XCrypt

An Implementation of Cryptographic Access Control

To XML Data
Aurel C. Pop
Department of Computer Science and Engineering

University of Washington

Box 352350

Seattle, WA 98195-2350 USA

acolinp@cs.washington.edu
I. Introduction
[image: image1.emf]
Figure 1 - Protected data publishing framework

Businesses share increasingly more documents and information electronically. XML emerged as the format of choice for exchanging data via the Internet over connections with different levels of security. The goal of this paper is to present a tool that enforces access control on published XML documents using cryptography, and to demonstrate how this tool can be used by both the data publisher and the data user. This tool is based on “Controlling Access to Published Data Using Cryptography” [1], which presents a framework, Figure 1 [1], where the owner publishes a single data instance, which is partially encrypted, and which enforces all access control policies. 
The owner describes the access control policies in a high level declarative language, based on XQuery. The implementation of these policies consists of physical encryption of sub-elements of the XML document.  
II. Cryptographic Access Control

1. Concepts used in XCrypt
The following concepts are fundamental in understanding the framework for Cryptographic Access Control and its implementation.
·  Policy Query - is the policy created by the owner that defines a high-level access control over the data [1]. These policies are defined using a modified XQuery syntax and their evaluation creates a single protection over the XML document. 
The policy query [Policy Query 1] below exemplifies the extensions added to the XQuery language, particularly the KEY and TARGET clauses.

Policy Query 1

FOR    $x in doc("d4.xml")/doc/subjects/subject

KEY    getKey("registration")

$x/analysis/DNA-Sig/text()

TARGET $x/analysis

This policy query shows that the target analysis will be encrypted with the two keys defined in the KEY clause, and only the user that poses both keys will be able to access it. 
Furthermore, the policy query above illustrates the capability of the tool as far as the type of the keys that are accepted for encryption and decryption are concerned. One of the keys with the name “registration” is retrieved from a key repository, in this case the default one since the repository is not named, while the second key is retrieved from the document itself. 
In the example above, in a fictional lab, only the technician that registered the patient and analyzed his/her DNA will be able to access the results of the analysis since the “registration” will be the same for each target node but the “DNA-Sig” will differ for each patient.
The tool also allows the document owner to create and use separate key repositories, not just the default one, for encryption as demonstrated by the next example [Policy Query 2]. In this fictional example the owner has created a separate key repository for imaging technicians under the name “imageKeys.” 
Policy Query 2

FOR   $x in doc ("d4.xml")/doc/subjects/subject

KEY getKey("$x/id/text()")keyChain("imageKeys")

TARGET $x/analysis/brain-scan
To grant access to the “brain-scan” for a subject the data owner will look into the “imageKeys” repository and send to the user the key corresponding to that subject via a secure channel. 

· XML processing – is the process that prepares the XML document for encryption by adding to it a layer of metadata that reflects the evaluation of the policy query set created by the owner of the document. The meta XML nodes added to the document have the role of holding the keys for the encryption and expressing different type of protections for the elements of the XML document.
The process of preparing the XML document for encryption spans several steps. 
The first of these steps is the translation of the policy queries into queries that can be interpreted and processed by XQuery engines (Galax in our case). A policy query like Policy Query 2 will be translated into the following query [Figure 3] that can be processed by the Galax XQuery engine:

Each of the additional steps requires a pass over the document by the Galax XQuery engine or by the XML parser. During the passes over the XML document via the Galax XQuery engine, the translated policy queries, and some other queries with a support role are executed.

The last of theses steps is the normalization; this is also the next concept that will be discussed.
declare variable $doc:=doc("d4_1.xml");

update

FOR $x in  $doc/doc/subjects/subject,

$k in doc("imageKeys.xml")/KeyChain/*

WHERE $k/@name = $x/id/text()

INSERT <cc.AND>

<key name=" {$x/id/text()}"> {$k/text()}

</key></cc.AND>

INTO $x/analysis/brain-scan/cc.OR;

glx:save-document("d4_1.xml", $doc);

Figure 2 – XQuery PQ2
· Normalization – is the process that cleans the XML document of redundant metadata. This process is performed in two phases:
1. A pass over the XML document with the parser during which the tool will implement the normalization of the logical protection model that allows the enforcement of multiple overlapping policy queries over a single data instance [1]. Figure 3 [1], illustrates the transformation that the XML document undergoes during this first part of Normalization process.

[image: image2.emf]
Figure 3 – Tree protection and normalization equivalent
2. Several passes with Galax XQuery engine. These following passes will finalize the normalization by eliminating redundant metadata used to implement the logic protection model, but not required by the encryption, which will be discussed next.

· Encryption – as it applies to XCrypt implementation is the process that transforms each element in the XML document in accordance to the protection expressed by the metadata for that particular node. This process is carried out by parsing the XML document, analyzing the metadata for each element and applying the cipher based on the rules described by the logical protection model. 
The cipher used for the encryption process by XCrypt is the asynchronous AES with a 128 bit key. This information will be present within the encrypted element as it is illustrated below [Figure 4].
· Decryption – as it pertains to this tool is the process of transforming the ciphered hex string into XML elements, based on the set of keys provided by the user. 
The process consists of one or more passes over the encrypted XML document. 
<EncryptedData>

  <EncryptionMethod Alg="AES" KeySize="128"/>

  <KeyInfo>

<Name>MS</Name>

  </KeyInfo>
  <CipherData>

    <CipherValue>9ba25f…

     </CipherValue>

  </CipherData>

</EncryptedData>
Figure 4 – Encrypted element
<subject>

  <id>A1</id>

  <EncryptedData>

   <EncryptionMethod Alg="AES" KeySize="128"/>

   <KeyInfo>

<Name>tech1</Name>

   </KeyInfo>

   <CipherData>

    <CipherValue>f1c7…</CipherValue>

   </CipherData>

  </EncryptedData>

  <EncryptedData>

   <EncryptionMethod Alg="AES" KeySize="128"/>

   <KeyInfo>

<Name>tech1</Name>

   </KeyInfo>

   <CipherData>

    <CipherValue>65ec…</CipherValue>

   </CipherData>

  </EncryptedData>
……….

</subject>
Figure 5 – Partial Decryption

The number of passes is dictated by the result of the decryption in the previous pass related to the set of keys user holds.
Particularly, Figure 5 renders the result of first decryption pass over the encrypted element in Figure 4. If the subset of keys user holds contains the key with the name “tech1”, which is the key that encrypts a couple of elements in Figure 5, then the decryption process will continue with one more pass over the partially decrypted document.

Consequently, the process stops when the partially decrypted XML document does not lend itself to any further decryption based on the set of keys provided to the tool.
· Key Generation – is the process that allows the document owner to generate the key chains that will be utilized by for the encryption. As mentioned above, the owner has several alternatives when it comes to the type of keys it can employ for the protection of the XML document. The keys can come from within document, from a default key repository or from specialized key repositories particularized for each group of potential users of the XML document. The role of key generation process is to aid in creation of the default and specialized key repositories.
2. XCrypt Documentation and Requirements
The documentation and requirements are presented below under the assumption that XCrypt will be used on a machine running Windows as operating system.

The tool is packaged to provide the user all of its capabilities: protection of data in XML documents and access to data in protected XML documents. The decision to use this packaging was made with the presumption that the user of the tool performs an interchangeable role of data owner and data user. 
XCrypt provides protection of data in XML documents by performing partial encryption of the documents based on the policy query file supplied by the data owner (examples of policy queries are provided with the tool – pq files).

The tool will also perform decryption of the partially encrypted documents based on two input arguments: a text file containing a subset of the key set used for protection of the XML document and the protected XML document (example provided with the tool).

The tool will also generate keys, MD5 hashes, of the keys provided by the data owner in a text file. 
Currently the key generator module is limited to accepting text file arguments with the following format: key name, with no white space before it, followed by the key value. Also, part of this file format limitation is the fact that each key name key value pair has to be restricted to one line.

· XCrypt Requirements:
The performance of the XCrypt is conditioned by the presence in the underlying system of the following software:
1. Java JDK1.4. This requirement is due to the fact that the implementation for XCrypt was done in Java, and the code was compiled using the JDK version mentioned above. Furthermore, the implementation made use of some of the API’s provided by Sun Microsystems with JDK 1.4, particularly the SAXParser used to parse the XML document in both the XMLEncrypter and XMLDecrypter module. 

In its current implementation, XCrypt does not have the capability to check that the right version of the Java JDK is installed on the machine where it will operate. Consequently, it is important for the user to ensure that the correct JDK module is installed and that PATH environment variable is set to provide access to it. It is quite likely that our tool will fail to decrypt correctly if this requirement is not satisfied.

2. Galax XQuery engine (provided with the tool). For current XCrypt implementation, and packaged with the tool, version 0.5 of the Galax XQuery engine was used. 
This requirement stems from the fact that the layer of metadata that describes the protection for the XML document is inserted by executing the queries resulted from translation of the policy query set, provided by data owner. Additionally, Galax XQuery engine is required for executing the queries that handle the normalization of the XML document updated with the metadata layer. 
Newer versions of this tool are available for download at the following URL http://www.galaxquery.org/distrib.html. However, as mentioned before, since this implementation of XCrypt used version 0.5, we can only guarantee a proper performance of XMLEncrypter module if that version (0.5) is used. 
3. pcre.dll version 5.0 or above in the C:\WINDOWS\system32 (packaged with the tool). 
This requirement is a consequence of the previous requirement. In order for the Galax XQuery engine to function properly the dynamically linked library mentioned above has to be present into the directory “WINDOWS\system32”. This library is provided courtesy of GnuWin32. Since it stems from the above requirement, this library is also necessary only for those using the XMLEncrypter module. 
4. Cygwin or UNIX environment for “sed” and “tr” commands (cygwin\bin needs to be added to the path). These two UNIX commands provide XCrypt with stream editing capabilities and eliminate the need for additional implementation.

The stream editing capability is essential for the XMLEncrypter module performance especially in the normalization process. It is also closely connected to the performance of the XMLDecrypter. 
The Cygwin environment is easily available, free of charge, at the following link http://www.cygwin.com/.

Since, in its current implementation XCrypt is dependent on this external resource, it is important for the user to ensure that the command line recognizes and can execute these commands.

· XCrypt Installation:
The XCrypt tool is packaged in a compressed file that is available for download on the internet.

[image: image9.wmf]XML Doc

Set of Key Chains

XML ENCRYPTER

Partially Encrypted 

XML Doc

Policy Query

To install XCrypt the user has to download and unzip cryptoXML.zip in C:\ directory. Current implementation is dependent on this restrictive option for the directory to be used. It is quite likely that XCrypt will not perform as advertised if a different directory is chosen. Therefore, it is important that the user ensures that the tool is unzipped in the correct place. 

The unzipped “cryptoXML” directory will contain a set of folders and files, as described in the table in Appendix A, that fulfill different roles. 

The files included with the packaged XCrypt are two types sample files and tool files. Among the tool files contained by the “cryptoXML” directory are the executables for XCrypt. The unzipped “cryptoXML” directory contains the executables that run the encryption and key generation interfaces, together with a batch file (Decrypt.bat) that runs the decryption interface. 
Alternatively, among the sample files contained by the “cryptoXML” directory and its subdirectories are samples of policy queries and sample XML documents on which the sample policy queries can be applied.

Once the requirements are fulfilled and “cryptoXML” is unzipped into the proper directory (C:\), XCrypt  is ready for use.

· Key Generation with XCrypt
The key generator module allows data owner to create the key chains that he/she will use in the process of applying the desired protection to the XML document. The key chains that the key generator can produce are of two types: default and particularized. 
The difference between the two is given by the name that the key repository will have and by the content of the file used to create it.

[image: image10.png]As far as the name difference is concerned, the interface for the key generator [Figure 6] allows the user to choose a name for the key chain he/she generates. To generate a default key chain the user will not choose a name for his/her key chain, while to generate a particularized key chain, he/she will have to choose a name. Under current implementation, when no name is chosen as it is the case for the default key chain, this will be named “def.”
Alternatively, based on the difference in the file content used to create the key chain, the default key chain will contain the subset of keys that will be shared with multiple user groups while the particularized key chain will contain subset of keys that will be shared with each potential user group in particular. 
This type of difference, based on the content of input file, brings up the prerequisite for key chain generation. The first argument that the KeyGenerator interface takes is a text file. 

tech1 Trebor

tech2 Popsicle

tech3 Urkel

Sample Input 1 – techs group

Present implementation of XCrypt limits the input files to those with format similar to that of the example [Sample Input 1] rendered above. Specifically, the text file has to contain a key name, key value pair separated by a white space on each line. Furthermore, as the example [Sample Input 1] illustrates first character in the key name is the first character in the line. If the arguments passed to the KeyGenerator fail to follow this format the results produced might not be the expected ones.
Continuing with the key generation process let us assume that a file with the same content as the example [Sample Input 1] is saved under the name “technicians”. 

To create a repository based on this file the user will start by double click on the icon of the executable for the KeyGenerator in “C:\cryptoXML” directory. This action will initiate the interface [Figure 6] for the key generator. 

The next step in the process is to click the “Create Keys” button, which will bring up a file chooser allowing the user to select the input file for the key repository, “technicians” under this example. 

After input file is selected, the user will have to input a name for the repository in the text box provided by the interface. Continuing with the example, let us assume that the name “techs” is chosen for the repository. The only action left is to click the “Enter” button, which will start the key repository generation. 
This key repository generation will then render an XML document with the following content:

<KeyChain>

    <Key name="tech1">49 -55 -46 …</Key>

    <Key name="tech2">10 -26 27 …</Key>

    <Key name="tech3">16 25 -10 …</Key>

</KeyChain>

As it is visible from the content of the resulted XML document, the key repository generation consists of creating XML elements with the key name as an attribute and a hex string as value. The hex string, that is the value of the key element, is an MD5 hash of the value provided in the argument file. The content of the resulted XML document also reveals the role of the key generation process. This role is that of generating the keys used during the encryption process and maintaining their association with the symbolic names chosen by the user i.e. “tech1.” 
The resulted XML document containing the keys in the abovementioned format will be stored in “demo_enc” directory under “C:\cryptoXML” with the name “techs.xml.” 
The same steps have to be followed when creating a default key repository with the only difference that no name will be entered in the text box provided by the user interface, and that the repository will be stored under the name “def.xml.”
A key repository that is created following the algorithm mentioned in this example can be reused as long as it is not removed from the “demo_enc” directory. 
To update any of the repositories created, the user will have to update the argument file via insert, delete or other similar actions, and then follow the steps as they were presented in the example above.

· Encryption with XCrypt
The encryption module of XCrypt will provide a partial or total protection for the desired XML documents. The total or partial protection is decided by the policy queries that the owner provides to the tool. This will take us to the prerequisites for initiating the encryption process.
First prerequisite for providing protection to XML documents is the generation of the key repositories that will contain the keys to encrypt the desired elements in the XML document. To perform this operation, follow the algorithm described under the “Key Generation with XCrypt” paragraph.
Next prerequisite is the development of the policy queries that reflect the desired protection to be applied to the XML document. 
In the process of creating the policy queries, the data owner has to remember that a policy query is similar to XQuery with two additional clauses KEY and TARGET. These clauses will allow to her/him to select the target element for protection and the key to use for protecting it. 

<subject>
……
  <analysis>

    <DNA-Sig>2wx312q12w231a2q</DNA-Sig>

    <c-test>

<date>07 June 2005</date>

<result>this patient did good on cognitive tests
</result>

    </c-test>

    <brain-scan>

<date>08 June 2005</date>

<result> parietal lobe pressure point
</result>

    </brain-scan>

  </analysis>

</subject>
XML Sample 1
An example for policy query creation will be presented next. For this example, we will use excerpts from XML document named “d4.xml” depicted in Appendix C and policy query file in Appendix B.
Let us assume that the data owner has an XML document similar to the example [XML Sample 1] in which he/she wants to protect the “analysis” element. 

The name of the element that needs to be protected equates with the content of the TARGET clause. Since we know that we want to protect the “analysis” element we know the content of TARGET clause.

Next, we have to determine the key or keys to be used for protecting the target element. These keys will have to come from the key repositories already existing or newly created for the XML document to be protected. Let us use for this example two keys the “registration” from the default repository together with the value of “DNA-Sig” element within the document. We have chosen this last key because there is a hard imposed limit on its length, which may limit its appeal for the user. The size of the string used as key has to be 16, a different size being liable to lead to errors in the encryption process. This length restriction is limited to key values chosen from within the XML document to be protected. The key values in the argument file for the Key Generator can have arbitrary length.
Now that we have chosen the keys and target, we are ready to create the policy query. We will use techniques similar to creation of regular queries to apply the desired protection to all analysis elements with the XML document to be protected. The resulting policy query will be as follows:
FOR    $x in doc("d4.xml")/doc/subjects/subject

KEY    getKey("registration")

       $x/analysis/DNA-Sig/text()

TARGET $x/analysis

The protection that this policy query enforces can be paraphrased as follows: for each “subject” element in “d4.xml” use “registration” key from “def.xml” repository AND value of “DNA-Sig” element to encrypt its(subject’s) “analysis” element. Since two keys are chosen to protect the “analysis” element, it will be encrypted with an XOR bitwise combination of the two. Furthermore, from this sample policy query, we can see that if more than one key is used, each key has to be described in a separate line.
If the key desired for protection comes from a particularized repository, then KEY clause will have to include the name of that repository as it is illustrated in the following example:

FOR    $x in doc("d4.xml")/doc/subjects/subject

KEY    getKey("$x/id/text()")keyChain("imageKeys")

TARGET $x/analysis/brain-scan

In this last policy query example a key that has the same name as the “subject” and it is located in the “imageKeys” repository will be used to protect the “brain-scan” element in the XML sample above [XML Sample 1].

The examples above cover all types of keys that are currently permitted by the XCrypt implementation. From that information we can conclude that the KEY clause can have three possible formats:

1. getKey("KEY NAME") – in this case the key is searched for in the default key repository.
2. getKey(“KEY NAME)keyChain("KEY CHAIN NAME") – in this case the key is searched for in the key chain named in the parenthesis
3. $x/analysis/DNA-Sig/text() –in this case the key is searched for within the XML document to be protected.
The last example, as far as the policy query creation is concerned, will illustrate a TARGET clause with multiple targets.

FOR    $x in doc("d4.xml")/doc/subjects/subject

WHERE  $x/blood-type = "AB-"

KEY    getKey("tech2")keyChain("techs")

TARGET $x/sex, $x/blood-type

The sample policy query above shows that for each “subject” with blood type “AB-“ its sex and blood type information will be encrypted with the key corresponding to the second technician in the key repository named “techs.” This example combined with the examples above covers all possible types of TARGET clauses. From this information we can see that a policy query can protect one or multiple targets. In the case of multiple targets, as the example illustrates, the targets need to be separated by commas.
Appendix B reveals how the policy queries should be packaged together in a policy query file. There are two things that are worth mentioning since they are a limiting factor for the performance of XCrypt. 
First, each policy query should be separated by the next one by an empty line. And second, there should be two empty lines at the end of policy query file– i.e. after the last line in the last policy query press “Enter/Return” twice.
[image: image3.png]
Figure 7 – Encryption Interface 

Finally, after the key repositories are generated and policy queries created we can move to the encryption process. The encryption can be initiated a double click on the “Encyrpt.exe” executable in “C:\cryptoXML.”

The result of the action above will bring up the encryption user interface [Figure 7]. This interface allows the user to select the policy query file and choose a name for the resulted XML document. If no name is selected, then the default name “Encrypt.xml” will be used. 
It is easily noted from Figure 7 that the interface provides no means to the user to select the XML document to be protected. This feature is not necessary because the name of the XML document to be protected must be contained within policy queries.
A click on the “Select Policy Query File” button will bring up a Java file chooser that will allow data owner to select a policy query file stored anywhere on the machine.

The name for the resulting XML document can be entered with or without the “.xml” ending. 
Once the policy query file is selected and the name chosen, the user will have to click the “Encrypt” button, which will start the process.

The result, the encrypted XML document, will be stored in the “dem_dec” directory under “C:\cryptoXML”, with the name chosen by the user.
While the policy query file can be stored anywhere on the machine XCrypt implementation imposes harder restrictions on the location of the XML document to be protected and of the key repositories to be used in the protection process. To guarantee the performance, as advertised, the user will have to ensure that these files are stored in the “demo_enc” directory under “C:\cryptoXML.” 
· Decryption with XCrypt
The decryption module of XCrypt will provide means for a partial or total decryption of the XML documents that were protected via the encryption module of XCrypt. The total or partial decryption of the protected XML document is conditioned by the subset of keys that the data owner granted to the user. 
There are a few prerequisites that have to be met before the actual decryption process can be initiated.

MS 49 -55 -46 94 65 -80 -77 -65 -115 51 -118 111 -39 22 81 7

tech1 49 -55 -46 94 65 -80 -77 -65 -115 51 -118 111 -39 22 81 7
registration 16 25 -10 98 -5 -124 -32 -79 70 -96 -106 67 20 84 93 11

DNA-Sig 2wx312q12w231a2q
Sample Input 2 – User’s Key Subset
The first step of the prerequisites is to make sure that the Java JDK version mentioned in the requirements (1.4) is present and a path to it is present in the PATH environment variable.
Next action that the user has to perform is to save the protected XML publicly available locally so it can accessible to XCrypt.
Once it has the protected XML document that it wants to access, the user also has to store locally the text file containing the key subset of the key set used for the encryption that was granted to him/her via a secure channel by the data owner. 

A sample of such keys subset is rendered above [Sample Input 2]. 
As illustrated by the example above [Sample Input 2] the key file has to contain the keys with the information for each key on one line. As it is currently implemented XCrypt imposes the following format for key information. The key name, with no empty space preceding it, has to be followed by a white space and the key value in hex string format. The key value has to be identical to the value in the key repository created by the data owner that corresponds to this key name. If this format for the key file is not followed then the tool might limit the elements it will grant access to due to the fact that the key will not be recognized as a valid key. 

If we consider that the protected XML document that the user is trying to access, contains the excerpt provided in Appendix D, then the key subset that he/she holds [Sample Input 2], will allow full access to that excerpt.
After the prerequisites are checked, protected XML document and text file containing key subset are stored locally, then the decryption process can be initiated. This can be done by a double click on the “Decrypt.bat” batch file in “C:\cryptoXML” directory.

This action will bring up the decryption user interface rendered on the next page [Figure 8].

[image: image4.png]
Figure 8 – Decryption UI

The decryption interface gives users the opportunity to select the file containing the key subset and the protected XML document to be decrypted.

A click of the “Select Key File” button will start a Java file chooser that will allow the user to choose the key file. Next step would be a click on “Select XML” button, which will bring up another file chooser that will allow user to select the protected XML document he/she wants to decrypt. 

<doc>

    <subjects>

    <EncryptedData>

<EncryptionMethod Alg="AES" KeySize="128"/>

<KeyInfo>

    <Name>MS</Name>

</KeyInfo>

<CipherData>

    <CipherValue>

47f2bb87b2a224b1cdc52cab784262cb8e7a6eb985cc0a4fa0e890c6e13ba6……
    </CipherValue>

</CipherData>

    </EncryptedData>
….

….</subjects>
…

</doc>
Sample Input 3 – Protected XML

Lastly, to initiate the decryption process the user will have to click the “Decrypt” button. The decrypted XML document will be stored in “dem_dec” directory under “C:\cryptoXML” in the following form: DecryptX.xml. The X, in the name of the decrypted XML document, is a number reflecting the depth of decryption performed. 
<subject>
   <id>A1</id>
   <EncryptedData>
     <EncryptionMethod Alg="AES" KeySize="128"/>
     <KeyInfo>
         <Name>tech1</Name>
     </KeyInfo> 
     <CipherData>
       <CipherValue>fe722ce</CipherValue>
      </CipherData>
   </EncryptedData
……..

</subject>

Sample Input 4 – Decrypted XML
Let us consider an example to better explain the notion of decryption depth. For this example we will consider the protected XML document rendered in Sample Input 3, and the key set depicted by Sample Input 2. A user that selected these two files using the decryption interface will get two XML documents in “dem_dec” directory particularly “decrypt.xml” and “decrypt1.xml”. 
Each of them is the result of a decryption attempt of a protected XML document. As the initial protected document [Sample Input 3] reveals, everything is encrypted with one key, the one with the name “MS”. Since this key is present in the key subset XCrypt will be able to decrypt the document and grant access to it. However, the result of the decryption is another protected XML document [Sample Input 4].
This resulted document contains among other elements, nodes that are protected with a key named “tech1”. A quick glance over the key subset reveals that the key is available to the user. Since the key is available, the tool will make another decryption attempt of the resulted XML document. This process continues recursively until the resulted document had no encrypted elements or the encrypted elements are protected with keys that are not available to the user.
The depth of the decryption increases with every successful decryption attempt of the resulted document. Each decrypted XML document will be stored into “dem_dec” directory. The document with the highest depth of decryption is the final document.
[image: image11.png]
3. XCrypt Architecture
The architecture for XCrypt includes two main modules: XMLEncrypter and XMLDecrypter each of which has their own sub-modules. The XMLEncrypter, which aligns with the Data Owner module in the original paper, has four sub-modules: encrypt, key_gen, xml_main and xml_process, while the XMLDecrypter, which aligns with the User module in the original paper, has only two: user and decrypt.
The role of the XMLEncrypter module is graphically rendered below [Figure 9]. This module is employed by the data owner to create the necessary protection for the XML document that is about to be disseminated into the public domain. It takes as inputs the XML document to be protected, the set of policy queries that expresses the type of protection desired and the set of key chains containing the keys necessary to provide this protection. The output of the XMLEncrypter module will be the partially encrypted XML document as described by the set of policy queries applied. 
Within the XMLEncrypter module, each sub-module fulfills a different role.
The first task of the XMLEncrypter is not directly related to the processing of the XML document to be protected, but to the creation of the key repositories used the enable the desired protection. This task is performed by the key_gen sub-module, which takes as input a text document and returns as output an XML document that has as elements keys.

The resulted XML document will contain elements of the following form:
<Key name="tech1">

49 -55 -46 94 65 -80 -77 -65 -115     51 -118 111 -39 22 81 7 

</Key> 

. 

In the element above, the name of the key appears as the attribute of the element, while the value of the element is an MD5 hash of the input value.

The user interface for the key_gen sub-module, illustrated below [Figure 10], allows user to select the file containing the key names and key values, and it also allows him/her to choose the name for this key repository. If no name is selected for the respective key chain, then it is considered to be the default one and will be named “def”.
[image: image5.png]
Figure 10 – Key Generator UI
The xml_main sub-module is responsible for the user interface [Figure 11]. It provides a simple application interface, which allows the data owner to choose the policy query file that contains the set of policy queries describing the protection desired. The tool also allows the user to choose a name for the resulting XML document. However, as Figure 11 depicts, it does not allow the data owner to choose the XML document to be protected. Nonetheless, the interface performs as desired without that feature, because as the policy queries in Appendix B will reveal the name of the XML document to be protected must be contained within them.
[image: image6.png]
Figure 11 – Encryption UI
The xml_main is also responsible for integrating most of the XMLEncrypter sub-modules. 

First, it creates couple of directories needed to hold the XQuery files used in pre-encryption processing of the XML document to be protected. 
Next, it initializes xml_process sub-module and executes the first application of it. This application evaluates the policy queries in the policy query file chosen by the data owner, and produces the appropriate XQuery files. These XQuery files will be stored in three different directories, “up1”, “Xnormalize” and “preE”, since they fulfill different roles in the pre-encryption processing of the XML document. 
The xml_process sub-module, which aligns with the Policy Query Evaluator in Figure 1, also performs additional tasks.

This sub-module contains two applications. The first one is responsible for evaluating the policy queries from the policy query file it takes as argument, while the second one is responsible for performing the first phase in the Normalization process.

First application of the xml_process sub-module evaluates the policy queries and based on this evaluation produces six different types of XQuery files all of which have an important role in the pre-encryption processing of the XML document to be disseminated. 
The second application of the xml_process sub-module initiates the Normalization process. through a pas over the XML document via the XML parser. The input for this application is an already processed XML document that resulted from the execution of several XQuery files on it. 
  <analysis>

   <cc.AND>

    <key name="DNA-Sig">2wx... </key>

    <key name="registration">16 25 ...</key>

   </cc.AND>

   ….


  </analysis>
  ….

  <cc.OR>

    <key name="MS">49 -55 -46 ... </key>

    <key name="JS">119 -75 -112 ...</key>

  </cc.OR>
   ….
This pass provides the implementation of the normalization of logical protection model that allows the enforcement of multiple overlapping policy queries over a single data instance [1].  
[image: image7.emf]
Figure 12 – Protection 
The core of this implementation is illustrated in Figure 12 above, and it consists of the introduction of one or more random keys in the elements where multiple (AND logic) or different (OR logic) keys are used for encryption. A sample of the resulted XML document after the execution of application is rendered below. 
<analysis>

 <cc.AND>

  <Key_K1>@b069b9a2</Key_K1>

  <Key_K2>@4f96411c</Key_K2>

  <key name="DNA-Sig">2wx3…</key>

  <key name="registration">16 25 -10 ...</key>

 </cc.AND>

 ….

</analysis>
  ….

  <cc.OR>
    <Key_K1>@b069b2c5</Key_K1>

    <key name="MS">49 -55 -46 ... </key>

    <key name="JS">119 -75 -112 ...</key>

  </cc.OR>
   ….

The role of these newly introduced keys is to reduce the size of the encrypted document and protect the identity of the keys used for encryption.
Encrypting data with only one key reduces the size of the document and eliminates the necessity of having different versions of the encrypted document. Different encrypted versions of the same document are required when users from different groups, and thus different keys, desire access to the same data. 
By introducing these random generated keys, which are also 128-bit as the originals, the owner can encrypt the data with only one key even in the case when it grants access to the same data to multiple different users or it wants higher level of protection for the data. 
The first case, where data access is granted to multiple different users, is exemplified by part a of Figure 12, which shows the OR logic case. In this case, the data is encrypted with the randomly generated 128-bit key and in turn, this randomly generated key is encrypted with each of the keys that will be remitted to the different users. Through this technique each user will be able to decrypt with its key the random key that was used to protect the data and thus gaining access to it.
The second case, where a higher level of protection is desired, and consequently encryption with multiple keys of the same data is performed, is illustrated in part b of Figure 12 that shows the AND logic case. In this case for each additional key used to encrypt the data a new random 128-bit key is generated. Data to be protected will then be encrypted with the key resulted from the bitwise XOR combination of all random generated keys. Furthermore, as in the case of OR logic the original keys will encrypt the random generated keys. Therefore, for a user to gain access to the protected data he/she will have to possess all the keys that encrypted the random keys since all of them are necessary to obtain the key that encrypted the data.
The encrypt sub-module aligns with Policy Implementation and Encryption in Figure 1 [1], and it is responsible for performing the final step in the protection of the data. This sub-module takes as input the normalized XML document, and yields a partially/totally encrypted XML document as determined by the policy queries.

The application in this sub-module parses the normalized XML document and for each element checks if it has a first child named “Key”, if that is the case it will used the value of that “Key” element to encrypt its parent. If the current element is an “OR” or “AND” element, then, different actions are taken as revealed in the implementation details.
The tool also implemented the XMLDecrypter module whose role is graphically rendered in Figure 13 above. This module is employed by the data user to decrypt a protected XML document publicly available.  
It takes as inputs the protected XML document and a subset or the entire set of keys used for the protection of the XML document in question.

Figure 13 – XMLDecrypter Architecture

The output of the XMLDecrypter module will be the partially or totally decrypted XML document based on the set of keys available to the user. 

The sub-modules (user and decrypt) of the XMLDecrypter module have roles that are interconnected. The user sub-module provides the user interface on the client side [Figure 14]. Alternatively, the decrypt sub-module provides the background action for the XMLDecrypter.
The user sub-module will initialize the decrypt sub-module, will store the arguments for it, and then, will call for its execution with the collected arguments. 
This action is performed via a simple interface that allows the user to choose the file containing the subset of keys available to him/her and the protected XML document to be decrypted. These two files can be chosen in any order as long as both are chosen before the “Decrypt” button is clicked. This is true because the decryption process is initiated only when the “Decrypt” button is pressed. 

The output of the XMLDecrypter module will be stored in “dem_dec” directory under “C:\cryptoXML” in the following format: DecryptX.xml. 
The X, in the name of the decrypted xml document, is a number reflecting the depth of decryption performed as it was explained in the “XCrypt Documentation and Requirements” section of this paper.
[image: image8.png]
Figure 14 – Decryption UI

III. Conclusions
This research provides a working implementation of the “Controlling Access to Published Data Using Cryptography” [1] concept by professor. Dan Suciu and Gerome Miklau presented at VLDB 2003. 

In today’s context of electronic business transactions and long distance cooperation between teams in different fields of science or even interdisciplinary teams, this tool can play an important role in satisfying the need of data sharing for these communities.
Future work will be oriented towards limiting the number of constraints that it currently imposes, improving the performance and migration to different platforms.

IV. Acknowledgements
Professor Suciu and Gerome Miklau provided significant guidance during implementation process.

Jerome Simeone offered very important insight into the capabilities of the Galax XQuery engine, which is indispensable to the implementation of XCrypt.
V. Reference:
[1] Dan Suciu and Gerome Miklau. Controlling Access to Published Data Using Cryptography.

VLDB 2003.

A Appendix
	File / Directory Name
	Goal
	Origin

	dem_dec
	Holds protected XML document for the data owner and partially / totally decrypted XML document for data user.
	cryptoXML

	demo_enc
	All processing for the XML document to be protected makes use of this directory. Data is read and written to files or directories inside this directory.
	cryptoXML

	pq# .xq- where #  = 1,2,5,6
	Sample policy query files
	cryptoXML

	e
	Holds classes and source files for XCrypt 
	cryptoXML

	pcre.dll
	Dynamic library required by Galax on Windows systems
	cryptoXML

	Encrypt.exe
	Initiates execution of encryption
	cryptoXML

	Decrypt.bat
	Initiates execution of decryption
	cryptoXML

	KeyGen.exe
	Initiates execution of the key chain generator
	cryptoXML

	decKeys.txt
	Sample text file holding key subset for decryption
	dem_dec

	Batch file: clean.bat, ph0.bat, ph1.bat, ph2.bat
	Have role in processing the XML document to be protected. Call for execution of the Unix commands, and of the Perl scripts, that assist with this processing.
	demo-enc

	Perl scripts: up1.pl, preE.pl
	Call for execution of the queries the process XML document prior to the encryption process
	demo_enc

	up1
	Holds function queries that are essential for the execution of the queries resulted from translation of policy queries and the queries executed by up1.pl call. 
	demo_enc

	Galax
	XQuery engine that executes all queries needed for processing of the XML document to be protected
	demo_enc

	Sample key chains: imageKeys.xml, psych.xml, techs.xml. kc.xml (default)
	Hold subsets of the key set used for the protection of the XML document. Each key chain is particularized for different user groups, with the exception of the default key chain
	demo_enc

	Sample XML documents : mon.xml, nasa.xml, d4.xml and ebay.xml
	Used for tool tutorial together with the policy queries in cryptoXML directory
	demo_enc

	qx.xq and qx2.xq
	Function queries essential to execution of queries resulted from translation of the policy queries
	up1


B Appendix
FOR    $x in doc("d4.xml")/doc/subjects/subject

KEY    getKey("registration")

       $x/analysis/DNA-Sig/text()

TARGET $x/analysis

FOR    $x in doc("d4.xml")/doc/subjects/subject

KEY    getKey("$x/id/text()")keyChain("imageKeys")

TARGET $x/analysis/brain-scan

FOR    $x in doc("d4.xml")/doc/subjects/subject

WHERE  $x/blood-type != "AB-"

KEY    getKey("tech1")keyChain("techs")

TARGET $x/age, $x/blood-type, $x/exam-date/year, $x/sex

FOR    $x in doc("d4.xml")/doc/subjects/subject

WHERE  $x/blood-type = "AB-"

KEY    getKey("tech2")keyChain("techs")

TARGET $x/sex, $x/blood-type

FOR    $x in doc("d4.xml")/doc/subjects/subject

       $y in doc("d4.xml")/doc/psychs/psych

WHERE  $x/examining-psych/id/text() = $y/id/text()

KEY    getKey("$y/id/text()")keyChain("psych")

TARGET $x

C Appendix

<doc>

<subjects>

    <subject>

<id>A1</id>

<age>35</age>

<sex>M</sex>

<blood-type>AB</blood-type>

<exam-date>

<year>2005</year>

<month>August</month>

<day>13</day>

</exam-date>

<examining-psych>

<id>MS</id>

</examining-psych>

<e-nurse>

<id>FN</id>

</e-nurse>

<analysis>

    <DNA-Sig>2wx312q12w231a2q</DNA-Sig>

    <c-test>

<date>07 June 2005</date>

<result>this patient did good on cognitive tests</result>

    </c-test>

    <brain-scan>

<date>08 June 2005</date>

<result> parietal lobe pressure point</result>

    </brain-scan>

</analysis>

    </subject>

….


</subject>


…..

</doc>
D Appendix
<doc>

    <subjects>

    <EncryptedData>

<EncryptionMethod Alg="AES" KeySize="128"/>

<KeyInfo>

    <Name>MS</Name>

</KeyInfo>

<CipherData>

    <CipherValue>

47f2bb87b2a224b1cdc52cab784262cb8e7a64fb883167df0f46631d6b9907ab71b8c878f44e4ea0318d5ed5a5e1c272a7807cb1e1045e4fd449a64c090a5e017701b1571db97c304bef6a2a558242f7defa00bc3a3f35e7ecd9476e7aaf4be48d99312de2fe6eeb8bf36f1f2c10558644179fb68fd9ac66b62619e62f6dacff3bb07651f01041e5a6b02422a5faf74809e1bf8035d61692e1b688aa2d1c2b0490ad742107aafba56599323624755076178e2f7bdf364563c9d849cad52e946adee47a76fab2951da88d1ae2f471ec8c588cab4c38fd25283c857ee1326779ee5feb985cc0a4fa0e890c6e13ba6……
    </CipherValue>

</CipherData>

    </EncryptedData>
….

….</subjects>
…

</doc>






Figure 6 – Key Generator Interface



�



Figure 9 – XMLEncrypter Architecture







PAGE  
6

