
Object Exchange Across Heterogeneous Information Sources*
Yann i s P a p a k o n s t a n t i n o u H e c t o r G a r c i a - M o l i n a J e n n i f e r W i d o m

Department of Computer Science
Stanford University

Stanford, CA 94305-2140
~yannis,hector,widom} @cs.stanford.edu

Abst rac t . We address the problem of providing integrated
access to diverse and dynamic information sources. We ez-
plain how this problem differs from the traditional database
integration problem and we focus on one aspect of the infor-
mation integration problem, namely information ezchange.
We define an object-based information ezchange model and a
corresponding query language that we believe are well suited
for integration of diverse information sourcea. We describe
how the model and language have been used to integrate het-
erogeneous bibliographic information sources. We also de-
scribe two general-purpose librariea we have implemented for
object exchange between clients and servers.

1 I n t r o d u c t i o n

A significant challenge facing the database field in re-
cent years has been the integration of heterogeneous
databases. Enterprises tend to represent their data using
a variety of conflicting data models and schemas, while
users want to access all data in an integrated and con-
sistent fashion. There has been substantial progress on
database integration techniques [1,8,12,18]; in addition,
emerging standards such as SQL3 are aimed at eliminat-
ing many of the problems.

At the same time, however, the problem of integra-
tion has become much more challenging because users
want integrated access to i n / o r m a t i o n - - d a t a stored not
just in standardized SQL databases, but also in, e.g.,
object repositories, knowledge bases, file systems, and
document retrieval systems. In addition, users want to
integrate this information with "legacy" data, and even
with data that is not stored but rather arrives on-line,
e.g. over a news wire. Although there are many similar-
ities, integrating a disparate set of information sources
differs from the integration of conventional databases in
the following ways:

*Research sponsored by the Wright Laboratory, Aeronau-
tical Systems Center, Air Force Material Command, USAF,
under Grant Number F33615-93-1-1339. The US Govern-
ment is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright nota-
tion thereon. The views and conclusions contained in this
document are those of the authors and should not be in-
terpreted as necessarily representing the official pollcies or
endorsements, either express or implied, of Wright Labora-
tory or the US Government. This work was also supported
by the Reid and Polly Anderson Faculty Scholar Fund, the
Center for Integrated Systems at Stanford University, and by
Equipment Grants from Digital Equipment Corporation and
IBM Corporation.

• Many of the sources contain data that is unstruc-
tured or semi-structured, having no regular schema
to describe the data. For example, a source may con-
sist of free-form text; even if the text does have some
structure, the "fields" (e.g., author, title, etc.) may
vary in unpredictable ways.

• The environment is dynamic. The number of sources,
their contents, and the meaning of their contents may
change frequently.

• Information access and integration are intertwined.
In a traditional environment, there are two phases:
an integration phase where data models and schemas
are combined, and an access phase where data is
fetched. In our environment, it may not be clear how
information is combined until samples are viewed,
and the integration strategy may change if certain
unexpected data is encountered.

• Integration in our environment requires more human
participation. In the extreme case, integration is per-
formed manually by the end user. In other cases,
integration may be automated, but only after a hu-
man studies samples of the data and determines the
procedure to follow.

In light of these differences and difficulties, we believe
that the goal is not to perform fully automated infor-
mation integration that hides all diversity from the user,
but rather to provide a framework and tools to assist
humans (end users and/or humans programming inte-
gration software) in their information processing and in-
tegration activities. So, what should the framework and
tools look like? There are at least three categories:

1. I n f o r m a t i o n e x c h a n g e . The various components
of an information system need to exchange data ob-
jects (units of information), either for examination
by an end user or for integration with other data
objects. For this, there needs to be an agreement
as to how objects will be requested, how they will
be represented, what the semantic meaning of each
object (and its components) is, and how objects are
actually transported over a network. Once an ex-
change format is agreed upon, there need to be tools
for translating between an information source and
the exchange format.

2. I n f o r m a t i o n d i s c o v e r y a n d b r o w s i n g . Users will
want to explore the available information, discovering
sources, browsing objects, and learning the semantics
of objects and their components. Tools for informa-

1063-6382/95 $4.00 © 1995 IEEE
251

CLIENT]

Query in common I T Result translated into common
Query Language I information format

Figure 1: Communication through a translator

tion discovery and browsing allow humans (and ul-
timately software) to query for sources of interest,
to request objects from sources, to navigate through
objects, and to ask questions about the meaning of
objects and their components.

3. M e d i a t o r s . A mediator is a program that collects
information from one or more sources, processes and
combines it, and exports the resulting information
[20]. We envision a variety of tools to assist the me-
diator writer, some resembling a programming envi-
ronment, others presenting a menu of common ways
of combining information.

In this paper we focus particularly on the information
exchange problem discussed in point 1, since we believe
this problem needs to be solved before browsing tools
or mediators can be constructed. To motivate the infor-
mation exchange problem further, consider an informa-
tion source IS that contains bibliographic entries such
as those found in many libraries. Some client C (human
or otherwise) wishes to locate all books by author "J.D.
Ullman" on the topic of "databases." Since I S and C are
likely to be different, we need a common language and
information format for communication. Client C uses
the common language to express a query that requests
the desired object. A front end to IS, which we call
a translator (sometimes referred to as a zurapper), con-
verts the query to a form that IS can process. When IS
responds (with a set of bibliographic entries in some for-
mat), the translator converts the response into an object
in the common format and transmits it to C. Finally,
C may choose to translate the object (or the compo-
nents it wants) into its own internal model. This form
of communication is illustrated in Figure 1.

In Section 2 we present an "object exchange model"
(OEM) that we believe is well suited for information ex-
change in heterogeneous, dynamic environments. OEM
is flexible enough to encompass all types of information,
yet it is simple enough to facilitate integration; OEM also
includes semantic information about objects. In Section
3 we describe the query language we have designed for re-
questing objects in OEM. In Section 4 we describe how
we have used OEM to integrate several heterogeneous
bibliographic information sources, and we describe a tool

we have built for browsing OEM-based integrated infor-
mation. In Section 5 we present a pair of general-purpose
libraries we have implemented that support OEM ob-
ject exchange between any client and server processes.
The procedures in these libraries provide communication
services, session handling, object memory management,
and partial object fetches. Calls to these procedures are
embedded in client programs. In Section 6 we conclude
and discuss our ongoing work in information integration
using OEM.

2 O b j e c t E x c h a n g e M o d e l

The first question to be addressed is: with so many data
models around, why do we need another one? In fact
we do rwt need another new model. Rather, we adopt a
model that has been in use for many years. The basic
idea is very simple: each value we wish to exchange is
given a label (or tag) that describes its meaning. For
example, if we wish to exchange the temperature value
80 degrees Fahrenheit, we may describe it as:

(temp-in-Fahrenheit, integer, 80)

where the string "temp-in-Fahrenheit" is a human-
readable label, "integer" indicates the type of the value,
and "80" is the value itself. If we wish to exchange a
complex object, then each component of the object has
its own label. For example, an object representing a set
of two temperatures may look like:

(set-of-temps, set, { cmpntl, cmprdz })
cmprttl is (temp-in-Fahrenheit, integer, 80)
crop,t2 is (temp-in-Celsius, integer, 20)

A main feature of OEM is that it is self-describing.
We need not define in advance the structure of an object,
and there is no notion of a fixed schema or object class.
In a sense, each object contains its own schema. For
example, "temp-in-Fahrenheit" above plays the role of a
column name, were this object to be stored in a relation,
and "integer" would be the domain for that column. 1

Note that , unlike in a database schema, a label here
can play two roles: identifying an object (component),
and identifying the meaning of an object (component).
To illustrate, consider the following object:

(person-record, set, {crop,t1, cmpr~t2, cmpr~h })
cmpr~tl is (person-name, string, "Fred")
cmpntz is (office-num-in-bldg-5, integer, 333)
cmp~t3 is (department, string, "toy")

Like a column name in a relation, the label "person-
name" identifies which component in the person's record
contains the person's name. In addition, the label
"person-name" identifies the meaning of the component.

Thus, we suggest that labels should be as descriptive
as possible. (For instance, in our example above, replac-
ing "person-name n by "string" would not be advisable.)

1Of course, if we are exchanging a set of objec ts where
each objec t has the same s t ruc ture and labels, then i t would
be redundant to transmit labeis with every member of the set.
We view this as a data compression issue and do not discuss
it further here. From a logical point of view, we assume that
each object in our model carries its own label

252

In addition, if an information source exports objects with
a particular label, then we assume that the source can
answer the question What does this label mea~?. The
answer should be a human-readable description--a type
of "man page" (similar in flavor to Unix Manual pages).
For example, if we ask the source that exports the above
object about "person-name," it might reply with a text
note explaining that this label refers to names of employ-
ees of a certain corporation, the names do not exceed 30
characters, and upper vs. lower case is not relevant.

It is particularly important to note that labels are rel-
ative to the source that exports them. Tha t is, we do
not expect labels to be drawn from an ontology shared
by all information sources. For example, a client might
see the label "person-name" originating from two differ-
ent sources that provide personnel data for two different
companies, and the label may mean something different
for each source; the client is responsible for understand-
ing the differences. If the client happens to be a mediator
that exports combined personnel data for the two com-
pauies, then the mediator may choose to define a new
label "generic-person-name" (along with a "man page"),
to indicate that the information is not with respect to a
particular company. Mediators are discussed further in
Section 4.2.

We believe that a self-describing object exchange
model provides the flexibility needed in a heterogeneous,
dynamic environment. For example, personnel records
could have fewer or more components than the ones sug-
gested above; in our temperatures set, we could dynam-
ically add temperatures in Kelvin, say. In spite of this
flexibility, the model remains very simple.

As mentioned earlier, the idea of self-describing mod-
eis is not new--such models have been used in a vari-
ety of systems (see Section 2.2 for a discussion of these
models and systems). Consequently, the reader may at
this point wonder why we are writing a paper about a
self-describing model, if such models have been used for
many years. A first reason is that we believe it is useful
to formally cast a self-describing model in the context of
information exchange in heterogeneous systems (some-
thing that has not been done before, to the best of our
knowledge), and to extend the model to include object
nesting as illustrated above. To do this, a number of
issues had to be addressed, as will be seen in subsequent
sections. A second reason is to provide an appropri-
ate object request language based on the model. Our
language is similar to nested-SQL languages; however,
we believe that the use of labels within objects leads to
a language that is more intuitive than nested-SQL (see
Section 3).

2.1 S p e c i f i c a t i o n

Each object in OEM has the following structure:

[Label I Type]Value] Object-ID I

where the four fields are:

• L a b e l : A variable-length character string describing
what the object represents.

• T y p e : The data type of the object 's value. Each
type is either an atomtype (such as i n t e g e r , s t r i n g ,
r e a l number, etc.), or the type se t . The possible
atom types are not fixed and may vary from infor-
mation source to information source.

• Value : A variable-length value for the object.

• O b j e c t - I D : A unique variable-length identifier for
the object or n u l l .

In denoting an object on paper, we generally drop the
Object-ID field, i.e. we write/label, type,value/, as in the
examples above. Due to space constraints, we do not dis-
cuss the types or uses of OEM Object-ID's here. Con-
sequently, we also omit discussion of duplicate objects,
and of the different ways in which subobjects may be
represented in set values. (For presentation, we use sim-
ple mnemonic identifiers for subobject references, as in
the examples above.) The interested reader is referred
to [16] for further discussion.

2 . 2 R e l a t e d M o d e l s a n d S y s t e m s

Labeled fields are used as the basis of several da ta models
or data formatting conventions. For example, a tagged
file system [19] uses labels instead of positions to identify
fields; this is useful when records may have a large num-
ber of possible fields, but most fields are empty. Elec-
tronic mail messages consist of label-value pairs (e.g. la-
bel "From" and value "yannis@cs.stanford.edu"). More
recently, Lotus Notes [14] has used a label-value model
to represent office documents, and Teknekron Software
Systems [15] has used a self-describing object model for
exchange of information in their stock trading systems.
In [12] and [13] self-describing databases are proposed as
a solution to obtaining the increased flexibility required
by heterogeneous systems.

Recent projects on heterogeneous database systems
(e.g., [1,3,10])have applied object-oriented (O O) d a t a
models to the problem of database integration. OEM
differs from these and other OO data models in several
ways. First, OEM is an information czchange model.
OEM does not specify how objects are stored at the
source. OEM does specify how objects are received at a
client, but after objects are received they can be stored
in any way the client likes.

A very important difference between OEM and con-
ventional OO models is that OEM is much simpler.
OEM supports only object nesting and object identity;
other features such as classes, methods, and inheritance
are omitted. (Incidentally, [4] claims that the only two
essential features of an OO data model are nesting and
object identity.) Our primary reason for choosing a very
simple model is to facilitate integration. As pointed
out in [2], simple data models have an advantage over
complex models when used for integration, since the
operations to transform and merge data will be cor-
respondingly simpler. Meanwhile, a simple model can
still be very powerful: advanced features can be "em-
ulated" when they are necessary. For example, if we
wish to model an employee class with subclasses "active"
and "retired," we can add a subobject to each employee

253

object with label "subclass" and value "active" or "re-
tired." Of course this is not identical to having classes
and subclasses, since OEM does not force objects to con-
form to the rules for a class. While some may view this
as a weakness of OEM, we view it as an advantage, since
it lets us cope with the heterogeneity we expect to find
in real-world information sources. 2

The flexible nature of OEM can allow us to model com-
plex features of a source in a simple way. For example,
consider a deductive database that contains a p a r e n t
relation and supports the recursive a n c e s t o r relation
through derivation rules. If we wish to provide an OEM
model of this data in which it is easy to locate a person's
ancestors, we can make the object that corresponds to
each person contain as subobjects the objects that cor-
respond to his/her parents. It is then simple to pose a
query in our OEM query language (see Section 3) that
retrieves all of a person's ancestors. In addition, a user
can browse through a person's "family tree" using the
browsing facility described in Section 4.1.

A final distinct difference between OEM and conven-
tional OO models is the use of labels in place of a schema.
Clearly, it would be trivial to add labels to a conventional
OO model (e.g., all objects could have an attribute called
"label"). The only difference then is that in OEM la-
bels are first-class dtisens. We believe this small change
makes interpretation and manipulation of objects more
straightforward, as discussed in the next section. Note
that the schema-less nature of OEM is particularly use-
ful when a client does not know in advance the labels or
structure of OEM objects. In traditional data models,
a client must be aware of the schema in order to pose a
query. In our model, a client can discover the structure
of the information as queries are posed.

3 Q u e r y L a n g u a g e

To request OEM objects from an information source, a
client issues queries in a language we refer to as OEM-
QL. OEM-QL adapts existing SQL-like languages for
object-oriented models to OEM.

The basic construct in OEM-QL is an SQL-like
SELECT-FROM-WHERE expression. The syntax is:

SELECT Fetch-Ezpression
FROM Object
WHERE Condition

The result of this query is itself an object, with the spe-
cial label "answer":

(answer, set, {objz, obj2, . . . , objn})

2Note that some proposed interchange standards, e.g.
CORBA's Object Request Broker [7], tend to be signifi-
cantly more complex than OEM. We expect that if such
standards are adopted, OEM could be used to provide a sim-
pler, more "client-friendly" front end. Other proposed stan-
dards, such as ODMG's Object Database Standard [5], are
directed towards interoperability and portability of object-
oriented database systems, rather than towards facilitating
object exchange in highly heterogeneous environments.

(biblio, set, {doe1, doc2, . . . , do~ })
docl is (doc, set, {authSl, topic1, call-nOlO)

authsl is (auth-set, set, {auth,})
auth~ is (auth-ln, string, "Ullman")

topic1 is (topic, string, "Databases")
call-no1 is (internal-call-no, integer, 25)

doc2 is (doc, set, {auths2, topic2, call-no2})
auths2 is (auth-set, set, {auth,, 8uth~,auth~)

auth~ is (auth-ln, string, "Aho" /
auth~ is (auth-ln, string, "Hopcroft")
auth~ is (auth-ln, string, "Unman")

topic2 is (topic, string, "Algorithms")
call-no2 is (dewey-decimal, string, "BR273")

is (doc, set, (aurA, topis, catt- on l
au th~ is (auth, string, "Michael Crichton)
topis is (topic, string, "Dinosaurs")
call-non is (fiction-call-no, integer, 95)

Figure 2: Object structure for example queries

Each returned subobject obj~ is a component of the ob-
ject specified in the FROM clause of the query, where the
component is located by the Fetch-Ezpresgion and satis-
fies the Condition. Details are given below. We assume
that the Object in the FROM clause is specified using a
lexical object-identifier, and that for every information
source there is a distinguished object with lexicai identi-
fier "root." (Sources may or may not support additional
lexical identifiers.) Certainly the query language may
be extended with a call interface that allows non-lexical
object identifiers in FROM clauses.

The Feteh-Ezpression in the SELECT clause and the
Condition in the WHERE clause both use the notion of a
path, which describes a traversai through an object using
subobject structure and labels. For example, the path
" b i b l i o . do¢. au th" describes components that have la-
bel "auth ," and that are subobjects of an object with
label "doe" that is in turn a subobject of an object with
label " b i b l i o . " Paths are used in the Fetch-Ezpregsion
to specify which components are returned in the an-
swer object; paths are used in the Condition to qualify
the fetched objects or other (related) components in the
same object structure. In the remainder of this section
we provide a number of examples that serve to illustrate
the capabilities of OEM-QL; a complete syntax and se-
mantics is given in [16].

For the examples, suppose that we are accessing a
bibliographic information source with the object struc-
ture shown in Figure 2. Let the entire object (i.e.,
the top-level object with label "biblio") be the distin-
guished object with lexical object identifier "root". Note
that although much of this object structure is regular--
components have the same labels and types- - there are
some irregularities. For example, the call number format
is different for each document shown, and the third doc-
ument uses a different structure for author information.

E x a m p l e 3.1 Our first example retrieves the topic of
each document for which "Ullman" is one of the authors:

254

SELECT biblio, doc. topic
FROM root
WHERE biblio.doc.auth-set.auth-ln = "Ullman"

Intuitively, the query's WHERE clause finds all paths
through the subobject structure with the sequence of
labels [b ib l io , doc, a u t h - s e t , au th - ln] such that the
object at the end of the path has value "Ullman." For
each such path, the SELECT clause specifies that one
component of the answer object is the object obtained
by traversing the same path, except ending with label
t o p i c instead of labels [au th - so t , au th - ln] . Hence, for
the portion of the object structure shown in Figure 2 the
query returns:

(answer, set, {objl, obj2})
ob]l is (topic, string, "Databases" /
obj2 is (topic, string, "Algorithms")

E x a m p l e 3.2 Our second example illustrates the use
of "wild-cards" and an existential WHERE clause. This
query retrieves the topics of all documents with internal
call numbers.

SELECT biblio. ?.topic
FROM root
WHERE biblio. ?.internal-call-no

The "?" label matches any label. Therefore, for this
query, the doc labels in Figure 2 could be replaced by
any other strings and the query would produce the same
result. By convention, two occurrences of ? in the same
query must match the same label unless variables are
used (see below). Note that there is no comparison op-
erator in the WHERE clause of this query, just a path. This
means we only check that the object with the specified
path exists; its value is irrelevant. Hence, for the por-
tion of the object structure shown in Figure 2 the query
returns:

<answer, set, {objl}>
ob]l is (topic, string, "Databases")

E x a m p l e 3.3 In Example 3.2, the wild-card symbol ?
was used to match any label. We also allow "wild-paths,"
specified by the symbol " . " . Symbol * matches any path
of length one or more. 3 Using *, the query in the previ-
ous example would be expressed as:

SELECT *.topic
FROM root
WHERE *. internal-call-no

The use of • followed by a single label is a convenient
and common way to locate objects with a certain label
in a complex structure. Similar to ?, two occurrences of
• in the same query must match the same sequence of
labels, unless variables are used.

E x - m p l e 3.4 Our next example illustrates how vari-
ables are used to specify different paths with the same
label sequence. This query retrieves each document for
which both "Aho" and "Hopcroft" are authors:

3Note that our use of wild-card symbols is similar to, e.g.,
Unix, X-windows, etc.

SELECT biblio .doc
FROM root
WHERE biblio, doc. auth-set, auth-ln (al) ="Alto"
AND biblio, doc. auth-set, auth-ln (a2) = "Hopcroft °'

Here, the query's WHERE clause finds all paths through
the subobject structure with the sequence of labels
[b ib l io , doc, a u t h - s e t] , and with two distinct path
completions with label au th and with values "Aho" and
"Hopcroft" respectively. The answer object contains one
"doe" component for each such path. Hence, for the por-
tion of the object structure shown in Figure 2 the query
returns:

(answer, set, {obj})
obj is <doc, set, {auths2, topic2, call-no2}>

 uth,2 is <auth-set, set,
auth~ is (auth-ln, string, "Aho")
autI~ is (anth-ln, string, "Hopcroft">
autI~ is <auth-ln, string, "Ullman")

topic2 is (topic, string, "Algorithms")
call-no2 is <dewey-decimal, string, "BR273")

Exsmple 3.5 Although we have used only equality
predicates so far, OEM-QL permits any predicate to be
used in the Condition of a WHERE clause. The predicates
that can be evaluated for a given information source de-
pend on the translator and the source. Suppose, for
example, that a bibliographic information source sup-
ports a predicate called "auth" that takes as parameters
a document and the last name of an author; the predi-
cate returns true iff the document has at least one author
with the given last name. Then the query in Example 3.4
might be written as:

SELECT biblio, doc
FROM root
WHERE auth(biblio.doc, "Alto")

and auth(biblio, doc, "Hopcroft ")

One of the translators we have built (see Section 4) is
for a bibliographic information source called Folio that
does in fact support a rich set of predicates. All of the
predicates supported by Folio are available to the client
through OEM-QL.

In [16] we provide a grammar for the basic OEM-QL
syntax and a semantics specified as the answer object
returned for an arbitrary query. The basic OEM-QL
described in this paper is certainly amenable to exten-
sions. For example, here we have allowed only one object
in the FROM clause, so "joins" between objects cannot be
described at the top level of a query. The language can
easily be extended to allow multiple objects in the FROM
clause. Similarly, the SELECT clause allows only one path
to be specified; "constructors" can be added so that new
object structures can be created as the result of a query.
While these extensions are clearly useful, and we plan to
incorporate them in the near future, we also expect that
many translators (especially translators for unstructured
and semi-structured information sources) will support
only the basic OEM-QL (some may even support just
a subset), since supporting the full extended language
may result in unreasonable increase of the translator's

255

complexity. One useful extension we plan for OEM-QL,
and we expect will be supported by most translators,
is the ability to express queries about labels and object
structure: we expect that clients will frequently need to
"learn" about the objects exported by an information
source before meaningful queries can be posed.

3 .1 R e l a t e d L a n g u a g e s

Many query languages for object-oriented and nested re-
lational da ta models are based on an extension of SQL
with pa th expressions, e.g. [9,10,11,17]. As stated ear-
lier, OEM-QL can be viewed as an adapta t ion of these
languages to the specifics of OEM.

In OEM-QL, pa th expressions range only over objects,
while in most other languages they range over the schema
and the objects. For example, consider the WHEEE condi-
tion d o c . a u t h = '°Smith". In OEM-QL, we simply find
all objects with label doc that have a subobject with
label a u t h and value "Smith." In a conventional OO
language, we would have to identify a class doc with an
at t r ibute named auth . Then we would range over all
objects of class doc looking for the matching name. We
believe that the simplicity of ranging over objects only
leads to a more intuitive language and a more compact
language definition.

A significant feature of OEM-QL is tha t it lets us
query information sources where there is no regular
schema. A conventional language breaks down in such
a case, unless one defines an object class for every pos-
sible type of irregular object. (Note tha t such a schema
would have to be modified each t ime a different object
appeared.) Of course, if a particular information source
does have a schema and a regular structure, the transla-
tor for that source should take advantage of the schema.
For example, suppose all objects are stored in a rela-
tional database, and the translator receives the WHERE
condition d o c . a u t h = "Smil~h ,°. The translator could
first check that there is a relation do¢ with at t r ibute
a u t h and, if so, could use an index to fetch the match-
ing objects. Thus, the fact tha t the model and language
do not require a schema does not mean tha t a schema
cannot be used for query processing.

4 I m p l e m e n t a t i o n

We have argued that OEM and its query language are
designed to facilitate integrated access to heterogeneous
da ta sources. To support this claim, in this section we
describe how we have applied OEM to a particular sce-
nario. The scenario consists of a variety of bibliographic
information sources, including a conventional library re-
trieval system, a relational database holding structured
bibliographic records, and a file system with unstruc-
tured bibliographic entries. Using our OEM-based sys-
tem, these sources are accessible through a general-
purpose user interface tha t allows evaluation of queries
and object exploration.

Our first operational translator accesses the Stanford
University Folio System. Folio provides access to over 40
repositories, including a catalog of the holdings of Stan-

ford's libraries, and several commercial sources such as
INSPEC that contain entries for Computer Science and
other published articles. Folio is the most difficult of
our information sources, par t ly because the translator
must emulate an interactive terminal. The translator
initially must establish a connection with Folio, giving
the necessary account and access information. When
the translator receives an OEM-QL query to evaluate,
it converts the query into Folio's Boolean retrieval lan-
guage. Then it extracts the relevant information from
the incoming screens and exports the information as an
OEM answer object. The Folio translator is written in
C and runs as a server process on Unix BSD4.3 systems.
We have also implemented several simple mediators that
refine the objects exported by the translator (see Sec-
tion 4.2). Translators for the other bibliographic sources
are nearly comple te - - they have involved substantially
less coding because the underlying sources (e.g., a rela-
tional database) are much easier to use. Our translators
and mediators are discussed further in Section 4.2.

We have also implemented OEM Support Libraries
to facilitate the creation of future translators, media-
tors, and end-user interfaces. These libraries contain
procedures tha t implement the exchange of OEM ob-
jects between a server (either a translator or a media-
tor) and a client (either a mediator, an application, or
an interactive end-user). The Support Libraries handle
all T C P / I P communications, transmission of large ob-
jects, t imeouts, and many other practical issues. A Unix
BSD4.3 and a Windows version of the package have been
implemented and demonstrated. The Support Libraries

• are described in Section 5.
Finally, we have implemented a Heterogeneous Infor-

mation Browser that lets a user submit queries and ex-
plore resulting objects. The Browser is implemented in
Visual C + + and runs under Windows. The next sub-
section describes the Browser in more detail. We believe
the Browser illustrates the desirability of a simple model
and language from the point of view of a user who may
not be familiar with the underlying information.

4.1 T h e H e t e r o g e n e o u s I n f o r m a t i o n B r o w s e r

The Heterogeneous Information Browser (HIB) provides
a graphical user interface for submitt ing queries and ex-
ploring results. We illustrate its operation by walking
through a particular interaction. Refer to Figure 3.

When the HIB is opened, it displays a menu of known
translators and /o r mediators (hereafter referred to as
TM's) . Each entry of the menu specifies the name of
a TM, the site where it can be found, the communica-
tion protocol it uses, and other information that may be
needed for locating the TM and connecting to it. The
user may select any of the TM's on the menu, or the user
may enter a new TM not listed.

After a connection is established, an information ex-
change session starts. The user can either type a query
directly into the Active Query window, or he may se-
lect one of the Frequently-Aslced-Queries shown in the
Queries window. Frequently-Asked-Queries are usually
fill-in-the-form queries, so the user must complete the

256

Figure 3: Querying

missing parts. For example, a translator for Folio may
provide templates for finding documents by author, ti-
tle, and subject, by far the most common queries. The
ability to suggest common queries is especially impor-
tant for "low end" TM's that do not implement the full
OEM-QL. In such a case, the user needs guidance as to
what queries the source will be able to process.

I f a submit ted query is valid and successfully executed
by the TM, the answer object is returned to the HIB.
The user can then navigate through the object struc-
ture of the answer. This is best understood if we think
of the answer as a tree (or a graph, in the most gen-
eral case), where the a tom objects are the leaves, and
the set objects are the internal nodes. Initially, the root
and its immediate subobjects are displayed in the ob-
ject viewer, as illustrated in the left window of Figure 3.
Here, the root (label answer) is a set of six documents
(label doe). The user can move from the current node
to another node by clicking on any of the highlighted
direction buttons at the bo t tom of the window. If a but-
ton is not activated, there is no object in that direction.
For example, in the left window of Figure 3 one cannot
move UP because there are no objects "above" the root.
However, the user can move DOWN to the first child of
the answer object; the result is shown in the right win-
dow of Figure 3. During navigation, the object viewer
always shows two levels of the structure (which can be
generalized to k levels). Thus, when the current object
is a document (label doc) one can see its components,
i.e., the TITLE, AUTHOR, and so on (right window). If an
a tom value is too large to be seen in the viewer (e.g., the
abstract of a document), the user can click on it to open
a full window that displays the value.

At any time, the user can click on the HELP but ton
to display the "man page" for the label of the current
object. As discussed in Section 2, each TM answers the
question W h a t d o e s l a b e l I m e a n ? by returning a man-

:

............. i....~... i..s..~.~.o.~:..~.~.~.*.!e~e~...~....t~.Hii!iill

............. A~o.n. i.u!!.e.,.0,. ~..O...p~e.pt...o~ .c o,~ e ~. s,~!.:ii~.~il
. PUBUCATION. i I n Futu.re Ten d • n d e s I n C o m Pute ¢ I.~.~:'::~:~:.~:'~:::.!ill

i LOCATIO H ..i St.a.nf .°..r d.. ,~. _b..I!..~.. tl.°..n., n.?t. f.?..u.n., d .!n ~!illi#:

iDOCUMENT TYPlE ::Conference paper . ~.~.~.:i~i~i::::~i~i :: ===
............. i ~ . . S ~ i . ~ : . m - ~ ~ ' ~ ' - ° ! . d ~ ! ° ~ m e " t ~ ! i l I i i l

!THESAURUS i Oatabase Management Systems; ~|::!!:::.

.~.~:~.:::!:.:~:.:.~~~:~:~`~:::~.~:~:~:.:~:~:~.~.~.~:.~:::~:~:~:.:~:i~:~:i~:~:~::.~:~i~:i~i~i~!~i...~.~i~i~!!~i~:~:.!

and Object Browsing

ual entry. This entry describes in English the meaning
of the label and how the value of the object should be
interpreted. We feel this is a very useful feature of our
approach: any time one sees a da ta value, it is accompa-
nied by a label, and one can immediately find the mean-
ing of the label. This is not only useful to the end-user,
but also to the mediator implementor who needs to un-
derstand the da ta tha t is being integrated or processed. 4

Notice tha t the self-describing nature of OEM makes
it easy for a user to navigate through unknown objects.
If a user knows nothing about a particular source, he can
simply pose the query:

SELECT ?
FROM r o o t

and then browse. As he examines the retrieved labels
and their "man pages," he can learn the meaning of each
component. Then he can pose more refined queries.

4.2 T r a n s l a t o r s a n d M e d i a t o r s

In this section we illustrate how OEM is used for trans-
lation and mediation in the context of our heterogeneous
bibliographic information source scenario. The general
architecture is shown in Figure 4. Translators are built
for all participating bibliographic sources. On top of
the translators we use mediators [20] to support objects
and queries tha t are more refined than the objects and
queries supported by lower-level translators or media-
tors. In particular, the mediators directly above the
translators reconcile discrepancies between sources (e.g.,
differences in the structure of objects, the naming of la-
bels, the format of values, etc.), simplifying the task of

4 The requirement of providing a "man page" for each label
could be viewed as a burden, but if the meaning of informa-
tion is not documented, there is no hope for heterogeneous
information access!

257

S E L E C T b i b l i o . d o c

F R O M F o l i o

W H E R E b i b l i o . d o c . a u t h - s e t . a u t h . l n = ' U l l m a n '

A N D b i b l i o . d o c . a u t h - s e t . a u t h . f n = ' J '

SELECT biblio.doc

FROM Folio

WHERE biblio.doe.auth-set.aulh.ln = 'Ullman

AND biblio.doe.auth-set.aulh.fn='J'

<answer, set, {ol ,o2}>
ol is <doe, set, {ol 1, o12}>

ol I is < title, string, 'New Frontiers '>
o l 2 is < auth-set, set, {o121 } >

o121 is < auth, set, {o1211,ol212}>

o1211 is < In, string, 'Ul lman '>

o1212 i s < fn , string, ' J ' >

o2 is <doc , set, {o21, o22} >

.(Mediator M u) "'"

<answer, set, {ol ,o2}> l
1 ?

ol is <doe, set, {ol 1, o12}>
ol I is < title, string, 'New Frontiers . . . '>
o12 is < auth-set, set, {o121 } >

ol21 is < auth, set, {o l211,o l212}>

o1211 is < In, string, 'Ul lman '>

01212 is < fn, string, ' J ' >

02 is < doe, set, {o21,022} >

<answer , set, {ol ,o2}>

o l is < d ~ , str ing,

' T I T L E : N e w Frontiers ...

A U T H O R : Ul lman ,J . ' >
o2 is <doe, string, ' . . . ' >

Mediator

S E L E C T b i b l i o . d o c

F R O M F o l i o

W H E R E a u t h (b i b l i o . d o e , ' U l l m a n J '

T Folio
ranslator T 1

t Ci tat ion 1
I / T I T L E : N e w Front iers ...

f i n d a u t h o r U l l m a n J I I A U T H O R : Ul lman,J .

Mediator M2)

Sybase

Translator

~ y b a s e ~

Mediator M3 1

Flat Files

Translator

Figure 4: Translation and Mediation Architecture

the mediator that combines information from multiple
s o u r c e s .

To illustrate the operation of the translators and me-
diators, consider the Folio information source and its
translator. The Folio translator T receives OEM-QL
queries and issues Folio queries. The set of queries q(T)
that T is able to translate and execute should have two
properties:

1. The translation of any q(T) query into a correspond-
ing Folio query should be as simple as possible, to
minimize the translation implementation effort.

2. The set q(T) should preserve as much as possible
the power of the underlying query language. Ideally,
there should be no Folio query that does not have a
corresponding query in q(T).

We have satisfied both properties in the case of Folio
by supporting predicates in OEM-QL that correspond
directly to the access methods that Folio provides. As an
example, Figure 4 shows a typical query entering Folio,
asking for the bibliographic entries where the last name
of one of the authors is "Ullman" and the first name
starts with "J." The corresponding query in OEM-QL
is:

SELECT biblio, doc
FROM Folio
WHERE auth(biblio.doc, "Ullman J")

From this query, T only needs to translate the a u t h pred-
icate to the corresponding author search construct.

As illustrated in Figure 4, translator T uses a straight-
forward mapping to translate the citations returned from
Folio (as a string) into an OEM object. Mediator M1
refines the structure of the objects exported by T, by
extracting the basic components of each bibliographic
object (e.g., authors, title). In addition, M1 supports a
wider and more generic set of queries than T. For exam-
ple, M1 is able to translate the incoming query shown in
Figure 4 to the outgoing one.

A key design criterion here is modularity. Since the
translators are likely to be the most complex compo-
nents (they must deal with the idiosyncrasies of the in-
formation sources), our goal is to keep the work of the
translators to a minimum. Once a translator produces
its object in some OEM format, additional work can be
done by mediators. Note that [6] suggests an average
of 6 months effort to implement a translator for a con-
ventional DBMS. In our experience, the total effort can
be reduced substantially by shifting work from transla-

2 5 8

tots to mediators, and by using the Support Libraries
described in Section 5. In addition, we have recently de-
veloped a translator-generator, which further reduces the
effort required to bring a new information source on-line.

The top level mediator M,, in Figure 4 combines the
information from several sources into a single document
collection. The simplest implementat ion of this media-
tor performs a union of all the collections. When M ,
receives a query, it effectively "broadcasts" the query to
all mediators at lower levels, then merges the answers.
Certainly more sophisticated mediation techniques could
be useful, such as recognizing and eliminating duplicate
results. In [16] we describe some initial ideas we have for
specifying and implementing mediators. As with trans-
lators, our main goal is to develop a specification-driven
mediator-generator, so that new mediators can be devel-
oped and installed quickly and easily.

5 T h e O E M S u p p o r t L i b r a r i e s

OEM and OEM-QL are designed for a client to send
queries and obtain corresponding answer objects from a
server. The server may be a translator or a mediator,
while the client may be a mediator or an end-user pro-
gram (such as the HIB described in Section 4.1). We
have implemented general-purpose OEM Client Support
and Server Support Libraries that provide the common
functionality needed for object and query exchange.

We expect that our Support Libraries win expedite
the implementation of mediators, translators, and end-
user programs. In addition, implementing these libraries
has brought to the surface a number of interesting issues
regarding the exchange of objects when one or more par-
ticipants are not inherently object-oriented. As far as we
know, these issues do not arise in conventional, homo-
geneous object-oriented systems (or at least not in quite
this way). Here we discuss one of the most important is-
sues that has arisen, namely that of partial object fetches.

In many cases it is very inefficient to send the complete
answer object to the client in one step. In particular:

1. The client has to wait until the full answer is re-
trieved from the information source before examin-
ing the object. This prevents "pipelined" operation,
where the client starts processing subobjects as they
arrive. The problem is exacerbated if we have a string
of mediators between the source and the client: the
client cannot begin processing the answer until all of
the intermediate TM' s have completed their work.

2. The answer object may be very large. Once a client
inspects part of the answer object, the client may
determine tha t it does not need some portions of the
answer object, or perhaps does not need the object
at all.

To avoid these problems, the Support Libraries pro-
vide a partial fetch mechanism that enables clients to
retrieve only parts of the answer object. The mecha-
nism is used as follows. When the client wishes to re-
quest an object, it calls a q u e r y () function, passing the
OEM-QL query as a parameter . The client can then

fetch either the fun answer object (including subobjects)
by calling the 8 e t F u l l 0 b j e c t () function, or the cfient
can fetch only the root of the answer object by calling
the g e t R o o t 0 b j e c t () function. In the lat ter case, addi-
tional g e t F u l l 0 b j oc t () and /o r g e t R o o t 0 b j e c t () calls
are used to fetch the subobjects.

Calls to the getRoot0bj ec t () function lead to incom-
plete, or unfetched, objects in the client's memory. A
reference to an unfetched subobject is something that
only the Support Libraries understand, and it is spe-
cific for the particulaz call in progress. Consider what
happens when a client wants to examine an unfetched
object. One option is to support on-demand retrieval of
any unfetched objects. However, this allows the client to
traverse answer objects in arbi trary order, implyin 8 that
the server must cache the entire answer object. Such on-
demand fetching would be very difficult for translators
such as the one for Folio (recall Section 4). The Fo-
lio bibliographic source returns a stream of documents,
and the translator has no control over the order of the
records. For on-demand service, all records would have
to be stored by the translator. I f the user poses a query
that is too broad, the answer object might be enormous.

Consequently, instead of on-demand service, the Sup-
port Libraries provides a s t ream model for retrieving un-
fetched objects. A "preorder traversal" of the answer ob-
ject is used, and the client must perform partial fetches
in this order. To illustrate, suppose that after a first
g e t R o o t 0 b j e c t () call, the client retrieves an object A
whose set value contains three unfetched references, ul ,
u2, and u3. If the client decides tha t the number of doc-
uments is too large, the client may choose to submit a
different query. Otherwise, if the first document is de-
sired, the client issues a g e t R o o t 0 b j e c t () call with ui
as a parameter . The first subobject is fetched; suppose
it is another set with unfetched references u l l and ul2.
Next the client fetches Ull, which happens to be the title
of the document. Based on this, the client may decide
it wants to skip the rest of the ui object. It can do so
by issuing a g e t R o o t 0 b j e c t () call with u2; this causes
the ui subobjects that were not fetched to be discarded.
Thus, even though the client is constrained to traverse
the answer object in a particular order, uninteresting
parts can be skipped.

Due to space limitations, our description of the OEM
Support Libraries and their services has been cursory.
Our goal has not been a full description of the Support
Libraries, but rather an illustration of the challenging
practical issues that arise when there is an "impedance
mismatch" between the way an information source pro-
vides objects and the way a client wishes to see them.
We believe that our Support Libraries provide a general-
purpose framework for handling many of these issues.

6 C o n c l u s i o n s a n d F u t u r e W o r k

We are developing a complete environment and set of
tools for integrated access to diverse and dynamic het-
erogeneous information sources. Exchange of informa-
tion in our environment is based on the Object Ezchange

259

Model (OEM) introduced in this paper. OEM retains the
simplicity of relational models while allowing the flexi-
bility of object-orlented models. Objects in OEM have a
very simple structure, yet the model is powerful enough
to encode complex information. For flexibility, OEM
objects are self-describing. This approach eliminates the
need for regular structure or a predefined schema. How-
ever, when structure or schema are present, they can be
exploited by OEM translators and mediators.

OEM objects are requested using a declarative query
language OEM-QL, which is based on nested-SQL query
languages. We have found OEM-QL to be both expres-
sive and easy to use. In this paper we have defined
the basic constructs of OEM-QL. We are extending the
query language along the lines discussed in Section 3. In
addition, we plan to add language constructs and under-
lying support for da ta modification operations and for
monitors (or active rules).

We have experimented with OEM and OEM-QL by
implementing OEM-based access to several quite differ-
ent bibliographic information sources. Our implementa-
tion so fax has served a number of purposes:

• I t has helped us refine and ratify our design of the
model and query language.

• We have uncovered a number of impor tant issues
and generic functionalities in the implementat ion of
OEM-based object exchange. This led to our devel-
opment of the OEM Support Libraries described in
Section 5.

• We have realized a need for browsing tools, leading
to the Heterogeneous Information Browser described
in Section 4.1.

• We have used a layered architecture for translators
and mediators (recall Figure 4), which we believe ex-
pedites the integration of heterogeneous information
sources.

Implementat ion is currently underway to incorporate
additional bibliographic information sources into our
system. At the same time, we have developed some sim-
ple mediators and a new browser based on Mosaic and
the World Wide Web system. We have just completed a
tool for generating translators automatical ly from spec-
ifications, and we are investigating similar tools for gen-
erating mediators.

A c k n o w l e d g m e n t s

We are grateful to Ed Chang for implementing the
Heterogeneous Information Browser, to Ashish Gupta ,
Laura Haas, Joachim Hammer , Kelly Ireland, and Dal-
lan Quass for valuable comments, and to the entire Stan-
ford Database Group for numerous fruitful discussions.

R e f e r e n c e s

[1] R. Ahmed et al. The Pegasus heterogeneous multi-
database system. IEEE Computer, 24:19-27, 1991.

[2] C. Batini, M. Lenzerini, and S. B. Navathe. A compar-
ative analysis of methodologies for database schema in-
tegratlon. A CM Computing Surveys, 18:323-364, 1986.

[3] E. Bertino. Integration of heterogeneous data reposito-
ries by using object-oriented views. In Proceedings of the
1st International Workshop on lnteroperability in Mul-
tidatabase Systems, pages 22-29, Kyoto, Japan, April
1991.

[4] 1t. G. G. Catte]l. Object Data Management. Addison-
Wesley, 1991.

[5] R. G. G. Cattell. The Object Database Standard:
ODMG-93. Morgan Kaufmann, 1994.

[6] A. K. Elmagarmid and A. A. Helal. Hetrogeneous
database systems. Technical Report TR-86-004, Pro-
gram of Computer Engineering, Pennsylvania State Uni-
versity, University Park, PA, 1986.

[7] Object Request Broker Task Force. The Common Ob-
ject Request Broker: Architecture and Specification, De-
cember 1993. Revision 1.2, Draft 29.

[8] A. Gupta. Integration of Information Systems: Bridging
Heterogeneous Databases. IEEE Press, 1989.

[9] M. Kifer, W. Kim, and Y. Sagiv. Querying object-
oriented databases. In Proceedings of the A CM SIG-
MOD International Conference on Management of
Data, pages 59-68, San Diego, California, June 1992.

[10] W. Kim et al. On resolving schematic heterogene-
ity in multidatabase systems. Distributed And Parallel
Databases, 1:251-279, 1993.

[11] H.F. Korth and M. A. Roth. Query languages for nested
relational databases. In Nested Relations and Complez
Objects in Databases, pages 190-204. Springer-Verlag,
1989.

[12] W. Litwin, L. Mark, and N. Roussopoulos. Interoper-
ability of multiple autonomous databases. A CM Com-
puting Surveys, 22:267-293, 1990.

[13] L. Mark and N. Roussopoulos. Information interchange
between self-describing databases. IEEE Data Engineer-
ing Bulletin, 10(3):46-52, September 1987.

[14] D. S. Marshak. Lotus Notes release 3. Workgroup Com-
puting Report, 16:3-28, 1993.

[15] B. Old et al. The information bus--an architecture for
extensible distributed systems. In Proceedings of the
Fourteenth A CM Symposium on Operating System Prin-
ciples, pages 58-68, AshevUle, NC, December 1993.

[16] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom.
Object exchange across heterogeneous information
sources. Technical report, Stanford University Com-
puter Science Department, 1994. Available by
anonymous ftp to db. start:ford, edu in directory
pub/papakonst ant inou/1994.

[17] M. A. Roth, H. F. Korth, and A. Silberschatz. Extended
algebra and calculus for nested relational databases.
ACM Transactions on Database Systems, 13:389-417,
1988.

[18] G. Thomas et al. Heterogeneous distributed database
systems for production use. A CM Computing Surveys,
22:237-266, 1990.

[19] G. Wiederhold. File Organization for Database Design.
McGraw Hill, New York, 1987.

[20] G. Wiederhold. Mediators in the architecture of future
information systems. IEEE Computer, 25:38-49, 1992.

260

