
A Formal Analysis of Information Disclosure in Data
Exchange

Gerome Miklau and Dan Suciu
Computer Science and Engineering

University of Washington

{gerome,suciu}@cs.washington.edu

ABSTRACT
We perform a theoretical study of the following query-
view security problem: given a view V to be published,
does V logically disclose information about a confiden-
tial query S? The problem is motivated by the need to
manage the risk of unintended information disclosure in
today’s world of universal data exchange. We present
a novel information-theoretic standard for query-view
security. This criterion can be used to provide a pre-
cise analysis of information disclosure for a host of data
exchange scenarios, including multi-party collusion and
the use of outside knowledge by an adversary trying to
learn privileged facts about the database. We prove
a number of theoretical results for deciding security ac-
cording to this standard. We also generalize our security
criterion to account for prior knowledge a user or adver-
sary may possess, and introduce techniques for measur-
ing the magnitude of partial disclosures. We believe
these results can be a foundation for practical efforts to
secure data exchange frameworks, and also illuminate a
nice interaction between logic and probability theory.

1. INTRODUCTION
Traditional security mechanisms protect data at the phys-
ical level. For example, firewalls and other perimeter
mechanisms prevent the release of raw data, as do con-
ventional access controls for file systems and databases.
In data exchange, however, such mechanisms are lim-
ited since they can only protect the data up to the first
authorized recipient. When data is exchanged with mul-
tiple partners, information may be unintentionally dis-
closed, even when all physical protection mechanisms
work as intended. As an extreme example, Sweeney
proved this [19] when she retrieved the privileged med-
ical data of William Weld, former governor of the state
of Massachusetts, by linking information from two pub-
licly available databases, each of which was considered

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . .$5.00.

secure in isolation1.

We address the case when data originates at a single
source, but may be exchanged with multiple partners
and further disseminated. To prevent unintended in-
formation disclosure, we need a formalism to protect
the data at the logical level. Specifically, we study the
following fundamental problem, called the query-view
security problem: given views V1, V2, . . . that we want
to publish, do they logically disclose any information
about a query S that we want to keep secret? The
views are expressed in a query language, and may re-
move data items through projections or selections, or
break associations between data items. Adopting the
nomenclature of the cryptographic community we say
that Alice wants to give Bob the views V1, V2, . . . over
a public channel, but would like to prevent an adver-
sary Mallory (or even Bob) from learning the answer
to secret query S. The query expressions S, V1, V2, . . .
are known by the adversary, the answers to V1, V2, . . .
are published, while the underlying database remains
secret.

In many cases a disclosure may not reveal a fact with
complete certainty or an exact answer to a query. Con-
sider a database consisting of a single relation:

Employee(name,department,phone)

Imagine Alice publishes the view projecting on (name,
department) to Bob, and publishes the view projecting
(department, phone) to Carol.

VBob = Πname,department(Employee)

VCarol = Πdepartment,phone(Employee)

Alice wants to protect employees’ phone numbers, so
the secret query would be:

S = Πname,phone(Employee)

If Bob and Carol collude, they cannot compute the an-
swer to S since the association between name and phone
1A voter registration list for governor Weld’s home city
included the voters’ names, zip, birth-date, and sex.
The state’s Group Insurance Commission published a
database containing “anonymized” medical data, in-
cluding only the patients’ zip, birth-date, and sex, but
omitting the name. Only one person matched gover-
nor Weld’s zip, birth-date, and sex, allowing Sweeney
to retrieve his medical records.

is not present in VBob and VCarol. However a partial
disclosure has occurred, and it is a potentially serious
threat to the security of S. For example, if only four
people work in each department then an adversary can
guess any person’s phone number with a 25% chance of
success by trying any of the four phone numbers in her
department.

For a more complex example, consider a manufacturing
company that needs to exchange XML messages with
several partners. Each message type is a dynamic view
that computes on request some information about the
company’s manufacturing data: V1 contains detailed
information about parts for a specific product, to be
exchanged with suppliers; V2 contains detailed infor-
mation about products’ features, options, and selling
prices, to be exchanged with retailers and customers;
while V3 provides labor cost information to be sent to a
tax consulting firm. The company wants to keep secret
the internal manufacturing cost for its products, which
can be expressed in terms of a query S. Conventional
protection mechanisms can ensure that each message
is received and read only by authorized users, but are
powerless beyond that point. At a minimum, the com-
pany would like to audit each of the three views and
ensure that it doesn’t disclose the secret information to
its authorized recipient. But in addition the company
would like to understand if any information is disclosed
when views are combined (colluded), for example when
V3 is accidentally or intentionally sent to a supplier, or
when the tax consulting firm merges with one of the
customers. None of these tasks are performed today,
manually or automatically, because there is no clear
understanding of when and how much information is
disclosed at the logical level.

Our study of logical information disclosure applies di-
rectly to the following data exchange scenarios:

Multi-party collusion Alice would like to publish n
views V1, . . . Vn to n different users. Given a secret
query S, which are the multiple party collusions among
the users that will violate the confidentiality of S?

Prior Knowledge Suppose Mallory, the adversary, has
some knowledge about the database represented in the
form of a query K. Can Alice publish V without dis-
closing anything about the secret query S? The prior
knowledge may be common knowledge, such as the fact
that social security numbers are unique or that phone
numbers with the same area code are in the same state,
or may be more specific knowledge about the domain
that Mallory has acquired somehow.

Relative security Alice has already published a view
U . This already leaked some information about a secret
query S, but was considered an acceptable risk by Alice.
Now she wishes to publish an additional view V . Does V
disclose any additional information about S over what
was already disclosed by U? This is not the same as
saying that the query S is secure with respect to the
pair of views U, V , because S is not secure w.r.t. U .

Our first contribution is a formal definition of query-
view security that captures the disclosure of partial in-
formation. Inspired by Shannon’s notion of perfect se-
crecy [18], the definition compares the likelihood of an
adversary guessing the answer to secret query S with
and without knowledge of views V1, V2, . . . Vn. When
the difference is zero, we say that the query is secure
w.r.t. the views. To the best of our knowledge this is
the first attempt to formalize logical information disclo-
sure in databases. Our second contribution consists of
a number of theoretical results about query-view secu-
rity: we prove a necessary and sufficient condition for
query-view security, and show that the security problem
for conjunctive queries is Πp

2-complete; we generalize
query-view security to account for pre-existing knowl-
edge; and when the query is not secure w.r.t. a view,
we characterize the magnitude of disclosure. These the-
oretical results illuminate an interesting connection be-
tween logic and probability theory.

Examples of information disclosure
Table 1 contains a set of query-view pairs referring to an
Employee relation, along with an informal description
of the information the views disclose about the query.
These examples represent a spectrum of information dis-
closure, beginning with total disclosure, and ending with
a secure query and view. The first query and view is an
obvious example of a total disclosure because S1 is an-
swerable using V1.

Example (2) is precisely the example mentioned above
in which Bob (given V2) and Carol (given V ′

2) collude
to cause a partial disclosure. It is worth noting that a
contained rewriting of S2 using V2, V

′
2 exists here. For

small departments, it may be easy for Mallory to guess
the association between names and phone numbers.

As another example of partial disclosure, consider ex-
ample (3), whose view is V3 = Πname(Employee). We
ask whether query S3 = Πphone(Employee) is secure
when this view is published. In this case the view omits
phone entirely and would seem to reveal nothing about
phone numbers in S3. Surprisingly, the view does dis-
close some information about the secret query. In par-
ticular, it can reveal something about the size of the
Employee relation, and therefore contains some small
amount of information about the omitted column. We
describe this further in Section 3.

The last example, Table 1(4), is a case where no in-
formation is disclosed. The names of employees in the
Admin department reveal nothing about the names of
employees in the Shipping department.

Insufficiency of related techniques
The query-view security problem is superficially-related
to a number of other database problems. We briefly
review some of them here and explain why they do not
solve the query-view security problem.

Query answering The basic problem addressed in query
answering [13] is: given a view V (or several such views),

View(s) Query Information
Disclosure

Query-
View
Security

(1) V1(n, d) : −Employee(n, d, p) S1(d) : −Employee(n, d, p) Total No

(2) V2(n, d) : −Employee(n, d, p)
V ′

2 (d, p) : −Employee(n, d, p)
S2(n, p) : −Employee(n, d, p) Partial No

(3) V3(n) : −Employee(n, d, p) S3(p) : −Employee(n, d, p) Minute No

(4) V4(n) : −Employee(n, “Admin”, p) S4(n) : −Employee(n, “Shipping”, p) None Yes

Table 1: Pairs of views and queries, over relation Employee(name, department, phone) and an informal
description of their information disclosure.

answer a query S by using only the data in the view(s).
A more refined version, called query rewriting, asks for
the answer to be given as a query over the view(s) V .
The connection to our problem is that, whenever S can
be answered from V , then S is obviously not secure,
as in Table 1(1). However, adopting non-answerability
as a criterion for security would clearly be a mistake:
it would classify example (2) as secure. As we claim
above, even though the query S may be not answerable
using V , substantial information about the query may
be revealed, allowing an attacker to guess the secret in-
formation with a high probability of success.

A related strategy considers a view V and its answer
v = V (I) as a constraint on the set of possible database
instances, making some impossible. The set of possible
answers to a query S given V may therefore be reduced.
(In some cases this set may have size 1 in which case the
answer to S is determined by v = V (I).) We might say
S is secure given V if every possible answer to S remains
possible given V . This criterion would classify Examples
(2) and (3) correctly, that is it would capture the partial
disclosures in these cases, but not in others. However,
this standard of security ignores the likelihood of the
possible answers of S. While V may not rule out any
possible answers to S, some answers may become less
likely, or in the extreme, virtually improbable without
contradicting the security criterion. In such a situation,
we should say that V does in fact contain substantial
information for answering S. Our definition of query-
view security handles this case.

Statistical database security A statistical database
publishes views consisting of aggregate functions over a
subset of records. Information is thus hidden by aggre-
gating data, and the security problem is to ensure that
data in individual tuples remains secret. The security of
statistical databases has a long history [1, 6]. Our work
on query-view security is orthogonal: we do not hide
data by aggregation, but rather through projections or
selections, or breaking associations. Rather than statis-
tics, we need to use probability theory to reason about
query-view security.

The organization of the paper is as follows. Section 2

presents notation and a probabilistic model of databases.
Section 3 describes our definition of query-view security
and its main results. Section 4 extends these results to
include prior knowledge. Section 5 presents techniques
for measuring disclosure when security fails. We sum-
marize related work and conclude in Sections 6 and 7.
Omitted proofs are included in [16].

2. BACKGROUND AND NOTATION
As we mentioned, many disclosures do not involve an
adversary computing S completely according to stan-
dard database query semantics. Instead a partial disclo-
sure reveals to Mallory something about the likelihood
of answers to a secret query S. After an overview of
notation, we present our security model that allows for-
mal statements about the probability of a database and
query answer. Our discussion is based on the relational
model.

2.1 Basic Notations
We assume a standard relational schema consisting of
several relation names R1, R2, . . ., each with a set of
attribute names. Let D be the finite domain, which in-
cludes all values that can occur in any attributes in any
of the relations. For example D may be the set of deci-
mal numbers up to an upper bound, and all strings up to
a given length. In a particular setting we may consider
further restricting D, e.g. to include only valid disease
names, valid people names, or valid phone numbers.

We use datalog notation to denote tuples belonging to
the relations of the given schema. For example R1(a, b, c)
denotes a tuple in R1, and R3(b, a, a) denotes a tuple in
R3. Let tup(D) be the set of all tuples over all rela-
tions in the schema that can be formed with constants
from the domain D. A database instance I is any sub-
set of tup(D), and we denote by inst(D) the set of all
database instances over the domain D. A query of arity
k is a function Q : inst(D) → P(Dk). For an instance I,
Q(I) denotes the result of applying Q to I. A boolean
query is a query of arity 0. A monotone query has the
property I ⊆ I ′ ⇒ Q(I) ⊆ Q(I ′). In most of the pa-
per our discussion will focus on conjunctive queries with

inequalities, written in datalog notation. For example:

Q(x) : −R1(x, a, y), R2(y, b, c), R3(x,−,−), x < y, y 6= c

Here x, y are variables, − are anonymous variables (each
occurrence of − is distinct from all others) and a, b, c are
constants.

2.2 The Security Model
We assume a probability distribution on the tuples, P :
tup(D) → [0, 1], s.t. for each ti ∈ tup(D), P(ti) = xi

represents the probability that the tuple ti will occur in
a database instance. We will refer to the pair (D,P) as
a dictionary. A dictionary induces a probability distri-
bution on specific instances: for any I ∈ inst(D), the
probability that the database instance is precisely I is:

P[I] =
Y
ti∈I

xi ·
Y
tj /∈I

(1− xj) (1)

For example, if the schema consists of a single table
Patient(name, disease) representing sensitive data in a
hospital, then the domain D may consist of all possi-
ble names (e.g. those occurring in a phone book for
the entire country), together with all possible diseases
cataloged by the CDC. For each tuple ti=Patient(name,
disease), P(ti) is the (very small) probability that a per-
son with that name and that disease is in the hospital’s
database. To illustrate, assuming 108 distinct names
and 500 distinct diseases2 there are n = 5× 1010 tuples
in tup(D), and one possible probability distribution is
P(ti) = 200/n for every ti ∈ tup(D). This is a uni-
form probability distribution, for which the expected
database size is 200 tuples. A more accurate, but far
more complex probability distribution is one that takes
into account the different risk factors of various ethnic
groups and for each diseases. For example the proba-
bility of a tuple Patient(“John Johnson”,“Cardiovascular
Disease”) will be slightly higher than the probability of
the tuple Patient(“Chen Li”,“Cardiovascular Disease”), if
Americans have a higher risk of a Cardiovascular Dis-
ease than Chinese, and the nationality of John Johnson
is likely to be American while that of Chien Li is likely
to be Chinese.

The probability P(ti) may be too complex to compute
in practice, but computing it is not our goal. Instead
we will assume that Mallory can compute it, and can
use it to derive information about the secret query S.
Thus, we endow the adversary with considerable power,
and study under which circumstances no information is
disclosed.

Given a probability distribution over database instances,
a query S attains some answer s with probability equal
to the sum of the probabilities of the satisfying instances:

P[S(I) = s] =
X

{I∈inst(D)|S(I)=s}

P[I] (2)

Remark In our model the tuples are independent prob-
abilistic events. This is a limitation. In practice, the

2Fewer than 500 are listed at
http://www.cdc.gov/health/.

occurrence of tuples may be correlated due to under-
lying relationships in the data or integrity constraints.
If tuples are positively correlated (respectively, nega-
tively correlated) the presence of one tuple increases
(decreases) the likelihood of another. For example, a
key constraint introduces strong negative correlations.
We will address some of these limitations in Section 4
by studying query-view security relative to some prior
knowledge expressing a functional dependency. How-
ever, extending our results to a model that can capture
arbitrary correlations between tuples remains open.

3. QUERY-VIEW SECURITY
In this section we formalize our notion of query-view se-
curity, describe its basic properties, and state our main
theorems which result in a decision procedure for query-
view security.

3.1 Definition
Our standard for query-view security is inspired by Shan-
non’s definition of perfect secrecy [18]. Let V̄ = V1, . . . , Vk

be a set of views, and S a “secret” query. Both the views
and the query are computed over an instance I of a rela-
tional schema. We consider an adversary, Mallory, who
is aware of the domain and probability distribution over
instances (the dictionary), and is given V̄ (I) (but not
I). Mallory’s objective is to compute S(I). The defi-
nition below captures the intuition that V̄ (I) discloses
no information about S(I). Below, V̄ (I) = v̄ means
V1(I) = v1 ∧ . . . ∧ Vk(I) = vk.

Definition 3.1 (Query-View Security). Let (D,P)
be a dictionary. A query S is secure w.r.t. a set of views
V̄ if for any possible answer s to the query, and any pos-
sible answers v̄ to the views, the following holds:

P[S(I) = s] = P[S(I) = s | V̄ (I) = v̄] (3)

Query-view security is denoted S |P V , or simply S | V
if P is understood from the context.

The left hand side of equation (3) represents the a pri-
ori probability that S attains a particular answer s over
the instance I, which can be computed by Mallory using
(D,P). The right hand side is also the probability that
S(I) = s but conditioned on the fact that V̄ (I) = v̄.
The security condition asserts the equality of these two
probabilities (for all possible s, v̄) and therefore says
that nothing beyond the a priori knowledge is provided
by V̄ . Equation (3) is also the familiar definition of in-
dependence of two statistical events. Accordingly, S is
secure w.r.t. V̄ iff S and V̄ are statistically independent
events. We can rewrite (3) as follows:

P[S(I) = s]P[V̄ (I) = v̄] = P[S(I) = s ∧ V̄ (I) = v̄] (4)

Next we apply the definition in two examples:

Example 3.2 Non-security Consider a single relation
R(X, Y) and domain D = {a, b}. There are 4 possible

tuples R(a, a), R(a, b), R(b, a), R(b, b), and the set of in-
stances inst(D) contains the 16 subsets of these. As-
sume for simplicity that P(ti) = 1/2 for each tuple ti,
and consider the following query and view:

V (x) : −R(x, y)

S(y) : −R(x, y)

V projects the first attribute of R while S projects
the second. Although we might expect that the view
provides no information about the query, it is actu-
ally not the case that S | V . Informally, the answer
to V contains some information about the size of the
database which impacts answers to S. Consider a par-
ticular answer {(a)} for S. There are 3 equally-likely
instances generating this answer: {R(a, a)}, {R(b, a)},
and {R(a, a), R(b, a)}. Therefore, we have a priori prob-
ability:

P[S(I) = {(a)}] = 3/16

Now suppose we are given that V (I) = {(b)}. There
are again 3 instances, only one of which causes S(I) =
{(a)}, so because each instance is equally-likely we have:

P[S(I) = {(a)} | V (I) = {(b)}] = 1/3

This contradicts (3) for the particular answers consid-
ered, and it follows that S and V are not secure for this
particular probability distribution. We show in the next
section that they are not secure for any distribution.

Example 3.3 Security As an example of a secure query
and view, consider the same schema and dictionary, and:

V (x) : −R(x, b)

S(y) : −R(y, a)

Here S is secure w.r.t. V . We prove this later, but
illustrate here with one example. Consider one possi-
ble output of S: S(I) = {(a)}. There are 4 instances
that lead to this output, {R(a, a)}, {R(a, a), R(a, b)},
{R(a, a), R(b, b)}, and {R(a, a), R(a, b), R(b, b)}, hence:

P[S(I) = {(a)}] = 4/16 = 1/4

Consider also one possible output of V , say V (I) =
{(b)}. There are four instances I satisfying this con-
straint: {R(b, b)}, {R(b, b), R(a, a)}, {R(b, b), R(b, a)},
{R(b, b), R(a, a), R(b, a)}. Of these only one also results
in S(I) = {(a)}, hence:

P[S(I) = {(a)} | V (I) = {(b)}] = 1/4

One can manually check, for all possible combinations
of outputs of S and V , that the probability of S is un-
changed by publishing V . We will provide an easier
criterion for checking this shortly.

Discussion
Several properties of query-view security follow, provid-
ing intuition and justifying our choice of definition.

Reflexivity It follows from Bayes’ Theorem that secu-
rity is a reflexive relation: S | V̄ iff V̄ | S.

Security (not obscurity) We always assume that pub-
lishing the views V̄ includes exposing both the view

definitions and their answers over the hidden database.
Basing the security on concealing the view and query
expressions is dangerous. We thus avoid the pitfall of
“security by obscurity”, identified long ago by the cryp-
tographic community as ineffective [17].

Instance-independence If the query S is secure w.r.t.
the views V̄ , it remains so even if the underlying database
instance I changes: this follows from the fact that Eq.(3)
must hold for any query output s and any view out-
puts v̄. We say that query-view security is instance
independent. This property is necessary in applications
like message-based data exchange, were messages are
exchanged continuously, even as the database changes.
Once S | V̄ has been checked, the views V̄ (I) can safely
be exchanged without any compromise of S(I). In fact,
one can prove that if successive instances are indepen-
dent from one another, then even if Mallory collects
snapshots of the views at various moments of time, V̄ (I1),
V̄ (I2), . . ., V̄ (It), he still cannot learn anything about
any of S(I1), . . . , S(It). This way of defining security
is different from the standard definition in statistical
databases. There the security criteria often apply to
a particular database instance, and may fail if the in-
stance is later updated. For example, one security crite-
rion requires that the aggregate function be computed
only on cells that are “large enough”. One data instance
may be secure, but it becomes insecure when tuples are
deleted (making some cells too small), or when tuples
are inserted (creating new cells, which are small).

Dictionary-independence The definition of query-
view security S | V̄ is for a particular dictionary (D,P).
In practice, however, the dictionary is often ill-defined:
for example the probability distribution P is impossible
to compute, and even the domain D may be hard to de-
fine precisely. Thus, we are interested in a stronger ver-
sion of security, which is dictionary-independent. Our
results in the next section provide necessary and suf-
ficient conditions for dictionary-independent security.
They show, surprisingly, that, in some cases, security
for some dictionary implies security for all dictionaries
(see Theorem 3.8 and Proposition 3.9).

Collusions Given V̄ = V1, . . . Vk, we will show in The-
orem 3.5 that S |V̄ if and only if S |Vi for all i = 1, . . . , k.
This has the following consequence. If we send differ-
ent views to different users, but have determined that
the secret query S is secure w.r.t. each view separately,
then nothing will be leaked about S even if the recipi-
ents collude, i.e. exchange the views they received and
try to learn something about S by examining all the
views together. This strong property is a consequence
of our adoption of a notion of perfect secrecy to define se-
curity. Disclosure through collusion happens when each
view leaks very little information when taken separately,
but together may leak a lot of information about S. We
will re-examine collusion in Sec. 5 when we discuss mea-
suring disclosures.

Query answering The database community has stud-
ied extensively the following query answering problem.

Given a set of views V̄ = V1, . . . Vk and another view
V ′ find a function f s.t. for any instance I, V ′(I) =
f(V̄ (I)): in this case we say that V ′ is answerable from
V̄ . In the related query rewriting problem, f is restricted
to be expressed in a query language. It is natural to ask
about the relationship to security. Intuitively, if V ′ is
answerable from V̄ , then the information content of V ′

is not more than that of V̄ , and any query S which is
secure w.r.t. V̄ should be also secure w.r.t. to V ′. This
intuition is correct, and can be proven formally3. A
similar result holds when security fails: if ¬(S | V̄) and
another query S′ is computable from S, then ¬(S′ | V̄).

Aggregates When applied to queries with aggregates
our definition of security results in a very strict condi-
tion: no query and view containing an aggregate over
a common tuple are secure. Techniques from statisti-
cal databases are better-suited for the case of queries
with aggregates, and are orthogonal to our discussion.
We therefore omit aggregate functions from the query
language we consider.

3.2 Fundamental Theorems of Query-View
Security

At this point, the only obvious procedure for deciding
query-view security is to compute probabilities for each
answer to the query and view. In addition to the com-
putational complexity of this strategy, it requires re-
computation for each dictionary. In this subsection we
present techniques for deciding query-view security by
analyzing the query and view definitions, and prove that
this technique is dictionary-independent.

Definition 3.4 (Critical tuple). Let D be a fi-
nite domain and Q be a query. A tuple t ∈ tup(D) is
critical for Q if there exists an instance I ∈ inst(D)
such that Q(I − {t}) 6= Q(I). The set of critical tuples
of Q is denoted critD(Q), or simply crit(Q) when D is
understood from the context.

The intuition is that t is critical for Q if there exists
some instance where dropping t makes a difference.

For a simple illustration, consider the boolean query
Q() : −R(a1, x) and let D = {a1, . . . , an}. Any tuple of
the form R(a1, ai), i = 1, . . . , n, is critical for Q, because
Q returns true on the database consisting of the single
tuple R(a1, ai), but if we remove that tuple then we get
the empty database on which the query returns false.

We can now formulate the characterization of query-
view security. The proof is in Sec. 3.3.

Theorem 3.5. Let D be a domain. Let S be a query

3Since P[V ′(I)=v′] =
P

v̄{P[V̄ (I)= v̄] | f(v̄)=v′} and
P[S(I) = s ∧ V ′(I) = v′] =

P
v̄{P[S(I)=s ∧ V̄ (I)= v̄] |

f(v̄)=v′}, which implies that the view V ′ satisfies
Equation (4). In particular, if V is a boolean view,
then it follows that S | V iff S | ¬V .

and V̄ be a set of views. Then S|PV̄ for every probability
distribution P iff critD(S) ∩ critD(V̄) = ∅.

Here crit(V̄) is crit(V1) ∪ . . . ∪ crit(Vk). In particular it
follows that S |P V̄ forall P iff S |P Vi forall i = 1, . . . , k
and forall P. The theorem says that the only way
a query can be insecure w.r.t. some views is if they
have some common critical tuple. This result trans-
lates the probabilistic definition of query-view security
into a purely logical statement, which does not involve
probabilities. This is important, because it allows us to
reason about query-view security by using traditional
techniques from database theory and finite model the-
ory.

Next we revisit the query and view examples from the
last section and apply Theorem 3.5.

Example 3.6 In Example 3.2, we saw that security
fails to hold for V (x) : −R(x, y) and S(y) : −R(x, y).
Every tuple is critical for V : for example, R(a, b) is
critical for V because V ({}) = {} while V ({R(a, b)}) =
{(a)}. Similarly, every tuple is critical for S, so because
crit(V)∩ crit(S) is nonempty, we conclude ¬(S |P V) at
least for some probability distribution P.

Example 3.7 We argued in Example 3.3 that security
holds for V (x) : −R(x, b) and S(y) : −R(y, a). The
critical tuples of S are crit(S) = {R(a, a), R(b, a)}, and
similarly crit(V) = {R(a, b), R(b, b)}. Because crit(S)∩
crit(V) = ∅, Theorem 3.5 allows us to conclude S |P V
for every probability distribution P.

So far S and V̄ were allowed to be arbitrary queries.
We now restrict S and V̄ to be monotone queries, and
will prove that the definition of query-view security is,
for all practical purposes, dictionary-independent. The
main step is the following theorem, whose proof is in
Sec. 3.3.

Theorem 3.8 (Probability-Independence). Let
D be a domain, and S, V̄ be any monotone queries. Let
P0 be a probability distribution s.t. ∀t,P0(t) 6= 0 and
P0(t) 6= 1. If S |P0 V̄ then for every probability distri-
bution P, S |P V̄ .

This is a surprising theoretical result, which says that if
a query is secure even for one probability distribution,
then it is secure for all such distributions. Continuing
Example 3.2, both S and V are monotone. It follows
that ¬(S |P V) for any probability distribution P which
is 6= 0 and 6= 1. Notice that for the trivial distribution
P(t) = 1, ∀t, we have S |P V , because in this case the
answer to both S and V are known.

We still need to show that the definition is insensitive
to a particular choice of domain, and for that we will
further restrict all queries to be conjunctive queries. As

we vary the domain D, we will always assume that D
includes all the constants occurring in S and V̄ .

Proposition 3.9 (Domain-Independence). Let n
be largest number of variables and constants occurring in
any of the conjunctive queries S, V1, . . . , Vk. If there ex-
ists a domain4 D0 s.t. |D0| ≥ n(n+1), and critD0(S)∩
critD0(V̄) = ∅, then for any domain D, s.t. |D| ≥
n(n + 1), critD(S) ∩ critD(V̄) = ∅.

We now discuss how to decide query-view security for
conjunctive queries S and V̄ . Our goal is to check
dictionary-independent security, hence we need to check
whether critD(S) ∩ critD(V̄) = ∅, and we assume that
the domain D is “large enough”. The previous propo-
sition gives us an exponential time algorithm: pick a
domain D0 with n(n + 1) constants, then enumerate
exhaustively all instances I ⊆ D0 and tuples t ∈ I,
checking whether t is a critical tuple for S, and for V̄ .
This also shows that the query-view security problem is
in complexity class Πp

2.
5

Deciding query-view security is also Πp
2-hard. We can

prove that checking t 6∈ crit(Q) is Πp
2-hard: this is a

non-trivial result, whose proof uses a lengthy reduction
from the ∀∃3-CNF problem, and is omitted. Instead,
we illustrate with an example why computing crit(Q)
is non-obvious. Clearly, any critical tuple t must be
an homomorphic image of some subgoal of Q. But the
following example shows the converse is not true:

Q() : −R(x, y, z, z, u), R(x, x, x, y, y)

Consider the tuple t = R(a, a, b, b, c), which is a homo-
morphic image of the first subgoal. Yet t is not critical.
Indeed, let I be any database s.t. Q(I) = true. Then
the first subgoal must be mapped to t. But that means
that both x and y are mapped to a. Thus the second
subgoal must be mapped to the tuple t′ = R(a, a, a, a, a)
and then t′ ∈ I. Then the first subgoal can also be
mapped to t′, hence t is not critical.

Next, we show that deciding whether crit(S)∩crit(V) =
∅ is at least as hard as deciding whether a tuple t is not
critical for a query Q. Indeed, if we define V = Q, and
S():−t (i.e. S simply checks for the presence of the tuple
t), then t 6∈ crit(Q) iff crit(S) ∩ crit(V) = ∅. For the
former we have claimed that it is Πp

2-hard. In summary:

Theorem 3.10. The problem of deciding whether a
conjunctive query S is secure w.r.t. to a set of conjunc-
tive views V1, . . . Vk is Πp

2-complete (query complexity).
4For conjunctive queries without order predicates it suf-
fices to pick the domains D0, D with size ≥ n. When
order predicates are allowed, then we need n fresh con-
stants between any two constants mentioned in the
queries, which leads to n(n + 1).
5Recall that NP is the class of problems that can be ex-
pressed as {z | ∃y φ(y, z)} where the “certificate” y has
length polynomial in z and φ is PTIME computable.
Complexity class Πp

2 consists of problems that can be
expressed as {z | ∀x∃y φ(x, y, z)} where x, y are polyno-
mial in z and φ is PTIME computable.

A practical algorithm For practical purposes, one
can check crit(S) ∩ crit(V̄) = ∅ and hence S | V̄ quite
efficiently. Simply compare all pairs of subgoals from S
and from V̄ . If any pair of subgoals unify, then ¬S | V̄ .
While false positives are possible, they are rare: this
simple algorithm would correctly classify all examples
in this paper.

3.3 Proof of the Fundamental Theorems
The technique used in the proof of Theorems 3.5 and 3.8
is of independent interest, and we present it here. It
may be skipped at a first reading. Throughout this
subsection we will fix the domain D and denote the set
of tuples with tup(D) = {t1, . . . , tn}. Recall our nota-
tion from Sec. 2: x1 = P[t1], . . . , xn = P[tn]. Hence, a
probability distribution P is given by a set of numbers
x̄ ∈ [0, 1]n.

The Boolean Case, Single View
We first prove both theorems for the case of boolean
queries; moreover, we will consider a single view, rather
than a set of views. Given a boolean query Q, we denote
by P[Q] the probability that Q is true on a randomly
chosen database instance. Recall from Equations (1)
and (2) that this probability is given by:

P[Q] =
X

{I∈inst(D)|Q(I)=true}

P[I]

P[I] =
Y
ti∈I

xi ·
Y
tj /∈I

(1− xj) (5)

Therefore P[Q] is given by a polynomial in the variables
x1, . . . , xn, which we denote fQ(x1, . . . , xn) or fQ(x̄).

Example 3.11 Let D = {a, b}, and consider the boolean
query:

Q() : −R(a, x), R(x, x)

In this case tup(D) = {t1, t2, t3, t4}, where t1 = R(a, a),
t2 = R(a, b), t3 = R(b, a), and t4 = R(b, b). Then Q can
be written as the following DNF formula:

Q = t1 ∨ (t2 ∧ t4)

To compute fQ one enumerates all 16 database instances
I ⊆ tup(D). Q is true on 12 of them: {t2, t4}, {t2, t3, t4},
. . . . For each of them we apply Eq.(5). This results in
a sum of 12 expressions:

fQ = (1− x1)x2(1− x3)x4 + (1− x1)x2x3x4 + . . .

After simplification we obtain: fQ = x1+x2x4−x1x2x4.
Let Q′ : −R(b, a) (so that fQ′ = x3), and consider the
boolean formula Q∧Q′. The polynomial fQ∧Q′ is equal
to fQ × fQ′ , i.e. (x1 + x2x4− x1x2x4)x3 because Q and
Q′ depend on disjoint sets of tuples.

Before we prove the two theorems we notice that query-
view security for boolean queries can be restated as fol-
lows. Given boolean queries S and V , S |P V iff:

fS∧V (x̄) = fS(x̄)× fV (x̄) (6)

where x̄ corresponds to P. Indeed, this represents pre-
cisely Equation (4) for one specific choice of s and v,
namely s = true and v = true. One can show that if
Eq.(4) holds for (true, true), then it also holds for the
other three combinations, (false, true), (true, false),
(false, false). Thus, S |PV holds precisely if (6) holds.

We now restate the two Theorems for the boolean case:

Theorem 3.5 ∀x̄ ∈ [0, 1]n.fS∧V (x̄) = fS(x̄)×fV (x̄) iff
critD(S) ∩ critD(V) = ∅.

Theorem 3.8 If S and V are monotone boolean queries,
then ∃x̄ ∈ (0, 1)n.fS∧V (x̄) = fS(x̄)×fV (x̄) implies
∀x̄ ∈ [0, 1]n.fS∧V (x̄) = fS(x̄)× fV (x̄).

The crux of the proof relies on a close examination of
the polynomials fQ. The properties we need are sum-
marized below. Their proofs are straightforward and
are omitted:

Proposition 3.12. Let fQ = P[Q], where Q is a
boolean formula in t1, . . . , tn. Then fQ is a polynomial
in the variables x1, . . . , xn with the following properties:

1. For each i = 1, . . . , n, the degree of xi is ≤ 1.

2. For each i = 1, . . . , n, the degree of xi is 1 iff
ti ∈ critD(Q). (In Example 3.11, critD(Q) =
{t1, t2, t4} and indeed x1, x2, x4 have degree 1, while
x3 has degree 0.)

3. If critD(Q1)∩critD(Q2)=∅ then fQ1∧Q2=fQ1×fQ2 .

4. Choose values in [0, 1]n−1 for all variables except
for one, xi: fQ becomes a polynomial of degree ≤ 1
in xi. Then, if Q is a monotone boolean formula,
the coefficient of xi is ≥ 0. In Example 3.11, the
coefficient of x4 in fQ is x2−x1x2, which is always
≥ 0 when x1, x2 ∈ [0, 1]2.

5. Let Q0 be the boolean formula obtained from Q
by setting tn = false, and Q1 be the boolean for-
mula obtained by setting tn = true. Then fQ0 =
fQ[xn = 0] and fQ1 = fQ[xn = 1]. In exam-
ple 3.11, Q0 = t1 and fQ[x4 = 0] = x1; similarly
Q1 = t1 ∨ t2 and fQ[x4 = 1] = x1 + x2 − x1x2.

We prove now Theorem 3.5 for the boolean case. As-
sume first that critD(S) ∩ critD(V) = ∅. Then fS∧V =
fS × fV , by Proposition 3.12, item 3. Assume now that
∀x̄ ∈ [0, 1]n.fS∧V (x̄) = fS(x̄) × fV (x̄) holds. Then the
polynomials fS∧V and fS × fV must be identical. In
particular, fS and fV cannot have a common variable
xi, otherwise its degree would be 2. Hence critD(S)
and critD(V) cannot have a common tuple (Prop. 3.12
item 2).

Next we prove Theorem 3.8 for the boolean case. Con-
sider the polynomial gS,V = fS∧V − fS × fV . We show
by induction on the number n of tuples in tup(D) that
∀x̄ ∈ [0, 1]n, gS,V (x̄) ≥ 0. It holds trivially for n =
0. For n > 0, gS,V is a polynomial of degree ≤ 2 in
xn, and the coefficient of x2

n is negative: this follows

from Proposition 3.12 item 4 and the fact that S, V are
monotone. For xn = 0, the polynomial in n − 1 vari-
ables gS,V [xn = 0] corresponds to the boolean formulas
S[tn = false], V [tn = false] (item 5 of the proposi-
tion), hence we can apply the induction hypothesis and
obtain that gS,V ≥ 0 for xn = 0. Similarly, gS,V ≥ 0 for
xn = 1, since now it corresponds to the boolean formu-
las S[tn = true], V [tn = true]. Furthermore, since gS,V

has degree ≤ 2 and the coefficient of x2
n is ≤ 0, it follows

that gS,V ≥ 0 for every xn ∈ [0, 1]. This completes the
inductive proof. Now assume that for some x̄ ∈ (0, 1)n,
gS,V (x̄) = 0. We will prove that critD(S)∩critD(V) = ∅.
Assume by contradiction that ti ∈ critD(S) ∩ critD(V)
for some tuple ti. Then gS,V is a polynomial of degree
2 in xi, with a negative coefficient for x2

i , which has at
least one root in (0, 1). It follows that gS,V must be < 0
either in xi = 0, or in xi = 1, contradicting the fact
that gS,V ≥ 0 for all x̄ ∈ [0, 1]n.

The Boolean Case, Multiple Views
Let V̄ = V1, . . . , Vn be n boolean views. The next step is
to show that S |P V̄ forall P iff S |P Vi forall i = 1, . . . , n
and all P. We illustrate for n = 2. For the ’only if’
direction we prove Eq.(4) directly. To show P[S(I) =
s ∧ V2(I)=v2] = P[S(I)=s]×P[V2(I)=v2] we notice:

P[S(I)=s ∧ V2(I)=v2] =
X
v1

P[S(I)=s ∧ V1(I)=v1 ∧ V2(I)=v2]

P[V2(I)=v2] =
X
v1

P[V1(I)=v1 ∧ V2(I)=v2]

then we use S |P (V1, V2). For the ’if’ direction, we need
to check P[S(I)=s∧V1(I)=v1∧V2(I)=v2] = P[S(I)=
s] × P[V1(I) = v1 ∧ V2(I) = v2]. Using Theorem 3.5
for the boolean, single view case, it suffices to check
critD(S)∩critD(V) = ∅ where V (I) is the boolean query
V1(I) = v1 ∧ V2(I) = v2. This follows from critD(V) ⊆
critD(V1) ∪ critD(V2), and the assumption, critD(S) ∩
critD(Vi) = ∅ for i = 1, 2.

The Non-boolean Case
We now generalize to non-boolean queries. Given a k-
ary query Q, let t1, . . . , tm be all k-tuples over the do-
main D (m = |D|k). For each i = 1, . . . , m, define
Qb

i the boolean query Qb
i (I) = (ti ∈ Q(I)); that is,

it checks whether ti is in Q. Notice that critD(Q) =S
i critD(Qb

i), and if Q is monotone then Qb
i is mono-

tone for i = 1, . . . , m.

Given a domain D and probability distribution, the fol-
lowing is easy to check, by applying directly the Defini-
tion 3.1. For any query S and views V̄ = V1, . . . Vk:

S |P V̄ iff ∀i, j, l.Sb
i |P V b

j,l

Here V b
j,l denotes (Vj)

b
l . This immediately reduces both

theorems to the boolean case.

4. MODELING PRIOR KNOWLEDGE
So far we have assumed that the adversary has no knowl-
edge about the data other than the domain D and the
probability distribution P provided by the dictionary.
Next we consider security in the presence of prior knowl-
edge, which we denote with K. Our standard for se-
curity compares Mallory’s knowledge about the secret

query S before and after publishing the views V̄ , but
always assuming he knows K. In the most general case
K is any boolean statement on the database instance I.
For example it can be a key or foreign-key constraint,
some previously published views, or some general knowl-
edge about the domain. K is thus any boolean predicate
on the instance I, and we write K(I) whenever I satis-
fies K. To avoid introducing new terminology, we will
continue to call K a boolean query. We do not how-
ever restrict K by requiring that it be expressed in a
particular query language.

4.1 Definition and Main Theorem
As before we assume domain D to be fixed. K is a
boolean query, while S and V̄ are arbitrary queries.

Definition 4.1 (Prior Knowledge Security).
Let P be a probability distribution on the tuples. We say
that S is secure w.r.t. V̄ under prior knowledge K if for
every s, v̄:

P[S(I) = s |K(I)] = P[S(I) = s | V̄ (I) = v̄ ∧K(I)]

We denote prior knowledge security by K : S |P V̄ .

Applying Bayes’ theorem reduces the above to:

P[S(I) = s ∧ V̄ (I) = v̄ ∧K(I)]×P[K(I)] =

P[S(I) = s ∧K(I)]×P[V̄ (I) = v̄ ∧K(I)] (7)

Both the prior knowledge and the relative security
applications mentioned in Sec. 1 are modeled as a se-
curity problem with prior knowledge. In the case of
relative security, we take K to be the knowledge that
the prior view has some given answer.

Theorem 3.5, which showed query-view security is equiv-
alent to disjointness of the critical tuples, can be gener-
alized for security with prior knowledge. We state the
theorem for the boolean case, and will discuss specific
generalizations to non-boolean queries and views.

Theorem 4.2. Let D be a domain, T = tup(D), and
K, S, V be arbitrary boolean queries. Then K : S |P V
for all probability distributions P iff the following holds:

COND-K There exists sets of tuples T1, T2 and boolean
queries K1, K2, V1, S2 s.t.:

T1 ∩ T2 = ∅
K = K1 ∧K2

S ∧K = K1 ∧ S2

V ∧K = V1 ∧K2

critD(K1) ⊆ T1 critD(K2) ⊆ T2

critD(V1) ⊆ T1 critD(S2) ⊆ T2

Informally, the theorem says that the space of tuples can
be partitioned into T1 and T2 such that property K is
the conjunction of two independent properties, K1 over
T1 and K2 over T2. In addition, assuming K holds, S

just says something about the tuples in T2 (and nothing
more about T1). Similarly, when K holds, V just says
something about T1 (and nothing more about T2).

By itself, this theorem does not result in a practical
decision procedure, because it is too general. We show,
however, how it can be applied to specific applications,
and in particular derive decision procedures.

4.2 Applying Prior Knowledge
Application 1: No prior knowledge As a baseline
check, let’s see what happens if there is no prior knowl-
edge. Then K = true and condition COND-K says
that there are two disjoint sets of tuples T1 and T2 such
that critD(S) ⊆ T2 and critD(V) ⊆ T1. This is equiva-
lent to saying critD(S) ∩ critD(V) = ∅, thus we recover
Theorem 3.5 for boolean queries.

Application 2: Keys and foreign keys The notion
of query-view secrecy is affected by keys and foreign-
keys constraints K. For an illustration, consider the
boolean query: S() : −R(a, b), and the boolean view
V () : −R(a, c). Here a, b, c are distinct constants. We
have S |P V for any P, because critD(S) = {R(a, b)}
and critD(V) = {R(a, c)} are disjoint. But now suppose
that the first attribute of R is a key. Then by knowing
V we know immediately that S is false, which is a total
information disclosure, hence K : S | V does not hold.

We apply now Theorem 4.2 to derive a general crite-
rion for query-view secrecy in the presence of key con-
straints K. Given a domain D, define the following
equivalence relation on tup(D): t ≡K t′ if t and t′ are
tuples over the same relation, and they have the same
key. In the example above, we have R(a, b) ≡K R(a, c),
and R(a, b) 6≡K R(d, b) for a new constant d. Given
a query Q, denote critD(Q, K) the set of tuples t s.t.
there exists a database instance I that satisfies the key
constraints K and Q(I) 6= Q(I − {t}). The following
criterion can be proven from Theorem 4.2 and shows
how to check K : S | V̄ .

Corollary 4.3. Let K be a set of key constraints,
D a domain, and S, V̄ be any queries. Then S |P V̄ for
any P iff ∀t ∈ critD(S, K), ∀t′ ∈ critD(V̄ , K), t 6≡K t′.
In particular, the problem whether K : S |P V for all P
is decidable, and Πp

2-complete.

As a simple illustration, in the previous example, we
have critD(S, K) = {R(a, b)}, critD(V, K) = {R(a, c)},
and R(a, b) ≡K R(a, c), hence it is not the case that K :
S |P V for all P. Foreign keys can be handled similarly,
however the corresponding decidability and complexity
result holds only when the foreign keys introduce no
cycles.

Application 3: Cardinality Constraint. What hap-
pens if Mallory has some partial knowledge about the
cardinality of the secret database? This is quite com-
mon in practice. For example the number of patients
in a hospital is likely to be between 100 or 1,000, but

not 2 and not 1,000,000. In this case K is a cardinal-
ity constraint, such as “there are exactly n tuples in I”
or “there are at most n tuples” or “at least n tuples”.
Surprisingly, there are no secure queries when the prior
knowledge involves any cardinality constraints! This fol-
lows from Theorem 4.2 since K cannot be expressed as
K1 ∧K2 over disjoint sets of tuples, by a simple count-
ing argument, except for the trivial case when T1 = ∅
or T2 = ∅. Hence, no query is perfectly secret w.r.t. to
any view in this case, except if one of them (S or V) is
trivially true or false.

Application 4: Protecting Secrets with Knowl-
edge Sometimes prior knowledge can protect secrets!
Take any queries S, V̄ , and assume that S is not secure
w.r.t. V̄ . Suppose now that we disclose publicly the sta-
tus of every tuple in critD(S) ∩ critD(V̄). That is, for
each common critical tuple t we announce whether t ∈ I
or t 6∈ I. If we denote with K this knowledge about all
common critical tuples, then Theorem 4.2 implies that
K : S |P V̄ for any P, as we show below. For a simple
illustration, assume S() : −R(a,−) and V () : −R(−, b).
They are not secure because critD(S) ∩ critD(V) =
{R(a, b)}. But now suppose we disclose that the pair
(a, b) is not in the database, R(a, b) 6∈ I, and call this
knowledge K. Then K : S |P V . The same is true if
we publicly announce that R(a, b) is in the database
instance. We prove this formally next:

Corollary 4.4. Let K be such that ∀t ∈ critD(S)∩
critD(V̄), either K |= t ∈ I, or K |= t 6∈ I. Then, for
every P, K : S |P V̄ .

Proof. We will prove this for two boolean queries
S, V only: the general case follows easily. Let T1 =
critD(S)∩critD(V), and T2 = tup(D)−T1. Let K1 = K,
K2 = true, S2 = S, V1 = V ∧K. Then the conditions
of Theorem 4.2 are satisfied, hence K : S |P V for any
P.

Application 5: Prior Views. Suppose Alice already
published a view U (there may have been leakage about
S, but she decided the risk was acceptable). Now she
wants to publish another view V , and she wonders: will
I leak any more information about S?

Using Theorem 4.2 we give below a decision procedure
for the case of conjunctive queries, but only when U is
a boolean query. This is a limitation, and due to the
fact that both sides of the formula (7) are linear in S
and V̄ , but not in K: this made it possible to gener-
alize statements from boolean queries S, V to arbitrary
ones, but not for K. To simplify the statement, we also
restrict S and V to be boolean: these, however, can be
generalized to arbitrary conjunctive queries.

Corollary 4.5. Let U, S, V be boolean conjunctive
queries. Then U : S |P V for every probability distribu-

tion P iff each of the queries can be split as follows:

U = U1 ∧ U2

S = S1 ∧ S2

V = V1 ∧ V2

Such that the sets critD(U1)∪ critD(S1)∪ critD(V1) and
critD(V2)∪critD(S2)∪critD(V2) are disjoint, and U1 ⇒
S1 and U2 ⇒ V2. Hence, U : S |P V is decidable.

The proof follows rather directly from Theorem 4.2 and
is omitted. For a simple illustration consider:

U : − R1(a, b,−,−), R2(d, e,−,−)

S : − R1(a,−,−,−), R2(d, e, f,−)

V : − R1(a, b, c,−), R2(d,−,−,−)

Here S is not secure w.r.t. either U or V . However, U :
S | V . By giving out U we already disclosed something
about S, namely R1(a,−,−,−). By publishing V in
addition we do not further disclose any information.

4.3 Proof of Theorem 4.2

Proof. (sketch) For boolean queries, K : S |P V can
be expressed as follows:

P[S ∧ V ∧K]×P[K] = P[S ∧K]×P[V ∧K]

Using the notation fQ for a boolean query Q (see Sec. 3.3),
this becomes:

fS∧V ∧K(x̄)× fK(x̄) = fS∧K(x̄)× fV ∧K(x̄) (8)

We need to prove that (8) holds for any x̄ ∈ [0, 1]n iff
COND-K holds. For that we need the properties of
fQ in Proposition 3.12 plus three more. Call any multi-
variable polynomial g(x̄) of degree ≤ 1 in each variable
a boolean polynomial if ∀x̄ ∈ {0, 1}n, g(x̄) is either 0 or
1. Clearly, any polynomial fQ is a boolean polynomial.

Proposition 4.6.

1. If g is a boolean polynomial then there exists a
unique boolean formula Q s.t. g = fQ.

2. Let Q be a boolean formula, and suppose fQ is
the product of two polynomials fQ = g × h. Then
there exists a constant c 6= 0 s.t. both cg and 1

c
h

are boolean polynomials.

3. If fQ = fQ1×fQ2 then critD(Q1)∩critD(Q2) = ∅.

We can now prove the equivalence of (8) to COND-K.
Assume (8) holds for every x̄ ∈ [0, 1]n, i.e. this is an
identity of polynomials. Then fK divides fS∧K×fV ∧K .
Hence fK = g × h where g divides fS∧K and h di-
vides fV ∧K . By Prop. 4.6 we can assume that g, h are
boolean, hence fK = fK1 × fK2 for some boolean for-
mulas K1, K2, and moreover we have K = K1 ∧K2 and
critD(K1) ∩ critD(K2) = ∅. Since fK1 divides fS∧K ,
we can write the latter as fS∧K = fK1 × fS2 , for some
boolean query S2, which implies S∧K = K1∧S2. Sim-
ilarly, fK2 divides fV ∧K , hence we can write the latter

as fV ∧K = fV1 × fK2 for some query V1. Finally, sub-
stituting in (8) and simplifying with fK1 × fK2 we get
fS∧V ∧K = fV1 × fS2 . It follows that fV1 and fS2 have
no common variables, hence critD(V1) ∩ critD(S2) = ∅.
Define T1 = critD(K1)∪critD(V1) and T2 = tup(D)−T1.
Then it follows that critD(K2) ⊆ T2 and critD(S2) ⊆ T2,
completing the proof of COND-K.

For the other direction, assume COND-K is satisfied
and let’s prove (8). We have:

fS∧V ∧K = f(K1∧V1)∧(K2∧S2) = fK1∧V1 × fK2∧S2

fK = fK1 × fK2

fS∧K = fK1 × fS2∧K2

fV ∧K = fV1∧K1 × fK2

and (8) follows immediately.

5. MEASURING DISCLOSURES
Our standard for query-view security is very strong. It
classifies as insecure query-view pairs that are consid-
ered secure in practice. In many applications we can
tolerate deviations from this strong standard, as long
as the deviations are not too large. We discuss here
a measure of information disclosure that attempts to
quantify the amount by which a query and view depart
from our definition of security. Ours is one possible
choice of measure; others are definitely possible. The
main objective is to show that the theoretical concepts
and results presented in this work can be employed to
evaluate information disclosure in practical settings. We
restrict our discussion to the case of no prior knowledge.

We will define a measure of positive information dis-
closure. This is easier to analyze, and far more impor-
tant in practice than negative information disclosure.
An example of the former is whether “John Johnson”
has “cardiovascular disease”; and example of the latter
is whether “John Johnson” does not have “cardiovascu-
lar disease”. We will restrict the queries S and V̄ to
be monotone queries, and will study atomic statements
given by inclusions s ⊆ S(I) and v̄ ⊆ V̄ (I), which are
monotone in I.

Our definition of leakage is the following:

leak(S, V̄) = sup
s,v̄

P[s ⊆ S(I) | v̄ ⊆ V̄] − P[s ⊆ S(I)]

P[s ⊆ S(I)]
(9)

The goal of a user wishing to publish V̄ while not dis-
closing S is to ensure that leak(S, V̄) � 1. This will en-
sure that P[s ⊆ S(I)] can increase only very little after
publishing the view, giving Mallory a negligible amount
of positive information. S |P V̄ iff leak(S, V̄) = 0.

For a given s, v̄, denote Ss(I) and Vv̄ the boolean queries
s ⊆ S(I) and v̄ ⊆ V̄ (I). Let Ts,v̄ = critD(Ss)∩critD(Vv̄).
We know from Theorem 3.5 that, when Ts,v̄ = ∅, then
the difference in Eq.(9) is 0 for this pair of s and v̄.
Our analysis of the leakage is based on the probability
of I having some tuple in Ts,v̄. Let’s denote Ls,v̄(I) the
predicate I ∩ Ts,v̄ 6= ∅, and Ks,v̄ = ¬Ls,v̄. Then by
Corollary 4.4, K : Ss |P Vv̄, and we can prove:

Theorem 5.1. Suppose that there exists some ε < 1
such that for all s and for all v̄:

P[Ls,v̄(I) | Ss(I) ∧ Vv̄(I)] < ε

Then: leak(S, V̄) ≤ ε2

1−ε2

Example 5.2 Minute leakage We will illustrate with
the example in Table 1. We abbreviate here with E(n, d, p)
the table Employee(name,department,phone). Consider
the view V (d) : −E(n, d, p) and the query S(n, p) :
−E(n, d, p) (it corresponds to S2 in the table). To sim-
plify the discussion we consider the case when s and
v consists of a single tuple. First, s = (dname, dphone)
is a secret name-phone pair, and v = (ddept) is some
department that we publish. The boolean queries are
Vv(I) = (v ∈ V (I)) and Ss(I) = (s ∈ S(I)). We have
critD(Vv) = {(−, ddept,−)}, critD(Ss) = {(dname,−,
dphone)}, and Ts,v = {(dname, ddept, dphone)}. The con-
ditional probability P[L | Ss ∧ Vv] is in this case P[L ∧
Ss∧Vv]/P[Ss∧Vv] = P[L]/P[Ss∧Vv]. This corresponds
to ε in Theorem 5.1. For example, assuming a uniform
probability distribution P[t] = p for all t ∈ tup(D),
and denoting n1, n2, n3 the number of names, depart-
ments, and phone numbers in the dictionary, we have
P[L] = p and P[Ss ∧ Vv] = p + (p(n2 − 1))× (p(n1n3 −
1)) ≈ p2n1n2n3. It follows that P[L | Ss ∧ Vv] ≈
1/(pn1n2n3) = 1/m, where m is the expected cardinal-
ity of an instance I. It can be shown that P[L | Ss∧Vv]
is small for any sets s, v, implying that ε in Theorem 5.1
is small. Hence the information disclosure about S by
publishing V is minute. Example (3) in Table 1 can be
explained similarly.

Example 5.3 Collusions Continuing the example, con-
sider now the view V (n, d) : −E(n, d, p) and the query
S(n, p) : −E(n, d, p) (they correspond to S2, V2 in the
table). We will still restrict s and v to a single tuple.
The interesting case here is when s = (dname, dphone)
and v = (dname, ddept). As before we obtain Ts,v =
{(dname, ddept, dphone)}. The conditional probability P[L |
Ss ∧Vv] = P[L]/P[Ss ∧Vv] is slightly larger than in the
previous example, because P[Ss ∧ Vv] has decreased.
The ε in Theorem 5.1 increases, suggesting more infor-
mation disclosure. This is to be expected, since now
the view discloses information about the names in the
secret query.

Consider now the effect of the collusion between the
view V and the view V ′(d, p) : −E(n, d, p) (this is V ′

2 in
Table 1). The interesting case to consider here is s =
(dname, dphone), v = (dname, ddept), v′ = (ddept, dphone).
We still have Ts,v,v′ = {(dname, ddept, dphone)}. Now,
P[L | Ss ∧ Vv ∧ V ′

v′] = P[L]/P[Ss ∧ Vv ∧ V ′
v′] is even

smaller, because P[Ss∧Vv∧V ′
v′] is smaller. The amount

of leakage given by Theorem 5.1 is now larger.

6. RELATED WORK
We have made references in the body of the paper to
both query answering [13] and statistical database se-
curity [1, 6]. A probabilistic definition of security is

discussed in [2, 3], with an emphasis on comparing prob-
abilistic independence to algebraic independence.

The so-called FKG inequality [10] is a theoretical result
about the correlation between events in a probability
space. It is closely related to our security criterion, and
can be used to show that P(V ∧ S) ≥ P(V)P(S), for
monotone boolean properties V and S. However, it says
nothing about when equality holds, and it’s inductive
proof offers little insight. Our Theorem 3.8 reproves
this inequality and furthermore proves the necessary
and sufficient condition for equality to hold. Another
topic that connects logic to probability theory are the
0-1 laws [8, 9], which hold for a logical language if, for
each formula, the probability that a formula is true con-
verges to either 0 or 1 as the size of the domain tends
to infinity. Our definition of query-view security is not
related to 0-1 laws: our domain size does not grow to in-
finity but remains fixed and we are concerned about the
effect of one formula (the view) on another (the secret
query).

Access control mechanisms in databases [4, 6] are used
to define the rights of authorized subjects to read or
modify data elements, and therefore usually offer con-
trol at a physical level, rather than a logical level. For
example, a simple access control policy might prohibit
access to confidential columns in a relation. This is
similar to publishing a view after projecting out those
columns. We have shown that such a view can in fact
contain a partial disclosure about the confidential col-
umn (see Example 3.2).

A query is independent of an update if the application
of the update cannot change the result of the query,
for any state of the database. Detecting update inde-
pendence is useful for maintenance of materialized views
[5, 7, 15] and efficient constraint checking [12]. Deciding
whether a tuple t is critical for a query Q is equivalent
to deciding whether Q is independent of the update that
deletes t from the database. Update independence is un-
decidable for queries and updates expressed as datalog
programs [15], but has been shown decidable for cer-
tain restricted classes of queries like conjunctive queries
with comparisons [5, 7, 15]. The tight bounds shown in
this paper for deciding crit(Q) constitute an interesting
special case for update independence.

Finally, the goal of the probabilistic relational model
[11, 14] is to model statistical patterns in huge amounts
of data. The issues addressed are learning models from
existing data, modeling statistics about a given database
(e.g. to be used by a query optimizer), and inferring
missing attribute values. These techniques do not pro-
vide us with means to reason about information disclo-
sure, which is independent of a particular data instance.

7. CONCLUSION
We have presented a novel definition of security for ana-
lyzing the information disclosure of exchanged database
views and shown several important results. Our work
is foundational. However, we argue that it is indispens-

able for developing practical tools for monitoring infor-
mation disclosure. We have already shown how one of
our foundational results (Corollary 4.4) can be applied
to measure leakage (Theorem 5.1). We believe these re-
sults may be a basis for logically securing data exchange
frameworks in the future.

Acknowledgments Ron Fagin, Venkatesan Guruswami,
Daniele Micciancio, and Victor Vianu provided helpful com-
ments on this work. Suciu was partially supported by the
NSF CAREER Grant IIS-0092955, NSF Grant IIS-0140493,
a gift from Microsoft, and a Sloan Fellowship. Miklau was
partially supported by NSF Grant IIS-0140493.

8. REFERENCES
[1] N. R. Adam and J. C. Wortman. Security-control

methods for statistical databases. ACM Computing
Surveys, 21(4):515–556, Dec. 1989.

[2] F. Bancilhon and N. Spyratos. Protection of
information in relational data bases. In VLDB, 1977.

[3] F. Bancilhon and N. Spyratos. Algebraic versus
probabilistic independence in data bases. In PODS,
pages 149–153, 1985.

[4] E. Bertino, S. Jajodia, and P. Samarati. Database
security: research and practice. Inf. Syst.,
20(7):537–556, 1995.

[5] J. A. Blakeley, N. Coburn, and P.-V. Larson. Updating
derived relations: detecting irrelevant and
autonomously computable updates. ACM Trans.
Database Syst., 14(3):369–400, 1989.

[6] D. Denning. Cryptography and Data Security.
Addison-Wesley Publishing Co., 1982.

[7] C. Elkan. Independence of logic database queries and
update. In PODS, pages 154–160, 1990.

[8] R. Fagin. Probabilities on finite models. Notices of the
Am. Math. Soc., October:A714, 1972.

[9] R. Fagin. Probabilities on finite models. Journal of
Symbolic Logic, 41(1), 1976.

[10] C. Fortuin, P. Kasteleyn, and J. Ginibre. Correlation
inequalities on some partially ordered sets. Comm.in
Math. Physics, 22:89–103, 1971.

[11] L. Getoor, B. Taskar, and D. Koller. Selectivity
estimation using probabilistic models. In SIGMOD,
2001.

[12] A. Gupta, Y. Sagiv, J. D. Ullman, and J. Widom.
Constraint checking with partial information. In
PODS, 1994.

[13] A. Halevy. Answering queries using views: A survey.
VLDB Journal, 10(4):270–294, 2001.

[14] D. Koller and A. Pfeffer. Probabilistic frame-based
systems. In Conference on Artificial Intelligence, pages
580–587, 1998.

[15] A. Y. Levy and Y. Sagiv. Queries independent of
updates. In Conference on Very Large Data Bases,
pages 171–181, 1993.

[16] G. Miklau and D. Suciu. A formal analysis of
information disclosure in data exchange. University of
Washington Technical Report (TR 03-12-02), Dec
2003. www.cs.washington.edu/homes/gerome.

[17] B. Schneier. Applied Cryptography, Second Edition.
John Wiley and Sons, Inc., 1996.

[18] C. E. Shannon. Communication theory of secrecy
systems. In Bell System Technical Journal, 1949.

[19] L. Sweeney. k-Anonymity: a model for protecting
privacy. Int. J. on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5), 2002.

