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Abst rac t .  We address the problem of providing integrated 
access to diverse and dynamic information sources. We ez- 
plain how this problem differs from the traditional database 
integration problem and we focus on one aspect of the infor- 
mation integration problem, namely information ezchange. 
We define an object-based information ezchange model and a 
corresponding query language that we believe are well suited 
for integration of diverse information sourcea. We describe 
how the model and language have been used to integrate het- 
erogeneous bibliographic information sources. We also de- 
scribe two general-purpose librariea we have implemented for 
object exchange between clients and servers. 

1 I n t r o d u c t i o n  

A significant challenge facing the database field in re- 
cent years has been the integration of heterogeneous 
databases. Enterprises tend to represent their data  using 
a variety of conflicting data  models and schemas, while 
users want to access all data  in an integrated and con- 
sistent fashion. There has been substantial progress on 
database integration techniques [1,8,12,18]; in addition, 
emerging standards such as SQL3 are aimed at eliminat- 
ing many of the problems. 

At the same time, however, the problem of integra- 
tion has become much more challenging because users 
want integrated access to i n / o r m a t i o n - - d a t a  stored not 
just in standardized SQL databases, but also in, e.g., 
object repositories, knowledge bases, file systems, and 
document retrieval systems. In addition, users want to 
integrate this information with "legacy" data, and even 
with data  that  is not stored but rather arrives on-line, 
e.g. over a news wire. Although there are many similar- 
ities, integrating a disparate set of information sources 
differs from the integration of conventional databases in 
the following ways: 
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• Many of the sources contain data  that  is unstruc- 
tured or semi-structured, having no regular schema 
to describe the data. For example, a source may con- 
sist of free-form text; even if the text does have some 
structure, the "fields" (e.g., author, title, etc.) may 
vary in unpredictable ways. 

• The environment is dynamic. The number of sources, 
their contents, and the meaning of their contents may 
change frequently. 

• Information access and integration are intertwined. 
In a traditional environment, there are two phases: 
an integration phase where data  models and schemas 
are combined, and an access phase where data  is 
fetched. In our environment, it may not be clear how 
information is combined until samples are viewed, 
and the integration strategy may change if certain 
unexpected data  is encountered. 

• Integration in our environment requires more human 
participation. In the extreme case, integration is per- 
formed manually by the end user. In other cases, 
integration may be automated, but only after a hu- 
man studies samples of the data  and determines the 
procedure to follow. 

In light of these differences and difficulties, we believe 
that  the goal is not  to perform fully automated infor- 
mation integration that  hides all diversity from the user, 
but rather to provide a framework and tools to assist 
humans (end users and/or  humans programming inte- 
gration software) in their information processing and in- 
tegration activities. So, what should the framework and 
tools look like? There are at least three categories: 

1. I n f o r m a t i o n  e x c h a n g e .  The various components 
of an information system need to exchange data  ob- 
jects (units of information), either for examination 
by an end user or for integration with other data  
objects. For this, there needs to be an agreement 
as to how objects will be requested, how they will 
be represented, what the semantic meaning of each 
object (and its components) is, and how objects are 
actually transported over a network. Once an ex- 
change format is agreed upon, there need to be tools 
for translating between an information source and 
the exchange format. 

2. I n f o r m a t i o n  d i s c o v e r y  a n d  b r o w s i n g .  Users will 
want to explore the available information, discovering 
sources, browsing objects, and learning the semantics 
of objects and their components. Tools for informa- 
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Figure 1: Communication through a translator 

tion discovery and browsing allow humans (and ul- 
timately software) to query for sources of interest, 
to request objects from sources, to navigate through 
objects, and to ask questions about the meaning of 
objects and their components. 

3. M e d i a t o r s .  A mediator is a program that  collects 
information from one or more sources, processes and 
combines it, and exports the resulting information 
[20]. We envision a variety of tools to assist the me- 
diator writer, some resembling a programming envi- 
ronment, others presenting a menu of common ways 
of combining information. 

In this paper we focus particularly on the information 
exchange problem discussed in point 1, since we believe 
this problem needs to be solved before browsing tools 
or mediators can be constructed. To motivate the infor- 
mation exchange problem further, consider an informa- 
tion source IS  that  contains bibliographic entries such 
as those found in many libraries. Some client C (human 
or otherwise) wishes to locate all books by author "J.D. 
Ullman" on the topic of "databases." Since I S  and C are 
likely to be different, we need a common language and 
information format for communication. Client C uses 
the common language to express a query that  requests 
the desired object. A front end to IS,  which we call 
a translator (sometimes referred to as a zurapper), con- 
verts the query to a form that  IS  can process. When IS  
responds (with a set of bibliographic entries in some for- 
mat),  the translator converts the response into an object 
in the common format and transmits it to C. Finally, 
C may choose to translate the object (or the compo- 
nents it wants) into its own internal model. This form 
of communication is illustrated in Figure 1. 

In Section 2 we present an "object exchange model" 
(OEM) that  we believe is well suited for information ex- 
change in heterogeneous, dynamic environments. OEM 
is flexible enough to encompass all types of information, 
yet it is simple enough to facilitate integration; OEM also 
includes semantic information about objects. In Section 
3 we describe the query language we have designed for re- 
questing objects in OEM. In Section 4 we describe how 
we have used OEM to integrate several heterogeneous 
bibliographic information sources, and we describe a tool 

we have built for browsing OEM-based integrated infor- 
mation. In Section 5 we present a pair of general-purpose 
libraries we have implemented that  support OEM ob- 
ject exchange between any client and server processes. 
The procedures in these libraries provide communication 
services, session handling, object memory management, 
and partial object fetches. Calls to these procedures are 
embedded in client programs. In Section 6 we conclude 
and discuss our ongoing work in information integration 
using OEM. 

2 O b j e c t  E x c h a n g e  M o d e l  

The first question to be addressed is: with so many data  
models around, why do we need another one? In fact 
we do rwt need another new model. Rather, we adopt a 
model that  has been in use for many years. The basic 
idea is very simple: each value we wish to exchange is 
given a label (or tag) that  describes its meaning. For 
example, if we wish to exchange the temperature value 
80 degrees Fahrenheit, we may describe it as: 

(temp-in-Fahrenheit, integer, 80) 

where the string "temp-in-Fahrenheit" is a human- 
readable label, "integer" indicates the type of the value, 
and "80" is the value itself. If we wish to exchange a 
complex object, then each component of the object has 
its own label. For example, an object representing a set 
of two temperatures may look like: 

(set-of-temps, set, { cmpntl, cmprdz } ) 
cmprttl is (temp-in-Fahrenheit, integer, 80) 
crop,t2 is (temp-in-Celsius, integer, 20) 

A main feature of OEM is that  it is self-describing. 
We need not define in advance the structure of an object, 
and there is no notion of a fixed schema or object class. 
In a sense, each object contains its own schema. For 
example, "temp-in-Fahrenheit" above plays the role of a 
column name, were this object to be stored in a relation, 
and "integer" would be the domain for that  column. 1 

Note that ,  unlike in a database schema, a label here 
can play two roles: identifying an object (component), 
and identifying the meaning of an object (component). 
To illustrate, consider the following object: 

(person-record, set, {crop,t1, cmpr~t2, cmpr~h } ) 
cmpr~tl is (person-name, string, "Fred") 
cmpntz is (office-num-in-bldg-5, integer, 333) 
cmp~t3 is (department,  string, "toy") 

Like a column name in a relation, the label "person- 
name" identifies which component in the person's record 
contains the person's name. In addition, the label 
"person-name" identifies the meaning of the component. 

Thus, we suggest that  labels should be as descriptive 
as possible. (For instance, in our example above, replac- 
ing "person-name n by "string" would not be advisable.) 

1Of course,  if  we are exchanging a set of objec ts  where 
each objec t  has the same s t ruc ture  and labels,  then  i t  would 
be redundant to transmit labeis with every member of the set. 
We view this as a data compression issue and do not discuss 
it further here. From a logical point of view, we assume that 
each object in our model carries its own label 
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In addition, if an information source exports objects with 
a particular label, then we assume that  the source can 
answer the question What does this label mea~?. The 
answer should be a human-readable description--a type 
of "man page" (similar in flavor to Unix Manual pages). 
For example, if we ask the source that  exports the above 
object about "person-name," it might reply with a text 
note explaining that  this label refers to names of employ- 
ees of a certain corporation, the names do not exceed 30 
characters, and upper vs. lower case is not relevant. 

It is particularly important  to note that  labels are rel- 
ative to the source that  exports them. Tha t  is, we do 
not expect labels to be drawn from an ontology shared 
by all information sources. For example, a client might 
see the label "person-name" originating from two differ- 
ent sources that  provide personnel data  for two different 
companies, and the label may mean something different 
for each source; the client is responsible for understand- 
ing the differences. If the client happens to be a mediator 
that  exports combined personnel data  for the two com- 
pauies, then the mediator may choose to define a new 
label "generic-person-name" (along with a "man page"), 
to indicate that  the information is not with respect to a 
particular company. Mediators are discussed further in 
Section 4.2. 

We believe that  a self-describing object exchange 
model provides the flexibility needed in a heterogeneous, 
dynamic environment. For example, personnel records 
could have fewer or more components than the ones sug- 
gested above; in our temperatures set, we could dynam- 
ically add temperatures in Kelvin, say. In spite of this 
flexibility, the model remains very simple. 

As mentioned earlier, the idea of self-describing mod- 
eis is not new--such models have been used in a vari- 
ety of systems (see Section 2.2 for a discussion of these 
models and systems). Consequently, the reader may at 
this point wonder why we are writing a paper about  a 
self-describing model, if such models have been used for 
many years. A first reason is that  we believe it is useful 
to formally cast a self-describing model in the context of 
information exchange in heterogeneous systems (some- 
thing that  has not been done before, to the best of our 
knowledge), and to extend the model to include object 
nesting as illustrated above. To do this, a number of 
issues had to be addressed, as will be seen in subsequent 
sections. A second reason is to provide an appropri- 
ate object request language based on the model. Our 
language is similar to nested-SQL languages; however, 
we believe that  the use of labels within objects leads to 
a language that  is more intuitive than nested-SQL (see 
Section 3). 

2.1 S p e c i f i c a t i o n  

Each object in OEM has the following structure: 

[ Label I Type ]Value ] Object-ID I 

where the four fields are: 

• L a b e l :  A variable-length character string describing 
what the object represents. 

• T y p e :  The data  type of the object 's value. Each 
type is either an atomtype (such as i n t e g e r ,  s t r i n g ,  
r e a l  number, etc.), or the type se t .  The possible 
atom types are not fixed and may vary from infor- 
mation source to information source. 

• Value :  A variable-length value for the object. 

• O b j e c t - I D :  A unique variable-length identifier for 
the object or n u l l .  

In denoting an object on paper, we generally drop the 
Object-ID field, i.e. we write/label, type,value/,  as in the 
examples above. Due to space constraints, we do not dis- 
cuss the types or uses of OEM Object-ID's here. Con- 
sequently, we also omit discussion of duplicate objects, 
and of the different ways in which subobjects may be 
represented in set values. (For presentation, we use sim- 
ple mnemonic identifiers for subobject references, as in 
the examples above.) The interested reader is referred 
to [16] for further discussion. 

2 . 2  R e l a t e d  M o d e l s  a n d  S y s t e m s  

Labeled fields are used as the basis of several da ta  models 
or data  formatting conventions. For example, a tagged 
file system [19] uses labels instead of positions to identify 
fields; this is useful when records may have a large num- 
ber of possible fields, but most fields are empty. Elec- 
tronic mail messages consist of label-value pairs (e.g. la- 
bel "From" and value "yannis@cs.stanford.edu"). More 
recently, Lotus Notes [14] has used a label-value model 
to represent office documents, and Teknekron Software 
Systems [15] has used a self-describing object model for 
exchange of information in their stock trading systems. 
In [12] and [13] self-describing databases are proposed as 
a solution to obtaining the increased flexibility required 
by heterogeneous systems. 

Recent projects on heterogeneous database systems 
(e.g., [1,3,10])have applied object-oriented ( O O ) d a t a  
models to the problem of database integration. OEM 
differs from these and other OO data  models in several 
ways. First, OEM is an information czchange model. 
OEM does not specify how objects are stored at the 
source. OEM does specify how objects are received at a 
client, but after objects are received they can be stored 
in any way the client likes. 

A very important  difference between OEM and con- 
ventional OO models is that  OEM is much simpler. 
OEM supports only object nesting and object identity; 
other features such as classes, methods, and inheritance 
are omitted. (Incidentally, [4] claims that  the only two 
essential features of an OO data  model are nesting and 
object identity.) Our primary reason for choosing a very 
simple model is to facilitate integration. As pointed 
out in [2], simple data  models have an advantage over 
complex models when used for integration, since the 
operations to transform and merge data  will be cor- 
respondingly simpler. Meanwhile, a simple model can 
still be very powerful: advanced features can be "em- 
ulated" when they are necessary. For example, if we 
wish to model an employee class with subclasses "active" 
and "retired," we can add a subobject to each employee 
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object with label "subclass" and value "active" or "re- 
tired." Of course this is not identical to having classes 
and subclasses, since OEM does not force objects to con- 
form to the rules for a class. While some may view this 
as a weakness of OEM, we view it as an advantage, since 
it lets us cope with the heterogeneity we expect to find 
in real-world information sources. 2 

The flexible nature of OEM can allow us to model com- 
plex features of a source in a simple way. For example, 
consider a deductive database that  contains a p a r e n t  
relation and supports the recursive a n c e s t o r  relation 
through derivation rules. If we wish to provide an OEM 
model of this data  in which it is easy to locate a person's 
ancestors, we can make the object that  corresponds to 
each person contain as subobjects the objects that  cor- 
respond to his/her parents. It is then simple to pose a 
query in our OEM query language (see Section 3) that  
retrieves all of a person's ancestors. In addition, a user 
can browse through a person's "family tree" using the 
browsing facility described in Section 4.1. 

A final distinct difference between OEM and conven- 
tional OO models is the use of labels in place of a schema. 
Clearly, it would be trivial to add labels to a conventional 
OO model (e.g., all objects could have an attribute called 
"label"). The only difference then is that  in OEM la- 
bels are first-class dtisens. We believe this small change 
makes interpretation and manipulation of objects more 
straightforward, as discussed in the next section. Note 
that  the schema-less nature of OEM is particularly use- 
ful when a client does not know in advance the labels or 
structure of OEM objects. In traditional data  models, 
a client must be aware of the schema in order to pose a 
query. In our model, a client can discover the structure 
of the information as queries are posed. 

3 Q u e r y  L a n g u a g e  

To request OEM objects from an information source, a 
client issues queries in a language we refer to as OEM- 
QL. OEM-QL adapts existing SQL-like languages for 
object-oriented models to OEM. 

The basic construct in OEM-QL is an SQL-like 
SELECT-FROM-WHERE expression. The syntax is: 

SELECT Fetch-Ezpression 
FROM Object 
WHERE Condition 

The result of this query is itself an object, with the spe- 
cial label "answer": 

(answer, set, {objz, obj2, . . . ,  objn}) 

2Note that some proposed interchange standards, e.g. 
CORBA's Object Request Broker [7], tend to be signifi- 
cantly more complex than OEM. We expect that if such 
standards are adopted, OEM could be used to provide a sim- 
pler, more "client-friendly" front end. Other proposed stan- 
dards, such as ODMG's Object Database Standard [5], are 
directed towards interoperability and portability of object- 
oriented database systems, rather than towards facilitating 
object exchange in highly heterogeneous environments. 

(biblio, set, {doe1, doc2, . . . , do~ }) 
docl is (doc, set, {authSl, topic1, call-nOlO) 

authsl is (auth-set, set, {auth,}) 
auth~ is (auth-ln, string, "Ullman") 

topic1 is (topic, string, "Databases") 
call-no1 is (internal-call-no, integer, 25) 

doc2 is (doc, set, {auths2, topic2, call-no2}) 
auths2 is (auth-set, set, {auth,, 8uth~,auth~) 

auth~ is (auth-ln, string, "Aho" / 
auth~ is (auth-ln, string, "Hopcroft") 
auth~ is (auth-ln, string, "Unman") 

topic2 is (topic, string, "Algorithms") 
call-no2 is (dewey-decimal, string, "BR273") 

is (doc, set, (aurA, topis, catt- on l 
au th~  is (auth, string, "Michael Crichton) 
topis  is (topic, string, "Dinosaurs") 
call-non is (fiction-call-no, integer, 95) 

Figure 2: Object structure for example queries 

Each returned subobject obj~ is a component of the ob- 
ject specified in the FROM clause of the query, where the 
component is located by the Fetch-Ezpresgion and satis- 
fies the Condition. Details are given below. We assume 
that  the Object in the FROM clause is specified using a 
lexical object-identifier, and that  for every information 
source there is a distinguished object with lexicai identi- 
fier "root." (Sources may or may not support additional 
lexical identifiers.) Certainly the query language may 
be extended with a call interface that  allows non-lexical 
object identifiers in FROM clauses. 

The Feteh-Ezpression in the SELECT clause and the 
Condition in the WHERE clause both use the notion of a 
path, which describes a traversai through an object using 
subobject structure and labels. For example, the path 
" b i b l i o .  do¢.  au th"  describes components that  have la- 
bel "auth ,"  and that  are subobjects of an object with 
label "doe" that  is in turn a subobject of an object with 
label " b i b l i o . "  Paths are used in the Fetch-Ezpregsion 
to specify which components are returned in the an- 
swer object; paths are used in the Condition to qualify 
the fetched objects or other (related) components in the 
same object structure. In the remainder of this section 
we provide a number of examples that  serve to illustrate 
the capabilities of OEM-QL; a complete syntax and se- 
mantics is given in [16]. 

For the examples, suppose that  we are accessing a 
bibliographic information source with the object struc- 
ture shown in Figure 2. Let the entire object (i.e., 
the top-level object with label "biblio") be the distin- 
guished object with lexical object identifier "root".  Note 
that  although much of this object structure is regular--  
components have the same labels and types- - there  are 
some irregularities. For example, the call number format 
is different for each document shown, and the third doc- 
ument uses a different structure for author information. 

E x a m p l e  3.1 Our first example retrieves the topic of 
each document for which "Ullman" is one of the authors: 
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SELECT biblio, doc. topic 
FROM root 
WHERE biblio.doc.auth-set.auth-ln = "Ullman" 

Intuitively, the query's WHERE clause finds all paths 
through the subobject structure with the sequence of 
labels [b ib l io ,  doc, a u t h - s e t ,  au th - ln ]  such that  the 
object at the end of the path has value "Ullman." For 
each such path, the SELECT clause specifies that  one 
component of the answer object is the object obtained 
by traversing the same path, except ending with label 
t o p i c  instead of labels [ au th - so t ,  au th - ln ] .  Hence, for 
the portion of the object structure shown in Figure 2 the 
query returns: 

(answer, set, {objl, obj2}) 
ob]l is (topic, string, "Databases" / 
obj2 is (topic, string, "Algorithms") 

E x a m p l e  3.2 Our second example illustrates the use 
of "wild-cards" and an existential WHERE clause. This 
query retrieves the topics of all documents with internal 
call numbers. 

SELECT biblio. ?.topic 
FROM root 
WHERE biblio. ?.internal-call-no 

The "?" label matches any label. Therefore, for this 
query, the doc labels in Figure 2 could be replaced by 
any other strings and the query would produce the same 
result. By convention, two occurrences of ? in the same 
query must match the same label unless variables are 
used (see below). Note that  there is no comparison op- 
erator in the WHERE clause of this query, just  a path. This 
means we only check that  the object with the specified 
path exists; its value is irrelevant. Hence, for the por- 
tion of the object structure shown in Figure 2 the query 
returns: 

<answer, set, {objl}> 
ob]l is (topic, string, "Databases") 

E x a m p l e  3.3 In Example 3.2, the wild-card symbol ? 
was used to match any label. We also allow "wild-paths," 
specified by the symbol " . " .  Symbol * matches any path 
of length one or more. 3 Using *, the query in the previ- 
ous example would be expressed as: 

SELECT *.topic 
FROM root 
WHERE *. internal-call-no 

The use of • followed by a single label is a convenient 
and common way to locate objects with a certain label 
in a complex structure. Similar to ?, two occurrences of 
• in the same query must match the same sequence of 
labels, unless variables are used. 

E x - m p l e  3.4 Our next example illustrates how vari- 
ables are used to specify different paths with the same 
label sequence. This query retrieves each document for 
which both "Aho" and "Hopcroft" are authors: 

3Note that our use of wild-card symbols is similar to, e.g., 
Unix, X-windows, etc. 

SELECT biblio .doc 
FROM root 
WHERE biblio, doc. auth-set, auth-ln (al) ="Alto" 
AND biblio, doc. auth-set, auth-ln (a2) = "Hopcroft °' 

Here, the query's WHERE clause finds all paths through 
the subobject structure with the sequence of labels 
[b ib l io ,  doc, a u t h - s e t ] ,  and with two distinct path 
completions with label au th  and with values "Aho" and 
"Hopcroft" respectively. The answer object contains one 
"doe" component for each such path. Hence, for the por- 
tion of the object structure shown in Figure 2 the query 
returns: 

(answer, set, {obj}) 
obj is <doc, set, {auths2, topic2, call-no2}> 

 uth,2 is <auth-set, set, 
auth~ is (auth-ln, string, "Aho") 
autI~ is (anth-ln, string, "Hopcroft"> 
autI~ is <auth-ln, string, "Ullman") 

topic2 is (topic, string, "Algorithms") 
call-no2 is <dewey-decimal, string, "BR273") 

Exsmple 3.5 Although we have used only equality 
predicates so far, OEM-QL permits any predicate to be 
used in the Condition of a WHERE clause. The predicates 
that can be evaluated for a given information source de- 
pend on the translator and the source. Suppose, for 
example, that a bibliographic information source sup- 
ports a predicate called "auth" that takes as parameters 
a document and the last name of an author; the predi- 
cate returns true iff the document has at least one author 
with the given last name. Then the query in Example 3.4 
might be written as: 

SELECT biblio, doc 
FROM root 
WHERE auth(biblio.doc, "Alto") 

and auth(biblio, doc, "Hopcroft ") 

One of the translators we have built (see Section 4) is 
for a bibliographic information source called Folio that 
does in fact support a rich set of predicates. All of the 
predicates supported by Folio are available to the client 
through OEM-QL. 

In [16] we provide a grammar for the basic OEM-QL 
syntax and a semantics specified as the answer object 
returned for an arbitrary query. The basic OEM-QL 
described in this paper is certainly amenable to exten- 
sions. For example, here we have allowed only one object 
in the FROM clause, so "joins" between objects cannot be 
described at the top level of a query. The language can 
easily be extended to allow multiple objects in the FROM 
clause. Similarly, the SELECT clause allows only one path 
to be specified; "constructors" can be added so that new 
object structures can be created as the result of a query. 
While these extensions are clearly useful, and we plan to 
incorporate them in the near future, we also expect that 
many translators (especially translators for unstructured 
and semi-structured information sources) will support 
only the basic OEM-QL (some may even support just 
a subset), since supporting the full extended language 
may result in unreasonable increase of the translator's 
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complexity. One useful extension we plan for OEM-QL, 
and we expect will be supported by most translators, 
is the ability to express queries about  labels and object 
structure: we expect that  clients will frequently need to 
"learn" about  the objects exported by an information 
source before meaningful queries can be posed. 

3 .1  R e l a t e d  L a n g u a g e s  

Many query languages for object-oriented and nested re- 
lational da ta  models are based on an extension of SQL 
with pa th  expressions, e.g. [9,10,11,17]. As stated ear- 
lier, OEM-QL can be viewed as an adapta t ion of these 
languages to the specifics of OEM. 

In OEM-QL, pa th  expressions range only over objects, 
while in most  other languages they range over the schema 
and the objects. For example, consider the WHEEE condi- 
tion d o c . a u t h  = '°Smith". In OEM-QL, we simply find 
all objects with label doc that  have a subobject with 
label a u t h  and value "Smith." In a conventional OO 
language, we would have to identify a class doc with an 
at t r ibute named auth .  Then we would range over all 
objects of class doc looking for the matching name. We 
believe that  the simplicity of ranging over objects only 
leads to a more intuitive language and a more compact  
language definition. 

A significant feature of OEM-QL is tha t  it lets us 
query information sources where there is no regular 
schema. A conventional language breaks down in such 
a case, unless one defines an object class for every pos- 
sible type of irregular object. (Note tha t  such a schema 
would have to be modified each t ime a different object 
appeared.) Of course, if a particular information source 
does have a schema and a regular structure, the transla- 
tor for that  source should take advantage of the schema. 
For example, suppose all objects are stored in a rela- 
tional database,  and the translator receives the WHERE 
condition d o c . a u t h  = "Smil~h ,°. The translator could 
first check that  there is a relation do¢ with at t r ibute 
a u t h  and, if so, could use an index to fetch the match-  
ing objects. Thus, the fact tha t  the model and language 
do not require a schema does not mean tha t  a schema 
cannot be used for query processing. 

4 I m p l e m e n t a t i o n  

We have argued that  OEM and its query language are 
designed to facilitate integrated access to heterogeneous 
da ta  sources. To support  this claim, in this section we 
describe how we have applied OEM to a particular sce- 
nario. The scenario consists of a variety of bibliographic 
information sources, including a conventional library re- 
trieval system, a relational database holding structured 
bibliographic records, and a file system with unstruc- 
tured bibliographic entries. Using our OEM-based sys- 
tem, these sources are accessible through a general- 
purpose user interface tha t  allows evaluation of queries 
and object exploration. 

Our first operational translator accesses the Stanford 
University Folio System. Folio provides access to over 40 
repositories, including a catalog of the holdings of Stan- 

ford's libraries, and several commercial  sources such as 
INSPEC that  contain entries for Computer  Science and 
other published articles. Folio is the most  difficult of 
our information sources, par t ly  because the translator 
must  emulate an interactive terminal. The translator 
initially must establish a connection with Folio, giving 
the necessary account and access information. When 
the translator receives an OEM-QL query to evaluate, 
it converts the query into Folio's Boolean retrieval lan- 
guage. Then it extracts the relevant information from 
the incoming screens and exports  the information as an 
OEM answer object. The Folio translator  is written in 
C and runs as a server process on Unix BSD4.3 systems. 
We have also implemented several simple mediators  that  
refine the objects exported by the translator (see Sec- 
tion 4.2). Translators for the other bibliographic sources 
are nearly comple te - - they  have involved substantially 
less coding because the underlying sources (e.g., a rela- 
tional database)  are much easier to use. Our translators 
and mediators are discussed further in Section 4.2. 

We have also implemented OEM Support Libraries 
to facilitate the creation of future translators,  media- 
tors, and end-user interfaces. These libraries contain 
procedures tha t  implement the exchange of OEM ob- 
jects between a server (either a translator or a media- 
tor) and a client (either a mediator,  an application, or 
an interactive end-user). The Support  Libraries handle 
all T C P / I P  communications, transmission of large ob- 
jects, t imeouts, and many  other practical issues. A Unix 
BSD4.3 and a Windows version of the package have been 
implemented and demonstrated.  The Support  Libraries 

• are described in Section 5. 
Finally, we have implemented a Heterogeneous Infor- 

mation Browser that  lets a user submit  queries and ex- 
plore resulting objects. The Browser is implemented in 
Visual C + +  and runs under Windows. The  next sub- 
section describes the Browser in more detail. We believe 
the Browser illustrates the desirability of a simple model 
and language from the point of view of a user who may 
not be familiar with the underlying information. 

4.1 T h e  H e t e r o g e n e o u s  I n f o r m a t i o n  B r o w s e r  

The Heterogeneous Information Browser (HIB) provides 
a graphical user interface for submitt ing queries and ex- 
ploring results. We illustrate its operation by walking 
through a particular interaction. Refer to Figure 3. 

When the HIB is opened, it displays a menu of known 
translators and /o r  mediators  (hereafter referred to as 
TM's) .  Each entry of the menu specifies the name of 
a TM, the site where it can be found, the communica- 
tion protocol it uses, and other information that  may  be 
needed for locating the TM and connecting to it. The 
user may select any of the TM's  on the menu, or the user 
may enter a new TM not listed. 

After a connection is established, an information ex- 
change session starts.  The user can either type a query 
directly into the Active Query window, or he may  se- 
lect one of the Frequently-Aslced-Queries shown in the 
Queries window. Frequently-Asked-Queries are usually 
fill-in-the-form queries, so the user must  complete the 
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Figure 3: Querying 

missing parts.  For example, a translator for Folio may 
provide templates for finding documents by author,  ti- 
tle, and subject, by far the most common queries. The 
ability to suggest common queries is especially impor- 
tant  for "low end" TM's  that  do not implement the full 
OEM-QL. In such a case, the user needs guidance as to 
what queries the source will be able to process. 

I f  a submit ted query is valid and successfully executed 
by the TM, the answer object is returned to the HIB. 
The user can then navigate through the object struc- 
ture of the answer. This is best understood if we think 
of the answer as a tree (or a graph, in the most  gen- 
eral case), where the a tom objects are the leaves, and 
the set objects are the internal nodes. Initially, the root 
and its immediate subobjects are displayed in the ob- 
ject viewer, as illustrated in the left window of Figure 3. 
Here, the root (label answer)  is a set of six documents 
(label doe). The user can move from the current node 
to another node by clicking on any of the highlighted 
direction buttons at  the bo t tom of the window. If  a but-  
ton is not activated, there is no object in that  direction. 
For example, in the left window of Figure 3 one cannot 
move UP because there are no objects "above" the root. 
However, the user can move DOWN to the first child of 
the answer object; the result is shown in the right win- 
dow of Figure 3. During navigation, the object viewer 
always shows two levels of the structure (which can be 
generalized to k levels). Thus,  when the current object 
is a document  (label doc) one can see its components,  
i.e., the TITLE, AUTHOR, and so on (right window). If  an 
a tom value is too large to be seen in the viewer (e.g., the 
abstract  of a document),  the user can click on it to open 
a full window that  displays the value. 

At any time, the user can click on the HELP but ton 
to display the "man page" for the label of the current 
object. As discussed in Section 2, each TM answers the 
question W h a t  d o e s  l a b e l  I m e a n ?  by returning a man-  

: . . . . . . .  

............. i....~... ............................. i..s..~.~.o.~:..~.~.~.*.!e~e~...~....t~.Hii!iill 

............. A~o.n. ........................ i.u!!.e.,.0,. ~..O...p~e.pt...o~ .c o,~ e ~. s,~!.:ii~.~il 
. . . . . . . .  PUBUCATION.  i I n Futu.re Ten d • n d e s I n C o m Pute ¢ I.~.~:'::~:~:.~:'~:::.!ill 

i LOCATIO H ..i St.a.nf .°..r d.. ,~. _b..I!..~.. tl.°..n., n.?t. f.?..u.n., d .!n ~!illi#: 

iDOCUMENT TYPlE ::Conference paper  . ~.~.~.:i~i~i::::~i~i :: ======================================================================================= 
............. i ~ . . S . . . . ~  .................... i . ~ : . m - ~  ~ ' ~ ' - ° ! . d ~ ! ° ~ m e " t ~ ! i l I i i l  

!THESAURUS i Oatabase Management Systems; ~|::!!:::. 

.~.~:~.:::!:.:~:.:.~~~:~:~`~:::~.~:~:~:.:~:~:~.~.~.~:.~:::~:~:~:.:~:i~:~:i~:~:~::.~:~i~:i~i~i~!~i...~.~i~i~!!~i~:~:.! 

and Object  Browsing 

ual entry. This entry describes in English the meaning 
of the label and how the value of the object should be 
interpreted. We feel this is a very useful feature of our 
approach: any time one sees a da ta  value, it is accompa- 
nied by a label, and one can immediately find the mean- 
ing of the label. This is not only useful to the end-user, 
but also to the mediator  implementor  who needs to un- 
derstand the da ta  tha t  is being integrated or processed. 4 

Notice tha t  the self-describing nature of OEM makes 
it easy for a user to navigate through unknown objects. 
If  a user knows nothing about  a particular source, he can 
simply pose the query: 

SELECT ? 
FROM r o o t  

and then browse. As he examines the retrieved labels 
and their "man pages," he can learn the meaning of each 
component.  Then he can pose more refined queries. 

4.2 T r a n s l a t o r s  a n d  M e d i a t o r s  

In this section we illustrate how OEM is used for trans- 
lation and mediation in the context of our heterogeneous 
bibliographic information source scenario. The general 
architecture is shown in Figure 4. Translators are built 
for all participating bibliographic sources. On top of 
the translators we use mediators [20] to support  objects 
and queries tha t  are more refined than  the objects and 
queries supported by lower-level translators or media- 
tors. In particular, the mediators directly above the 
translators reconcile discrepancies between sources (e.g., 
differences in the structure of objects, the naming of la- 
bels, the format  of values, etc.), simplifying the task of 

4 The requirement of providing a "man page" for each label 
could be viewed as a burden, but if the meaning of informa- 
tion is not documented, there is no hope for heterogeneous 
information access! 
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S E L E C T  b i b l i o . d o c  

F R O M  F o l i o  

W H E R E  b i b l i o . d o c . a u t h - s e t . a u t h . l n  = ' U l l m a n '  

A N D  b i b l i o . d o c . a u t h - s e t . a u t h . f n = '  J '  

SELECT biblio.doc 

FROM Folio 

WHERE biblio.doe.auth-set.aulh.ln = 'Ullman 

AND biblio.doe.auth-set.aulh.fn='J' 

<answer, set, {ol ,o2}> 
ol  is <doe, set, {ol 1, o12}> 

ol  I is < title, string, 'New Frontiers .. . . '> 
o l 2  is < auth-set, set, {o121 } > 

o121 is < auth, set, {o1211,ol212}> 

o1211 is < In, string, 'Ul lman '>  

o1212 i s  < fn ,  string, ' J ' >  

o2 is <doc ,  set, {o21, o22} > 

.(Mediator M u ) "'" 

<answer, set, {ol ,o2}> l 
1 ? 

ol is <doe, set, {ol 1, o12}> 
ol  I is < title, string, 'New Frontiers . . . '> 
o12 is < auth-set, set, {o121 } > 

ol21 is < auth, set, {o l211,o l212}> 

o1211 is < In, string, 'Ul lman '>  

01212 is < fn, string, ' J ' >  

02 is < doe, set, {o21,022} > 

<answer ,  set, {ol  ,o2}> 

o l  is < d ~ ,  str ing,  

' T I T L E  : N e w  Frontiers  ... 

A U T H O R  : Ul lman ,J . '  > 
o2 is <doe,  string, ' . . . ' >  

Mediator 

S E L E C T  b i b l i o . d o c  

F R O M  F o l i o  

W H E R E  a u t h ( b i b l i o . d o e ,  ' U l l m a n  J '  

T Folio 
ranslator T 1 

t Ci tat ion 1 
I / T I T L E  : N e w  Front iers  ... 

f i n d  a u t h o r  U l l m a n  J I I A U T H O R  : Ul lman,J .  

Mediator M2 ) 

Sybase 

Translator 

~ y b a s e ~  

Mediator M3 1 

Flat Files 

Translator 

Figure 4: Translation and Mediation Architecture 

the mediator that  combines information from multiple 
s o u r c e s .  

To illustrate the operation of the translators and me- 
diators, consider the Folio information source and its 
translator. The Folio translator T receives OEM-QL 
queries and issues Folio queries. The set of queries q(T) 
that  T is able to translate and execute should have two 
properties: 

1. The translation of any q(T) query into a correspond- 
ing Folio query should be as simple as possible, to 
minimize the translation implementation effort. 

2. The set q(T) should preserve as much as possible 
the power of the underlying query language. Ideally, 
there should be no Folio query that  does not have a 
corresponding query in q(T). 

We have satisfied both properties in the case of Folio 
by supporting predicates in OEM-QL that  correspond 
directly to the access methods that  Folio provides. As an 
example, Figure 4 shows a typical query entering Folio, 
asking for the bibliographic entries where the last name 
of one of the authors is "Ullman" and the first name 
starts with "J." The corresponding query in OEM-QL 
is: 

SELECT biblio, doc 
FROM Folio 
WHERE auth(biblio.doc, "Ullman J") 

From this query, T only needs to translate the a u t h  pred- 
icate to the corresponding author search construct. 

As illustrated in Figure 4, translator T uses a straight- 
forward mapping to translate the citations returned from 
Folio (as a string) into an OEM object. Mediator M1 
refines the structure of the objects exported by T, by 
extracting the basic components of each bibliographic 
object (e.g., authors, title). In addition, M1 supports a 
wider and more generic set of queries than T. For exam- 
ple, M1 is able to translate the incoming query shown in 
Figure 4 to the outgoing one. 

A key design criterion here is modularity. Since the 
translators are likely to be the most complex compo- 
nents (they must deal with the idiosyncrasies of the in- 
formation sources), our goal is to keep the work of the 
translators to a minimum. Once a translator produces 
its object in some OEM format, additional work can be 
done by mediators. Note that  [6] suggests an average 
of 6 months effort to implement a translator for a con- 
ventional DBMS. In our experience, the total effort can 
be reduced substantially by shifting work from transla- 
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tots to mediators, and by using the Support  Libraries 
described in Section 5. In addition, we have recently de- 
veloped a translator-generator, which further reduces the 
effort required to bring a new information source on-line. 

The top level mediator M,, in Figure 4 combines the 
information from several sources into a single document 
collection. The simplest implementat ion of this media- 
tor performs a union of all the collections. When M ,  
receives a query, it effectively "broadcasts" the query to 
all mediators at lower levels, then merges the answers. 
Certainly more sophisticated mediation techniques could 
be useful, such as recognizing and eliminating duplicate 
results. In [16] we describe some initial ideas we have for 
specifying and implementing mediators. As with trans- 
lators, our main goal is to develop a specification-driven 
mediator-generator, so that  new mediators can be devel- 
oped and installed quickly and easily. 

5 T h e  O E M  S u p p o r t  L i b r a r i e s  

OEM and OEM-QL are designed for a client to send 
queries and obtain corresponding answer objects from a 
server. The server may be a translator or a mediator, 
while the client may be a mediator or an end-user pro- 
gram (such as the HIB described in Section 4.1). We 
have implemented general-purpose OEM Client Support 
and Server Support Libraries that  provide the common 
functionality needed for object and query exchange. 

We expect that  our Support  Libraries win expedite 
the implementation of mediators, translators, and end- 
user programs. In addition, implementing these libraries 
has brought to the surface a number of interesting issues 
regarding the exchange of objects when one or more par- 
ticipants are not inherently object-oriented. As far as we 
know, these issues do not arise in conventional, homo- 
geneous object-oriented systems (or at least not in quite 
this way). Here we discuss one of the most important  is- 
sues that  has arisen, namely that  of partial object fetches. 

In many cases it is very inefficient to send the complete 
answer object to the client in one step. In particular: 

1. The client has to wait until the full answer is re- 
trieved from the information source before examin- 
ing the object. This prevents "pipelined" operation, 
where the client starts processing subobjects as they 
arrive. The problem is exacerbated if we have a string 
of mediators between the source and the client: the 
client cannot begin processing the answer until all of 
the intermediate TM' s  have completed their work. 

2. The answer object may be very large. Once a client 
inspects part  of the answer object, the client may 
determine tha t  it does not need some portions of the 
answer object, or perhaps does not need the object 
at all. 

To avoid these problems, the Support  Libraries pro- 
vide a partial fetch mechanism that  enables clients to 
retrieve only parts  of the answer object. The mecha- 
nism is used as follows. When the client wishes to re- 
quest an object, it calls a q u e r y ( )  function, passing the 
OEM-QL query as a parameter .  The client can then 

fetch either the fun answer object (including subobjects) 
by calling the 8 e t F u l l 0 b j e c t ( )  function, or the cfient 
can fetch only the root of the answer object by calling 
the g e t R o o t 0 b j  e c t  () function. In the lat ter  case, addi- 
tional g e t F u l l 0 b j  oc t  ( ) and /o r  g e t R o o t 0 b j  e c t  ()  calls 
are used to fetch the subobjects. 

Calls to the getRoot0bj ec t  () function lead to incom- 
plete, or unfetched, objects in the client's memory. A 
reference to an unfetched subobject is something that  
only the Support  Libraries understand, and it is spe- 
cific for the particulaz call in progress. Consider what 
happens when a client wants to examine an unfetched 
object. One option is to support  on-demand retrieval of 
any unfetched objects. However, this allows the client to 
traverse answer objects in arbi trary order, implyin 8 that  
the server must cache the entire answer object. Such on- 
demand fetching would be very difficult for translators 
such as the one for Folio (recall Section 4). The Fo- 
lio bibliographic source returns a stream of documents, 
and the translator has no control over the order of the 
records. For on-demand service, all records would have 
to be stored by the translator.  I f  the user poses a query 
that  is too broad, the answer object might be enormous. 

Consequently, instead of on-demand service, the Sup- 
port  Libraries provides a s t ream model for retrieving un- 
fetched objects. A "preorder traversal" of the answer ob- 
ject is used, and the client must  perform partial  fetches 
in this order. To illustrate, suppose that  after a first 
g e t R o o t 0 b j e c t ( )  call, the client retrieves an object A 
whose set value contains three unfetched references, ul ,  
u2, and u3. If  the client decides tha t  the number of doc- 
uments is too large, the client may choose to submit a 
different query. Otherwise, if the first document  is de- 
sired, the client issues a g e t R o o t 0 b j e c t ( )  call with ui  
as a parameter .  The first subobject is fetched; suppose 
it is another set with unfetched references u l l  and ul2. 
Next the client fetches Ull, which happens to be the title 
of the document.  Based on this, the client may decide 
it wants to skip the rest of the ui  object. It  can do so 
by issuing a g e t R o o t 0 b j  e c t  () call with u2; this causes 
the ui  subobjects that  were not fetched to be discarded. 
Thus, even though the client is constrained to traverse 
the answer object in a particular order, uninteresting 
parts  can be skipped. 

Due to space limitations, our description of the OEM 
Support  Libraries and their services has been cursory. 
Our goal has not been a full description of the Support  
Libraries, but rather an illustration of the challenging 
practical issues that  arise when there is an "impedance 
mismatch" between the way an information source pro- 
vides objects and the way a client wishes to see them. 
We believe that  our Support  Libraries provide a general- 
purpose framework for handling many  of these issues. 

6 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

We are developing a complete environment and set of 
tools for integrated access to diverse and dynamic het- 
erogeneous information sources. Exchange of informa- 
tion in our environment is based on the Object Ezchange 
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Model (OEM) introduced in this paper. OEM retains the 
simplicity of relational models while allowing the flexi- 
bility of object-orlented models. Objects in OEM have a 
very simple structure, yet the model is powerful enough 
to encode complex information. For flexibility, OEM 
objects are self-describing. This approach eliminates the 
need for regular structure or a predefined schema. How- 
ever, when structure or schema are present, they can be 
exploited by OEM translators and mediators. 

OEM objects are requested using a declarative query 
language OEM-QL, which is based on nested-SQL query 
languages. We have found OEM-QL to be both expres- 
sive and easy to use. In this paper  we have defined 
the basic constructs of OEM-QL. We are extending the 
query language along the lines discussed in Section 3. In 
addition, we plan to add language constructs and under- 
lying support  for da ta  modification operations and for 
monitors (or active rules). 

We have experimented with OEM and OEM-QL by 
implementing OEM-based access to several quite differ- 
ent bibliographic information sources. Our implementa-  
tion so fax has served a number  of purposes: 

• I t  has helped us refine and ratify our design of the 
model and query language. 

• We have uncovered a number  of impor tant  issues 
and generic functionalities in the implementat ion of 
OEM-based object exchange. This led to our devel- 
opment  of the OEM Support  Libraries described in 
Section 5. 

• We have realized a need for browsing tools, leading 
to the Heterogeneous Information Browser described 
in Section 4.1. 

• We have used a layered architecture for translators 
and mediators (recall Figure 4), which we believe ex- 
pedites the integration of heterogeneous information 
sources. 

Implementat ion is currently underway to incorporate 
additional bibliographic information sources into our 
system. At the same time, we have developed some sim- 
ple mediators and a new browser based on Mosaic and 
the World Wide Web system. We have just  completed a 
tool for generating translators automatical ly from spec- 
ifications, and we are investigating similar tools for gen- 
erating mediators. 
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