 4.4 Default Collation Declaration

Galax 0.5.0 does not support collations.

XQuery Section 4.6 Construction Declaration

Galax 0.5.0 does not support the construction declaration.

XQuery Section 4.8 Default Ordering Declaration

Galax 0.5.0 does not support the default ordering declaration.

XQuery Section 4.9 Schema Import

Schema components in an imported schema are mapped into XQuery types
according to the mapping rules specified in the XQuery 1.0 Formal Semantics
(see below).

10.3 XQuery 1.0 Formal Semantics

The XQuery 1.0 formal semantics defines the mapping of every XQuery ex-
pression into an expression in the XQuery core, and it defines the static and
dynamic semantics of each core expression. The formal semantics also defines
how imported schemas are mapped into internal XQuery types.

Galax 0.5.0 implements the static and dynamic semantics of core expressions
defined in the XQuery 1.0 Formal Semantics.

10.4 Functions and Operators

Galax 0.5.0 supports most of the functions in the XQuery 1.0 and XPath 2.0
Functions and Operators document. The signatures of supported functions are
listed in $GALAXLIB/pervasive.xq.

Galax 0.5.0 does not support the following functions:

fn:nilled
fn:document-uri
fn:round-half-to-even
fn:codepoints-to-string



80 CHAPTER 10. ALIGNMENT WITH XQUERY WORKING DRAFTS

fn:string-to-codepoints
fn:escape-uri
fn:normalize-unicode
op:gYearMonth-equal
op:gYear-equal
op:gMonthDay-equal
op:gMonth-equal
op:gDay-equal
fn:resolve-QName
fn:get-namespace-uri-for-prefix
fn:get-in-scop-namespaces
fn:number
fn:id
fn:idref
fn:collection
fn:default-collation

Functions and Operators Section 4 The Trace Function

The fn:trace function emits its input sequence and message are to standard
output. n

Functions and Operators Section 5.2 Constructor Functions
for User-Defined Types

Galax 0.5.0does not support constructor functions for user-defined types.

Functions and Operators Section 12 Functions and Opera-
tors on base64Binary and hexBinary

Galax 0.5.0 does not support any functions on binary data.

Functions and Operators Section 17 Casting

Galax 0.5.0 supports most of the basic casting rules.

10.5 Use Cases

See $GALAXHOME/usecases/STATUS



10.6. GALAX 0.5.0 EXTENSIONS 81

10.6 Galax 0.5.0 extensions

10.6.1 Defining XQuery Types in the Query Prolog

Type values are available in a query by either importing a predefined XML
schema using the import schema declaration in the query prolog or by defining
XQuery types explicitly in the query prolog.

Galax 0.5.0 supports the definition of XQuery types in the query prolog
using the internal type syntax defined in the XQuery 1.0 Formal Semantics.
The grammar is provided here for reference:

TypeDeclaration ::= ("define" "element" QName "{" TypeDefn? "}")
| ("define" "attribute" QName "{" TypeDefn? "}")
| ("define" "type" QName "{" TypeDefn? "}")

TypeDefn ::= TypeUnion
| TypeBoth
| TypeSequence
| TypeSimpleType
| TypeAttributeRef
| TypeElementRef
| TypeTypeRef
| TypeParenthesized
| TypeNone

TypeUnion ::= TypeDefn "|" TypeDefn
TypeBoth ::= TypeDefn "&" TypeDefn
TypeSequence ::= TypeDefn "," TypeDefn
TypeSimpleType ::= QName OccurrenceIndicator
TypeAttributeRef ::= "attribute" NameTest ("{" TypeDefn? "}")? OccurrenceIndicator
TypeElementRef ::= "element" NameTest ("{" TypeDefn? "}")? OccurrenceIndicator
TypeTypeRef ::= "type" NameTest OccurrenceIndicator
TypeParenthesized::= "(" TypeDefn? ")" OccurrenceIndicator
TypeNone ::= "none"

10.6.2 Galax specific functions

Galax-only functions are put in the Galax namespace (http://db.bell-labs.com/galax),
which is bound by default to the glx: prefix.

See $GALAXHOME/lib/pervasive.xq for a complete list of functions in the
Galax namespace.


