
Computing Query Probability with Incidence
Algebras

Technical Report UW-CSE-10-03-02
University of Washington

Nilesh Dalvi, Karl Schnaitter and Dan Suciu

Revised: August 24, 2010

Abstract

We describe an algorithm that evaluates queries over probabilistic databases
using Mobius’ inversion formula in incidence algebras. The queries we consider
are unions of conjunctive queries (equivalently: existential, positive First Order
sentences), and the probabilistic databases are tuple-independent structures. Our
algorithm runs in PTIME on a subset of queries called ”safe” queries, and is com-
plete, in the sense that every unsafe query is hard for the class FP#P . The al-
gorithm is very simple and easy to implement in practice, yet it is non-obvious.
Mobius’ inversion formula, which is in essence inclusion-exclusion, plays a key
role for completeness, by allowing the algorithm to compute the probability of
some safe queries even when they have some subqueries that are unsafe. We also
apply the same lattice-theoretic techniques to analyze an algorithm based on lifted
conditioning, and prove that it is incomplete.

1 Introduction
In this paper we show how to use incidence algebras to evaluate unions of conjunctive
queries over probabilistic databases. These queries correspond to the select-project-
join-union fragment of the relational algebra, and they also correspond to existential
positive formulas of First Order Logic. A probabilistic database, also referred to as
a probabilistic structure, is a pair (A, P) where A = (A, RA1 , . . ., RAk) is first order
structure over vocabularyR1, . . . , Rk, and P is a function that associates to each tuple t
in A a number P (t) ∈ [0, 1]. A probabilistic structure defines a probability distribution
on the set of substructures B of A by:

PA(B) =
k∏
i=1

(
∏
t∈RB

i

P (t)×
∏

t∈RA
i −RB

i

(1− P (t))) (1)

1

We describe a simple, yet quite non-obvious algorithm for computing the proba-
bility of an existential, positive FO sentence Φ, PA(Φ)1, based on Mobius’ inversion
formula in incidence algebras. The algorithm runs in polynomial time in the size of
A. The algorithm only applies to certain sentences, called safe sentences, and is sound
and complete in the following way. It is sound, in that it computes correctly the proba-
bility for each safe sentence, and it is complete in that, for every fixed unsafe sentence
Φ, the data complexity of computing Φ is FP#P -hard. This establishes a dichotomy
for the complexity of unions of conjunctive queries over probabilistic structures. The
algorithm is more general than, and significantly simpler than a previous algorithm for
conjunctive sentences [5].

The existence of FP#P -hard queries on probabilistic structures was observed by
Grädel et al. [8] in the context of query reliability. In the following years, several stud-
ies [4, 6, 12, 11], sought to identify classes of tractable queries. These works provided
conditions for tractability only for conjunctive queries without self-joins. The only ex-
ception is [5], which considers conjunctive queries with self-joins. We extend those
results to a larger class of queries, and at the same time provide a very simple algo-
rithm. Some other prior work is complimentary to ours, e.g., the results that consider
the effects of functional dependencies [12].

Our results have applications to probabilistic inference on positive Boolean expres-
sions [7]. For every tuple t in a structure A, let Xt be a distinct Boolean variable.
Every existential positive FO sentence Φ defines a positive DNF Boolean expression
over the variables Xt, sometimes called lineage expression, whose probability is the
same as PA(Φ). Our result can be used to classify the complexity of computing the
probability of Positive DNF formulas defined by a fixed sentence Φ. For example, the
two sentences2

Φ1 = R(x), S(x, y) ∨ S(x, y), T (y) ∨R(x), T (y)
Φ2 = R(x), S(x, y) ∨ S(x, y), T (y)

define two classes of positive Boolean DNF expressions (lineages):

F1 =
_

a∈R,(a,b)∈S

XaYa,b ∨
_

(a,b)∈S,b∈T

Ya,b, Zb ∨
_

a∈R,b∈S

XaYb

F2 =
_

a∈R,(a,b)∈S

XaYa,b ∨
_

(a,b)∈S,b∈T

Ya,b, Zb

Our result implies that, for each such class of Boolean formulas, either all formulas in
that class can be evaluated in PTIME in the size of the formula, or the complexity for
that class is hard for FP#P ; e.g. F1 can be evaluated in PTIME using our algorithm,
while F2 is hard.

The PTIME algorithm we present here relies in a critical way on an interesting
connection between existential positive FO sentences and incidence algebras [17]. By
using the Mobius inversion formula in incidence algebras we resolve a major difficulty

1This is the marginal probability PA(Φ) =
P

B:B|=Φ PA(B).
2We omit quantifiers and drop the conjunct they are clear from the context, e.g. Φ2 = ∃x∃y(R(x) ∧

S(x, y) ∨ S(x, y) ∧ T (y)).

2

of the evaluation problem: a sentence that is in PTIME may have a subexpression that is
hard. This is illustrated by Φ1 above, which is in PTIME, but has Φ2 as a subexpression,
which is hard; to evaluate Φ1 one must avoid trying to evaluate Φ2. Our solution is
to express P (Φ) using Mobius’ inversion formula: subexpressions of Φ that have a
Mobius value of zero do not contribute to P (Φ), and this allows us to compute P (Φ)
without computing its hard subexpressions. The Mobius inversion formula corresponds
to the inclusion/exclusion principle, which is ubiquitous in probabilistic inference: the
connection between the two in the context of probabilistic inference has already been
recognized in [9]. However, to the best of our knowledge, ours is the first application
that exploits the full power of Mobius inversion to remove hard subexpressions from a
computation of probability.

Another distinguishing, and quite non-obvious aspect of our approach is that we
apply our algorithm on the CNF, rather than the more commonly used DNF represen-
tation of existential, positive FO sentences. This departure from the common repre-
sentation of existential, positive FO is necessary in order to handle correctly existential
quantifiers.

We call sentences on which our algorithm works safe; those on which the algo-
rithm fails we call unsafe. We prove a theorem stating that the evaluation problem of
a safe query is in PTIME, and of an unsafe query is hard for FP#P : this establishes
both the completeness of our algorithm and a dichotomy of all existential, positive FO
sentences. The proof of the theorem is in two steps. First, we define a simple class of
sentences called forbidden sentences, where each atom has at most two variables, and
a set of simple rewrite rules on existential, positive FO sentences; we prove that the
safe sentences can be characterized as those that cannot be rewritten into a forbidden
sentence. Second, we prove that every forbidden sentence is hard for FP#P , using a
direct, and rather difficult proof which we include in [3]. Together, these two results
prove that every unsafe sentence is hard for FP#P , establishing the dichotomy. No-
tice that our characterization of safe queries is reminiscent of minors in graph theory.
There, a graph H is called a minor of a graph G if H can be obtained from G through
a sequence of edge contractions. “Being a minor of” defines a partial order on graphs:
Robertson and Seymour’s celebrated result states that any minor-closed family is char-
acterized by a finite set of forbidden minors. Our characterization of safe queries is
also done in terms of forbidden minors, however the order relation is more complex
and the set of forbidden minors is infinite.

In the last part of the paper, we make a strong claim: that using Mobius’ inver-
sion formula is a necessary technique for completeness. Today’s approaches to gen-
eral probabilistic inference for Boolean expressions rely on combining (using some
advanced heuristics) a few basic techniques: independence, disjointness, and condi-
tioning. In conditioning, one chooses a Boolean variable X , then computes P (F) =
P (F | X)P (X)+P (F | ¬X)(1−P (X)). We extended these techniques to unions of
conjunctive queries, an approach that is generally known as lifted inference [13, 16, 15]
and given a PTIME algorithm based on these three techniques. The algorithm performs
conditioning on subformulas of Φ instead of Boolean variables. We prove that this al-
gorithm is not complete, by showing a formula Φ (Fig. 2) that is computable in PTIME,
but for which it is not possible to compute using lifted inference that combines condi-
tioning, independence, and disjointness on subformulas. On the other hand, we note

3

that conditioning has certain practical advantages that are lost by Mobius’ inversion for-
mula: by repeated conditioning on Boolean variables, one can construct a Free Binary
Decision Diagram [18], which has further applications beyond probabilistic inference.
There seems to be no procedure to convert Mobius’ inversion formula into FBDDs; in
fact, we conjecture that the formula in Fig. 2 does not have an FBDD whose size is
polynomial in that of the input structure.

Finally, we mention that a different way to define classes of Boolean formulas has
been studied in the context of the constraint satisfaction problem (CSP). Creignou et
al. [2, 1] showed that the counting version of the CSP problem has a dichotomy into
PTIME and FP#P -hard. These results are orthogonal to ours: they define the class of
formulas by specifying the set of Boolean operators, such as and/or/not/majority/parity
etc, and do not restrict the shape of the Boolean formula otherwise. As a consequence,
the only class where counting is in PTIME is defined by affine operators: all classes
of monotone formulas are hard. In contrast, in our classification there exist classes of
formulas that are in PTIME, for example the class defined by Φ1 above.

2 Background and Overview
Prior Results A very simple PTIME algorithm for conjunctive queries without self-
joins is discussed in [4, 6]. When the conjunctive query is connected, the algorithm
chooses a variable that occurs in all atoms (called a root variable) and projects it out,
computing recursively the probabilities of the sub-queries; if no root variable exists,
then the query is FP#P -hard. When the conjunctive query is disconnected, then the al-
gorithm computes the probabilities of the connected components, then multiples them.
Thus, the algorithm alternates between two steps, called independent projection, and
independent join. For example, consider the conjunctive query3:

ϕ = R(x, y), S(x, z)

The algorithm computes its probability by performing the following steps:

P (ϕ) = 1−
∏
a∈A

(1− P (R(a, y), S(a, z)))

P (R(a, y), S(a, z)) = P (R(a, y)) · P (S(a, z))

P (R(a, y)) = 1−
∏
b∈A

(1− P (R(a, b)))

P (S(a, z)) = 1−
∏
c∈A

(1− P (S(a, c)))

The first line projects out the root variable x, where A is the active domain of the
probabilistic structure: it is based on fact that, in ϕ ≡ ∨

a∈A(R(a, y), S(a, z)), the
sub-queries R(a, y), S(a, z) are independent for distinct values of the constant a. The

3All queries are Boolean and quantifiers are dropped; in complete notation, ϕ is
∃x.∃y.∃z.R(x, y), S(x, z).

4

second line applies independent join; and the third and fourth lines apply independent
project again.

This simple algorithm, however, cannot be applied to a query with self-joins be-
cause both the projection and the join step are incorrect. For a simple example, con-
sider R(x, y), R(y, z). Here y is a root variable, but the queries R(x, a), R(a, z) and
R(x, b), R(b, z) are dependent (both depend on R(a, b) and R(b, a)). Hence, it is not
possible to do an independent projection on y. In fact, this query is FP#P -hard.

Queries with self-joins were analyzed in [5] based on the notion of an inversion. In
a restricted form, an inversion consists of two atoms, over the same relational symbol,
and two positions in those atoms, such that the first position contains a root variable
in the first atom and a non-root variable in the second atom, and the second position
contains a non-root / root pair of variables. In our example above, the atoms R(x, y)
and R(y, z) and the positions 1 and 2 form an inversion: position 1 has variables x
and y (non-root / root) and position 2 has variables y and z (root / non-root). The
paper describes a first PTIME algorithm for queries without inversions, by expressing
its probability in terms of several sums, each of which can be reduced to a polynomial
size expression. Then, the paper notices that some queries with inversion can also be
computed in polynomial time, and describes a second PTIME algorithm that uses one
sum (called eraser) to cancel the effect of a another, exponentially sized sum. The
algorithm succeeds if it can erase all exponentially sized sums (corresponding to sub-
queries with inversions).

Our approach The algorithm that we describe in this paper is both more general
(it applies to unions of conjunctive queries), and significantly simpler than either of the
two algorithms in [5]. We illustrate it here on a conjunctive query with a self-join (S
occurs twice):

ϕ = R(x1), S(x1, y1), S(x2, y2), T (x2)

Our algorithm starts by applying the inclusion-exclusion formula:

P (R(x1), S(x1, y1), S(x2, y2), T (x2)) =
P (R(x1), S(x1, y1)) + P (S(x2, y2), T (y2))
−P (R(x1), S(x1, y1) ∨ S(x2, y2), T (x2))

This is the dual of the more popular inclusion-exclusion formula for disjunctions;
we describe it formally in the framework of incidence algebras in Sec. 3. The first two
queries are without self-joins and can be evaluated as before. To evaluate the query on
the last line, we simultaneously project out both variables x1, x2, writing the query as:

ψ =
∨
a∈A

(R(a), S(a, y1) ∨ S(a, y2), T (a))

The variables x1, x2 are chosen because they satisfy the following conditions: they
occur in all atoms, and for the atoms with the same relation name (S in our case)
they occur in the same position. We call such a set of variables separator variables
(Sec. 4). As a consequence, sub-queriesR(a), S(a, y1)∨S(a, y2), T (a) corresponding

5

to distinct constants a are independent. We use this independence, then rewrite the sub-
query into CNF and apply the inclusion/exclusion formula again:

P (ψ) = 1−
Y
a∈A

(1− P (R(a), S(a, y1) ∨ S(a, y2), T (a)))

R(a), S(a, y1) ∨ S(a, y2), T (a) ≡ (R(a) ∨ T (a)) ∧ S(a, y)

P ((R(a) ∨ T (a)) ∧ S(a, y))

= P (R(a) ∨ T (a)) + P (S(a, y))− P (R(a) ∨ T (a) ∨ S(a, y))

= P (R(a)) + P (T (a))− P (R(a)) · P (T (a))

−1 + (1− P (R(a)))(1− P (T (a)))
Y
b∈A

(1− P (S(a, b)))

In summary, the algorithm alternates between applying the inclusion/exclusion for-
mula, and performing a simultaneous projection on separator variables: when no sep-
arator variables exists, then the query is FP#P -hard. The two steps can be seen as
generalizations of the independent join, and the independent projection for conjunctive
queries without self-joins.

Ranking Before running the algorithm, a rewriting of the query is necessary. Con-
sider R(x, y), R(y, x): it has no separator variable because neither x nor y occurs in
both atoms on the same position. After a simple rewriting, however, the query can
be evaluated by our algorithm: partition the relation R(x, y) into three sets, accord-
ing to x < y, x = y, x > y, call them R<, R=, R>, and rewrite the query as
R<(x, y), R>(y, x) ∨ R=(z). Now x, z is a separator, because the three relational
symbols are distinct. We call this rewriting ranking (Sec. 5). It needs to be done only
once, before running the algorithm, since all sub-queries of a ranked queries are ranked.
A similar but more general rewriting called coverage was introduced in [5]: ranking
corresponds to the canonical coverage.

Incidence Algebras An immediate consequence of using the inclusion-exclusion
formula is that sub-queries that happen to cancel out do not have to be evaluated. This
turns out to be a fundamental property of the algorithm that allows it to be complete
since, as we have explained, some queries are in PTIME but may have sub-queries that
are hard. This cancellation is described by the Mobius inversion formula, which groups
equal terms in the inclusion-exclusion expansion under coefficients called the Mobius
function. Using this notion, it is easy to state when a query is PTIME: this happens
if and only if all its sub-queries that have a non-zero Mobius function are in PTIME.
Thus, while the algorithm itself could be described without any reference to the Mobius
inversion formula, by simply using inclusion-exclusion, the Mobius function gives a
key insight into what the algorithm does: it recurses only on sub-queries whose Mobius
function is non-zero. In fact, we prove the following result (Theorem 6.6): for every
finite lattice, there exists a query whose sub-queries generate precisely that lattice, such
that all sub-queries are in PTIME except that corresponding to the bottom of the lattice.
Thus, the query is in PTIME iff the Mobius function of the lattice bottom is zero. In
other words, any formulation of the algorithm must identify, in some way, the elements
with a zero Mobius function in an arbitrary lattice: queries are as general as any lattice.
For that reason we prefer to expose the Mobius function in the algorithm rather than
hide it under the inclusion/exclusion formula.

6

Lifted Inference At a deeper level, lattices and their associated Mobius function
help us understand the limitations of alternative query evaluation algorithms. In Sec. 7
we study an evaluation algorithm based on lifted conditioning and disjointness. We
show that conditioning is equivalent to replacing the lattice of sub-queries with a certain
sub-lattice. By repeated conditioning one it is sometimes possible to simplify the lattice
sufficiently to remove all hard sub-queries whose Mobius function is zero. However,
we given an example of a lattice with 9 elements (Fig 2) whose bottom element has the
Mobius function equal to zero, but where no conditioning can further restrict the lattice.
Thus, the algorithm based on lifted conditioning makes no progress on this lattice, and
cannot evaluate the corresponding query. By contrast, our algorithm based on Mobius’
inversion formula will easily evaluate the query by skipping the bottom element (since
its Mobius function is zero). Thus, our new algorithm based on Mobius’ inversion
formula is more general than existing techniques based on lifted inference. Finally, we
comment on the implications for the completeness of the algorithm in [5].

In the rest of the paper we will refer to conjunctive queries and unions of con-
junctive queries as conjunctive sentences, and existential positive FO sentences (or just
positive FO sentences) respectively.

3 Existential Positive FO and Incidence Algebras
We describe here the connection between positive FO and incidence algebras. We start
with basic notations.

3.1 Existential Positive FO
Fix a vocabulary R̄ = {R1, R2, . . .}. A conjunctive sentence ϕ is a first-order logical
formula obtained from positive relational atoms using ∧ and ∃:

ϕ = ∃x̄.(r1 ∧ . . . ∧ rk) (2)

We allow the use of constants. V ar(ϕ) = x̄ denotes the set of variables in ϕ, and
Atoms(ϕ) = {r1, . . . , rk} the set of atoms. Consider the undirected graph where the
nodes are Atoms(ϕ) and edges are pairs (ri, rj) s.t. ri, rj have a common variable. A
component of ϕ is a connected component in this graph. Each conjunctive sentence ϕ
can be written as:

ϕ = γ1 ∧ . . . ∧ γp
where each γi is a component; in particular, γi and γj do not share any common vari-
ables, when i 6= j.

A disjunctive sentence is an expression of the form:

ϕ′ = γ′1 ∨ . . . ∨ γ′q
where each γ′i is a single component.

7

An existential, positive sentence Φ is obtained from positive atoms using ∧, ∃ and
∨; we will refer to it briefly as positive sentence. We write a positive sentence either in
DNF or in CNF:

Φ = ϕ1 ∨ . . . ∨ ϕm (3)
Φ = ϕ′1 ∧ . . . ∧ ϕ′M (4)

where ϕi are conjunctive sentences in DNF (3), and ϕ′i are disjunctive sentences in
CNF (4). The DNF can be rewritten into the CNF by:

Φ =
∨

i=1,m

∧
j=1,pi

γij =
∧
f

∨
i

γif(i)

where f ranges over functions with domain [m] s.t. ∀i ∈ [m], f(i) ∈ [pi]. This
rewriting can increase the size of the sentence exponentially4. Finally, we will often
drop ∃ and ∧ when clear from the context.

A classic result by Sagiv and Yannakakis [14] gives a necessary and sufficient con-
dition for a logical implication of positive sentences written in DNF: if Φ =

∨
i ϕi and

Φ′ =
∨
j ϕ
′
j , then:

Φ⇒ Φ′ iff ∀i.∃j.ϕi ⇒ ϕ′j (5)

No analogous property holds for CNF:R(x, a), S(a, z) logically impliesR(x, y), S(y, z)
(where a is a constant), butR(x, a) 6⇒ R(x, y), S(y, z) and S(a, z) 6⇒ R(x, y), S(y, z).
We show in Sec. 5 a rewriting technique that enforces such a property.

3.2 Incidence Algebras
Next, we review the basic notions in incidence algebras following Stanley [17]. A finite
lattice is a finite ordered set (L̂,≤) where every two elements u, v ∈ L̂ have a least
upper bound u ∨ v and a greatest lower bound u ∧ v, usually called join and meet.
Since it is finite, it has a minimum and a maximum element, denoted 0̂, 1̂. We denote
L = L̂ − {1̂} (departing from [17], where L denotes L̂ − {0̂, 1̂}). L is a meet-semi-
lattice. The incidence algebra I(L̂) is the algebra5 of real (or complex) matrices t of
dimension |L̂|×|L̂|, where the only non-zero elements tuv (denoted t(u, v)) are for u ≤
v; alternatively, a matrix can be seen as a linear function t : RL̂ → RL̂. Two matrices
are of key importance in incidence algebras: ζL̂ ∈ I(L̂), defined as ζL̂(u, v) = 1 forall
u ≤ v; and its inverse, the Mobius function µL̂ : {(u, v) | u, v ∈ L̂, u ≤ v} → Z,
defined by:

µL̂(u, u) = 1

µL̂(u, v) = −
∑

w:u<w≤v

µL̂(w, v)

4Our algorithm runs in PTIME data complexity; we do not address the expression complexity in this
paper.

5An algebra is a vector space plus a multiplication operation [17].

8

We drop the subscript and write µ when L̂ is clear from the context.
The fact that µ is the inverse of ζ means the following thing. Let f : L̂ → R be

a real function defined on the lattice. Define a new function g as g(v) =
∑
u≤v f(u).

Then f(v) =
∑
u≤v µ(u, v)g(u). This is called Mobius’ inversion formula, and is a

key piece of our algorithm. Note that it simply expresses the fact that g = ζ(f) implies
f = µ(g).

3.3 Their Connection
A labeled lattice is a triple L̂ = (L̂,≤, λ) where (L̂,≤) is a lattice and λ assigns to
each element in u ∈ L̂ a positive FO sentence λ(u) s.t. λ(u) ≡ λ(v) iff u = v.

Definition 3.1 A D-lattice is a labeled lattice L̂ where, forall u 6= 1̂, λ(u) is conjunc-
tive, forall u, v, λ(u∧v) is logically equivalent to λ(u)∧λ(v), and λ(1̂) ≡ ∨u<1̂ λ(u).

A C-lattice is a labeled lattice L̂ where, forall u 6= 1̂, λ(u) is disjunctive, forall
u, v, λ(u ∧ v) is logically equivalent to λ(u) ∨ λ(v), and λ(1̂) =

∧
u<1̂ λ(u).

In a D-lattice, u ≤ v iff λ(u)⇒ λ(v). This is because λ(u) = λ(u∧v) is logically
equivalent to λ(u) ∧ λ(v). Similarly, in a C-lattice, u ≤ v iff λ(v) ⇒ λ(u). If L̂ is a
D- or C-lattice, we say L̂ represents Φ = λ(1̂).

Proposition 3.2 (Inversion formula for positive FO) Fix a probabilistic structure (A, P)
and a positive sentence Φ; denote PA as P . Let L̂ be either a D-lattice or a C-lattice
representing Φ. Then:

P (Φ) = P (λ(1̂)) = −
∑
v<1̂

µL(v, 1̂)P (λ(v)) (6)

Proof: The proof for the D-lattice is from [17]. Denote f(u) = P (λ(u)∧¬(
∨
v<u λ(v))).

Then:

P (λ(u)) =
∑
v≤u

f(v) ⇒ f(u) =
∑
v≤u

µ(v, u)P (λ(v))

The claim follows by setting u = 1̂ and noting f(1̂) = 0. For a C-lattice, write
λ′(u) = ¬λ(u). Then P (λ(1̂)) = 1−P (λ′(1̂)) = 1 +

∑
v<1̂ µ(v, 1̂)P (λ′(v)) and the

claim follows from the fact that
∑
v∈L̂ µ(v, 1̂) = 0. 2

The proposition generalizes the well known inclusion/exclusion formula (for D-
lattices), and its less well known dual (for C-lattices):

P (a ∨ b ∨ c) = P (a) + P (b) + P (c)
−P (a ∧ b)− P (a ∧ c)− P (b ∧ c) + P (a ∧ b ∧ c)

P (a ∧ b ∧ c) = P (a) + P (b) + P (c)
−P (a ∨ b)− P (a ∨ c)− P (b ∨ c) + P (a ∨ b ∨ c)

We show how to construct a canonical D-lattice, L̂D(Φ) that represents a positive
sentence Φ. Start from the DNF in Eq.(3), and for each subset s ⊆ [m] denote ϕs =

9

1̂

ϕ1 ϕ3 ϕ2

ϕ1, ϕ3 ϕ2, ϕ3

0̂ = ϕ1, ϕ2, ϕ3

1̂

ϕ4 ϕ5

0̂ = ϕ4 ∨ ϕ5

(a) (b)

1̂

ϕ1 ϕ2 ϕ3

ϕ1, ϕ2 ϕ1, ϕ3 ϕ2, ϕ3

ϕ4

0̂ = ϕ1, ϕ2, ϕ3, ϕ4

1

1̂

ϕ1 ϕ3 ϕ2

ϕ1, ϕ3 ϕ2, ϕ3

0̂ = ϕ1, ϕ2, ϕ3

1̂

ϕ4 ϕ5

0̂ = ϕ4 ∨ ϕ5

(a) (b)

1̂

ϕ1 ϕ2 ϕ3

ϕ1, ϕ2 ϕ1, ϕ3 ϕ2, ϕ3

ϕ4

0̂ = ϕ1, ϕ2, ϕ3, ϕ4

1

(a) (b)

Figure 1: The D-lattice (a) and the C-lattice (b) for Φ (Ex. 3.3).

∧
i∈s ϕi. Let L̂ be the set of these conjunctive sentences, up to logical equivalence,

and ordered by logical implication (hence, |L| ≤ 2m). Label each element u ∈ L̂,
u 6= 1̂, with its corresponding ϕs (choose any, if there are multiple equivalent ones),
and label 1̂ with

∨
s6=∅ ϕs (≡ Φ). We denote the resulting D-lattice L̂D(Φ). Similarly,

L̂C(Φ) is the C-lattice that represents Φ, obtained from the CNF of Φ in Eq.(4), setting
ϕ′s =

∨
i∈s ϕ

′
i.

The first main technique of our algorithm is this. Given Φ, compute its C-lattice,
then use Eq.(6) to compute P (Φ); we explain later why we use the C-lattice instead of
the D-lattice. It remains to compute the probability of disjunctive sentences P (λ(u)):
we show this in the next section. The power of this technique comes from the fact that,
whenever µ(u, 1̂) = 0, then we do not need to compute the corresponding P (λ(u)).
As we explain in Sec. 7 this is strictly more powerful than the current techniques used
in probabilistic inference, such as lifted conditioning.

Example 3.3 Consider the following positive sentence:

Φ = R(x1), S(x1, y1) ∨ S(x2, y2), T (y2) ∨R(x3), T (y3)
= ϕ1 ∨ ϕ2 ∨ ϕ3

The Hasse diagram of the D-lattice LD(Φ) is shown in Fig. 1 (a). There are eight sub-
sets s ⊆ [3], but only seven up to logical equivalence, because6 ϕ1, ϕ2 ≡ ϕ1, ϕ2, ϕ3.
The values of the Mobius function are, from top to bottom: 1,−1,−1,−1, 1, 1, 0,
hence the inversion formula is7:

P (Φ) = P (ϕ1) + P (ϕ2) + P (ϕ3)− P (ϕ1ϕ3)− P (ϕ2ϕ3)

The Hasse diagram of the C-lattice LC(Φ) is shown in Fig. 1 (b). To see this, first

6There exists a homomorphism ϕ1, ϕ2, ϕ3 → ϕ1, ϕ2 that maps R(x3) to R(x1) and T (y3) to T (y2).
7One can arrive at the same expression by using inclusion-exclusion instead of Mobius’ inversion for-

mula, and noting that ϕ1, ϕ2 ≡ ϕ1, ϕ2ϕ3, hence these two terms cancel out in the inclusion-exclusion
expression.

10

express Φ in CNF:

Φ = (R(x1), S(x1, y1) ∨ S(x2, y2), T (y2) ∨R(x3)) ∧
(R(x4), S(x4, y4) ∨ S(x5, y5), T (y5) ∨ T (y6))

= (R(x3) ∨ S(x2, y2), T (y2)) ∧ (R(x4), S(x4, y4) ∨ T (y6))
= ϕ4 ∧ ϕ5

Note that 0̂ is labeled with ϕ4 ∨ ϕ5 ≡ R(x3) ∨ T (y6). The inversion formula here is:

P (Φ) = P (ϕ4) + P (ϕ5)− P (ϕ4 ∨ ϕ5)

where ϕ4 ∨ ϕ5 ≡ R(x3) ∨ T (y6).

3.4 Minimization
By minimizing a conjunctive sentence ϕ we mean replacing it with an equivalent sen-
tence ϕ0 that has the smallest number of atoms. A disjunctive sentence Φ =

∨
γi is

minimized if every conjunctive sentence is minimized and there is no homomorphism
ϕi ⇒ ϕj for i 6= j. If such a homomorphism exists, then we call ϕj redundant: clearly
we can remove it from the expression Φ without affecting its semantics.

For the purpose of D-lattices, it doesn’t matter if we minimize the sentence or not: if
the sentence is not minimized, then one can show that all lattice elements corresponding
to redundant terms have the Mobius function equal to zero. More precisely, any two
D-lattices that represent the same sentence have the same set of elements with a non-
zero Mobius function: we state this fact precisely in the remainder of this section. A
similar fact does not hold in general for C-lattices, but it holds over ranked structures
(Sec. 5.2).

An element u in a lattice covers v if u > v and there is no w s.t. u > w > v. An
atom8 is an element that covers 0̂; a co-atom is an element covered by 1̂. An element
u is called co-atomic if it is a meet of coatoms. Let L0 denote the set of co-atomic
elements: L0 is a meet semilattice, and L̂0 = L0 ∪ {1̂} is a lattice. The proof is
Appendix I.

Proposition 3.4 (1) If u ∈ L and µL̂(u, 1̂) 6= 0 then u is co-atomic. (2) Forall u ∈ L0,
µL̂(u, 1̂) = µL̂0

(u, 1̂).

Let L̂ and L̂′ be D-lattices representing the sentences Φ and Φ′. If Φ ≡ Φ′, then L̂
and L̂′ have the same co-atoms, up to logical equivalence. Indeed, we can write Φ as
the disjunction of co-atom labels in L̂, and one co-atom cannot imply another. Thus,
by applying Eq.(5) in both directions, we get a one-to-one correspondence between the
co-atoms of L̂ and L̂′, indicating logical equivalence. It follows from Prop. 3.4 that,
when D-lattices represent equivalent formulas, the set of labels λ(u) where µ(u, 1̂) 6= 0
are equivalent. Thus, an algorithm that inspects only these labels is independent of the
particular representation of a sentence.

8Not to be confused with a relational atom ri in (2).

11

A similar property fails on C-lattices, because Eq.(5) does not extend to CNF. For
example, Φ = R(x, a), S(a, z) and Φ′ = R(x, a), S(a, z), R(x′, y′), S(y′, z′) are log-
ically equivalent, but have different co-atoms. The co-atoms of Φ are R(x, a) and
S(a, z) (the C-lattice is V -shaped, as in Fig. 1 (b)), and the co-atoms of Φ′ areR(x, a),
(R(x′, y′), S(y′, z′)), and S(a, z) (the C-lattice is W -shaped, as in Fig. 1 (a)).

4 Independence and Separators
Next, we show how to compute the probability of a disjunctive sentence

∨
i γi; this

is the second technique used in our algorithm, and consists of eliminating, simultane-
ously, one existential variable from each γi, by exploiting independence.

Let ϕ be a conjunctive sentence. A valuation h is a substitution of its variables
with constants; h(ϕ), is a set of ground tuples. We call two conjunctive sentences
ϕ1, ϕ2 tuple-independent if for all valuations h1, h2, we have h1(ϕ1) ∩ h2(ϕ2) = ∅.
Two positive sentences Φ,Φ′ are tuple-independent if, after expressing them in DNF,
Φ =

∨
i ϕi, Φ′ =

∨
j ϕ
′
j , all pairs ϕi, ϕ′j are independent.

Let Φ1, . . . ,Φm be positive sentences s.t. any two are tuple-independent. Then:

P (
∨
i

Φi) = 1−
∏
i

(1− P (Φi))

This is because the m lineage expressions for Φi depend on disjoint sets of Boolean
variables, and therefore they are independent probabilistic events. In other words,
tuple-independence is a sufficient condition for independence in the probabilistic sense.
Although it is only a sufficient condition, we will abbreviate tuple-independence with
independence in this section.

Let ϕ be a positive sentence, V = {x1, . . . , xm} ⊆ V ar(ϕ), and a a constant.
Denote ϕ[a/V] = ϕ[a/x1, . . . , a/xm] (all variables in V are substituted with a).

Definition 4.1 Let ϕ =
∨
i=1,m γi be a disjunctive sentence. A separator is a set of

variables V = {x1, . . . , xm}, xi ∈ V ar(γi), such that for all a 6= b, ϕ[a/V], ϕ[b/V]
are independent.

Proposition 4.2 Let ϕ be a disjunctive sentence with a separator V , and (A, P) a
probabilistic structure with active domain D. Then:

P (ϕ) = 1−
∏
a∈D

(1− P (ϕ[a/V])) (7)

The claim follows from the fact that ϕ ≡ ∨a∈D ϕ[a/V] on all structures whose
active domain is included in D.

In summary, to compute the probability of a disjunctive sentence, we find a sepa-
rator, then apply Eq.(7): each expression ϕ[a/V] is a positive sentence, simpler than
the original one (it has strictly fewer variables in each atom) and we apply again the
inversion formula. This technique, by itself, is not complete: we need to “rank” the
relations in order to make it complete, as we show in the next section. Before that, we
illustrate with an example.

12

Example 4.3 Consider ϕ = R(x1), S(x1, y1) ∨ S(x2, y2), T (x2). Here {x1, x2} is
a separator. To see this, note that for any constants a 6= b, the sentences ϕ[a] =
R(a), S(a, y1) ∨ S(a, y2), T (a) and ϕ[b] = R(b), S(b, y1) ∨ S(b, y2), T (b) are inde-
pendent, because the former only looks at tuples that start with a, while the latter only
looks at tuples that start with b.

Consider ϕ = R(x1), S(x1, y1)∨S(x2, y2), T (y2). This sentence has no separator.
For example, {x1, x2} is not a separator because both sentences ϕ[a] and ϕ[b] have the
atom T (y2) in common: if two homomorphisms h1, h2 map y2 to some constant c, then
T (c) ∈ h1(ϕ[a]) ∩ h2(ϕ[b]), hence they are dependent. The set {x1, y2} is also not
a separator, because ϕ[a] contains the atom S(a, y1), ϕ[b] contains the atom S(x2, b),
and these two can be mapped to the common ground tuple S(a, b).

We end with a necessary condition for V to be a separator.

Definition 4.4 If γ is a component, a variable of γ is called a root variable if it occurs
in all atoms of γ.

Note that components do not necessarily have root variables, e.g.,R(x), S(x, y), T (y).
We have:

Proposition 4.5 If V is a separator of
∨
i γi, then each separator variable xi ∈ V ar(γi)

is a root variable for γi.

The claim follows from the fact that, if r is any atom in ϕi that does not contain xi:
then r is unchanged in γi[a] and in γi[b], hence they are not independent.

5 Ranking
In this section, we define a simple restriction on all formulas and structures that sim-
plifies our later analysis: we require that, in each relation, the attributes may be strictly
ordered A1 < A2 < . . . We show how to alter any positive sentence and probabilis-
tic structure to satisfy this constraint, without changing the sentence probability. This
is a necessary preprocessing step for our algorithm to work, and a very convenient
technique in the proofs.

5.1 Ranked Structures
Throughout this section, we use < to denote a total order on the active domain of a
probabilistic structure (such an order always exists). In our examples, we assume that
< is the natural ordering on integers, but the order may be chosen arbitrarily in general.

Definition 5.1 A relation instanceR is ranked if every tupleR(a1, . . . , ak) is such that
a1 < · · · < ak. A probabilistic structure is ranked if all its relations are ranked.

To motivate ranked structures, we observe that the techniques given in previous
sections do not directly lead to a complete algorithm. We illustrate by reviewing the
example in Sec. 2: γ = R(x, y), R(y, x). This component is connected, so we cannot

13

use Mobius inversion to simplify it, and we also cannot apply Eq.(7) because there is no
separator: indeed, {x} is not a separator because R(a, y), R(y, a) and R(b, y), R(y, b)
are not independent (they share the tuple R(a, b)), and by symmetry neither is {y}.
However, consider a structure with a unary relation R12 and binary relations R1<2,
R2<1 defined as:

R12 = πX1(σX1=X2(R)) R2<1 = πX2X1(σX2<X1(R))
R1<2 = σX1<X2(R)

Here, we use Xi to refer to the i-th attribute of R. This is a ranked structure: in
both relations R1<2 and R2<1 the first attribute is less than the second. Moreover: γ ≡
R12(z)∨R1<2(x, y), R2<1(x, y) and now {z, x} is a separator, becauseR1<2(a, y), R2<1(a, y)
and R1<2(b, y), R2<1(b, y) are independent. Thus, Eq.(7) applies to the formula over
the ranked structure, and we can compute the probability of γ in polynomial time.

Definition 5.2 A positive sentence is in reduced form if each atom R(x1, . . . , xk) is
such that (a) each xi is a variable (i.e. not a constant), and (b) the variables x1, . . . , xk
are distinct.

We now prove that the evaluation of any sentence can be reduced to an equivalent
sentence over a ranked structure, and we further guarantee that the resulting sentence
is in reduced form.

Proposition 5.3 Let Φ0 be positive sentence. Then, there exists a sentence Φ in re-
duced form such that for any structure A0, one can construct in polynomial time a
ranked structure A such that PA0(Φ0) = PA(Φ).

Proof: Let R(X1, . . . , Xk) be a relation symbol and let ρ be a maximal, consistent
conjunction of order predicates involving attributes of R and the constants occurring
in Φ0. Thus, for any pair of attributes names or constants y, z, ρ implies exactly one of
y < z, y = z, y > z. Before describing Φ, we show to construct the ranked structure
A from an unranked one A0. We say Xj is unbound if ρ 6⇒ Xj = c for any constant
c. The ranked structure will have one symbol Rρ for every symbol R in the unranked
structure and every maximal consistent predicate ρ. The instance A is computed as
Rρ = πX̄(σρ(R)) where X̄ contains one Xj in each class of unbound attributes that
are equivalent under ρ, listed in increasing order according to ρ. Clearly A can be
computed in PTIME from A0.

We show now how to rewrite any positive sentence Φ0 into an equivalent, reduced
sentence Φ over ranked structures s.t. PA0(Φ0) = PA(Φ). We start with a conjunctive
sentence ϕ = r1, . . . , rn and let Ri denote the relation symbol of ri. Consider a
maximally consistent predicate ρi on the attributes of Ri, for each i = 1, n, and let
ρ ≡ ρ1, . . . , ρn be the conjunction. We say that ρ is consistent if there is a valuation
h such that h(ϕ) |= ρ. Given a consistent ρ, divide the variables into equivalence
classes of variables that ρ requires to be equal, and choose one representative variable
from each class. Let rρi

i be the result of changing Ri(x1, . . . , xk) to Rρi

i (y1, . . . , ym),
where y1, . . . , ym are chosen as follows. Consider the unbound attribute classes in Ri,
in increasing order according to ρi. Choose yp to be the representative of a variable

14

that occurs in the position of an attribute in the p-th class of unbound attributes. This
works because the position of any unbound attribute X must have a variable: if there
is a constant a, then h(ri) |= X = a for all valuations h. But ρi ⇒ X 6= a so this
contradicts the assumption that ρ is consistent. Using a similar argument, we can show
that each yi is distinct, so rρi

i is in reduced form. Furthermore, ϕ ≡ ∧ρ rρ11 , . . . , rρn
n

where the disjunction ranges over all maximal ρi such that ρ is consistent. For a positive
sentence Φ0, we apply the above procedure to each conjunctive sentence in the DNF
of Φ0 to yield a sentence in reduced form on the ranked relations Rρ. 2

Example 5.4 Let ϕ = R(x, a), R(a, x). If we define the ranked relations R1 =
πX2(σX1=a(R)), R2 = πX1(σX2=a(R)), and R12 = π∅(σX1=X2=a(R)), we have
ϕ ≡ R1(x), R2(x) ∨R12().

Next, consider ϕ = R(x), S(x, x, y), S(u, v, v). Define

S123 = πX1(σX1=X2=X3(S))
S23<1 = πX2X1(σX2=X3<X1((S))

and so on. We can rewrite ϕ as:

ϕ ≡ R(x), S123(x)

∨ R(x), S12<3(x, y), S1<23(u, v) ∨R(x), S12<3(x, y), S23<1(v, u)

∨ R(x), S3<12(y, x), S1<23(u, v) ∨R(x), S3<12(y, x), S23<1(v, u)

and note that these relations are ranked.

Thus, when computing PA(Φ), we may conveniently assume w.l.o.g. that A is
ranked and Φ is in reduced form. When we replace separator variables with a constant
as in Eq.(7), we can easily restore the formula to reduced form. Given a disjunctive
sentence ϕ in reduced form and a separator V , we remove a from ϕ[a/V] as follows.
For each relation R, suppose the separator variables occur at position Xi of R. Then
we remove all rows from R where Xi 6= a, reduce the arity of R by removing column
i, and remove xi = a from all atoms R(x1, . . . , xk) in ϕ[a/V].

We end this section with two applications of ranking. The first shows a homomor-
phism theorem for CNF sentences.

Proposition 5.5 Assume all structures to be ranked, and all sentences to be in reduced
form.

• If ϕ,ϕ′ are conjunctive sentences, and ϕ is satisfiable over ranked structures9

then ϕ⇒ ϕ′ iff there exists a homomorphism h : ϕ′ → ϕ.

• Formula (5) holds for positive sentences in DNF.

• The dual of (5) holds for positive sentences in CNF:∧
i ϕi ⇒

∧
j ϕ
′
j iff ∀j.∃i.ϕi ⇒ ϕ′j

9Meaning: it is satisfied by at least one (ranked) structure.

15

Proof: • Let V = V ar(ϕ) and construct a graph on V such that (u, v) is an edge
whenever some atom of ϕ imposes the constraint u < v based on ranking. This
graph is acyclic because there exists a valuation h from ϕ to a ranked structure,
which means h(u) < h(v) for all edges (u, v). Let x1, . . . , x|V | be a topological
ordering of V , i.e., such that i < j for all edges (xi, xj). Replace each xi with
i in ϕ, and let A be the ranked structure consisting of all atoms in ϕ after this
mapping. Clearly A |= ϕ, hence A |= ϕ′: the latter gives a valuation ϕ′ → A,
which, composed with the mapping i 7→ xi, gives a homomorphism ϕ′ → ϕ.

• Standard argument, omitted.

• Assume for contradiction that there exists p, s.t. ∀i, it is not the case that ϕi ⇒
ϕ′p. Let Ai be a structure s.t. Ai |= ϕi but Ai 6|= ϕp. The active domain of Ai is
unconstrained by ϕi because the sentence is in reduced form, and hence contains
no constants. Hence we may assume w.l.o.g. that for i1 6= i2, the structures Ai1

and Ai2 have disjoint active domains. Define A =
⋃
iAi. Then A |= ∨

ϕi,
implying that A |= ∨

ϕ′j . In particular, A |= ϕ′p, hence there exists a valuation
ϕ′p → A. Since the active domains of each Ai are disjoint, its image must be
contained in a single Ai, contradicting the fact that ϕi 6⇒ ϕ′p.

2

The first two items are known to fail for conjunctive sentences with order predi-
cates: for example R(x, y), R(y, x) logically implies R(x, y), x ≤ y, but there is no
homomorphism from the latter to the former. They hold for ranked structures because
there is a strict total order on the attributes of each relation. The last item implies the
following. If L̂ and L̂′ are two C-lattices representing equivalent sentences, then they
have the same co-atoms. In conjunction with Prop. 3.4, this implies that an algorithm
that ignores lattice elements where µ(u, 1̂) = 0 does not depend on the representation
of the positive sentence. This completes our discussion at the end of Sec. 3.

The second result shows how to handle atoms without variables.

Proposition 5.6 Let γ0, γ1 be components in reduced form s.t. V ar(γ0) = ∅, V ar(γ1) 6=
∅. Then γ0, γ1 are independent.

Proof: Note that γ0 contains a single atom R(); if it had two atoms then it is not a
component. Since γ1 is connected, each atom must have at least one variable, hence it
cannot have the same relation symbol R(). 2

Letϕ =
∨
γi be a disjunctive sentence, ϕ0 =

∨
i:V ar(γi)=∅ γi andϕ1 =

∨
i:V ar(γi) 6=∅ γi.

It follows that:

P (ϕ) = 1− (1− P (ϕ0))(1− P (ϕ1)) (8)

5.2 Finding a Separator
Assuming structures to be ranked, we give here a necessary and sufficient condition for
a disjunctive sentence in reduced form to have a separator, which we use both in the
algorithm and to prove hardness for FP#P . We need some definitions first.

16

Let ϕ = γ1 ∨ . . .∨ γm be a disjunctive sentence, in reduced form. Throughout this
section we assume that ϕ is minimized and that V ar(γi) ∩ V ar(γj) = ∅ for all i 6= j
(if not, then rename the variables). Two atoms r ∈ Atoms(γi) and r′ ∈ Atoms(γj)
are called unifiable if they have the same relational symbol. We may also say r, r′

unify. It is easy to see that γi and γj contain two unifiable atoms iff they are not tuple-
independent. Two variables x, x′ are unifiable if there exist two unifiable atoms r, r′

such that x occurs in r at the same position that x′ occurs in r′. This relationship is
reflexive and symmetric. We also say that x, x′ are recursively unifiable if either x, x′

are unifiable, or there exists a variable x′′ such that x, x′′ and x′, x′′ are recursively
unifiable.

A variable x is maximal if it is only recursively unifiable with root variables. Hence
all maximal variables are root variables. The following are canonical examples of sen-
tences where each component has a root variable, but there are no maximal variables:

h0 = R(x0), S1(x0, y0), T (y0)
h1 = R(x0), S1(x0, y0) ∨ S1(x1, y1), T (y1)
h2 = R(x0), S1(x0, y0) ∨ S1(x1, y1), S2(x1, y1) ∨ S2(x2, y2), T (y2)
. . .
hk = R(x0), S1(x0, y0) ∨ S1(x1, y1), S2(x1, y1) ∨

. . . ∨ Sk−1(xk−1, yk−1), Sk(xk−1, yk−1) ∨ (Sk(xk, yk), T (yk)

In each hk, k ≥ 1, the root variables are xi−1, yi for i = 1, k − 1, and there are no
maximal variables.

Maximality propagates during unification: if x is maximal and x, x′ unify, then x′

must be maximal because otherwise xwould recursively unify with a non-root variable.
Let Wi be the set of maximal variables occurring in γi. If an atom in γi unifies

with an atom in γj , then |Wi| = |Wj | because the two atoms contain all maximal
variables in each component, and maximality propagates through unification. Since
the structures are ranked, for every i there exists a total order on the maximal variables
in Wi: xi1 < xi2 < . . . The rank of a variable x ∈ Wi is the position where it occurs
in this order. The following result gives us a means to find a separator if it exists:

Proposition 5.7 A disjunctive sentence has a separator iff every component has a max-
imal variable. In that case, the set comprising maximal variables with rank 1 forms a
separator.

Proof: Consider the disjunctive sentence ϕ =
∨m
i=1 γi and set of variables V =

{x1, . . . , xm} s.t. xi ∈ V ar(γi), i = 1,m. It is straightforward to show that V is
a separator iff any pair of unifiable atoms have a member of V in the same position.
Hence, if V is a separator, then each xi ∈ V can only (recursively) unify with another
xj ∈ V . Since xj is a root variable (Prop. 4.5), each xi ∈ V ar(γi) is maximal, as
desired.

Now suppose every component has a maximal variable. Choose V such that xi is
the maximal variable in γi with rank 1. If two atoms r, r′ unify, then they have maximal
variables occurring in the same positions. In particular, the first maximal variable has
rank 1, and thus is in V . We conclude that V is a separator. 2

17

Algorithm 6.1 Algorithm for Computing P (Φ)
Input: Positive sentence Φ in reduced form;
Ranked structure (A, p) with active domain D
Output: P (Φ)

1: Function MobiusStep(Φ) /* Φ = positive sentence */
2: Let L̂ = L̂C(Φ) be a C-lattice representing Φ
3: Return

∑
u<1̂ µL̂(u, 1̂)∗IndepStep(λ(u))

4: 2

5: Function IndepStep(ϕ) /* ϕ =
∨
i γi */

6: Minimize ϕ (Sec. 3.4)
7: Let ϕ = ϕ0 ∨ ϕ1

8: where: ϕ0 =
∨
i:V ar(γi)=∅ γi, ϕ1 =

∨
i:V ar(γi)6=∅ γi

9: Let V = a separator for ϕ1 (Sec. 5.2)
10: If (no separator exists) then FAIL (UNSAFE)
11: Let p0 = P (ϕ0)
12: Let p1 = 1−∏a∈D(1−MobiusStep(ϕ1[a/V]))
13: /* Note: assume ϕ1[a/V] is reduced (Sec.5) */
14: Return 1− (1− p0)(1− p1).
15: 2

For a trivial illustration of this result, consider the disjunctive sentenceR(x, y), S(x, y)∨
S(x′, y′), T (x′, y′). All variables are root variables, and the sets of maximal variables
are W1 = {x, y}, W2 = {x′, y′}. We break the tie by using the ranking: choosing ar-
bitrarily rank 1, we obtain the separator {x, x′}. (Rank 2 would gives us the separator
{y, y′}). A more interesting example is:

Example 5.8 In ϕ, not all root variables are maximal:

ϕ = R(z1, x1), S(z1, x1, y1) ∨ S(z2, x2, y2), T (z2, y2) ∨
R(z3, x3), T (z3, y3)

The root variables are z1, x1, z2, y2, z3. The sets of maximal variables in each compo-
nent are W1 = {z1}, W2 = {z2}, W3 = {z3}, and the set {z1, z2, z3} is a separator.

6 The Algorithm
Algorithm 6.1 takes as input a ranked probabilistic structure A and a positive sen-

tence Φ in reduced form (Def 5.2), and computes the probability P (Φ), or fails. The
algorithm proceeds recursively on the structure of the sentence Φ. The first step applies
the Mobius inversion formula Eq.(6) to the C-lattice for Φ, expressing P (Φ) as a sum
of several P (ϕ), where each ϕ is a disjunctive sentence. Skipping those ϕ’s where the
Mobius function is zero, for all others it proceeds with the second step. Here, the algo-
rithm first minimizes ϕ =

∨
γi, then computes P (

∨
γi), by using Eq.(8), and Eq.(7).

For the latter, the algorithm needs to find a separator first, as described in Sec. 5.2: if
none exists, then the algorithm fails.

18

The expression P (ϕ0) represents the base case of the algorithm: this is when the
recursion stops, when all variables have been substituted with constants from the struc-
ture A. Notice that ϕ0 is of the form

∨
ri, where each ri is a ground atom. Its prob-

ability is 1 −∏i(1 − P (ri)), where P is the probability function of the probabilistic
structure (A, P). We illustrate the algorithm with two examples.

Example 6.1 Let Φ = R(x1), S(x1, y1) ∨ S(x2, y2), T (y2) ∨ R(x3), T (y3). This
example is interesting because, as we will show, the subexpression R(x1), S(x1, y1)∨
S(x2, y2), T (y2) is hard (it has no separator), but the entire sentence is in PTIME.
The algorithm computes the C-lattice, shown in Fig. 1 (b), then expresses P (Φ) =
P (ϕ4) + P (ϕ5) − P (ϕ6) where ϕ6 = R(x) ∨ T (y) (see Example 3.3 for notations).
Next, the algorithm applies the independence step to each of ϕ4, ϕ5, ϕ6; we illustrate
here for ϕ4 = R(x3) ∨ S(x2, y2), T (y2) only; the other expressions are similar. Here,
{x3, y2} is a set of separator variables, hence:

P (ϕ4) = 1−
∏
a∈A

(1− P (R(a) ∨ S(x2, a), T (a)))

Next, we apply the algorithm recursively on R(a) ∨ S(x2, a), T (a). In CNF it be-
comes10 (R(a)∨S(x2, a))(R(a)∨T (a)), and the algorithm returnsP (R(a)∨S(x2, a))+
P (R(a)∨T (a))−P (R(a)∨S(x2, a)∨T (a)). Consider the last of the three expressions
(the other two are similar): its probability is

1− (1− P (R(a) ∨ T (a)))
∏
b∈A

(1− P (S(b, a)))

Now we have finally reached the base case, where we compute the probabilities of
sentences without variables: P (R(a) ∨ T (a)) = 1 − (1 − P (R(a)))(1 − P (T (a))),
and similarly for the others.

Example 6.2 Consider the sentence ϕ in Example 5.8. Since this is already CNF (it
is a disjunctive sentence), the algorithm proceeds directly to the second step. The
separator is V = {z1, z2, z3} (see Ex. 5.8), and therefore:

P (ϕ) = 1−
∏
a∈A

(1− P (ϕ[a/V])

where ϕ[a/V] is:

R(a, x1), S(a, x1, y1) ∨ S(a, x2, y2), T (a, y2) ∨R(a, x3), T (a, y3)

After reducing the sentence (i.e. removing the constant a), it becomes identical to
Example 6.1.

In the rest of this section we show that the algorithm is complete, meaning that, if
it fails on a positive sentence Φ, then Φ is FP#P -hard.

10Strictly speaking, we would have had to rewrite the sentence into a reduce form first, by rewriting
S(x2, a) into S2<a(x2), etc.

19

6.1 Safe Sentences
The sentences on which the algorithm terminates (and thus are in PTIME) admit char-
acterization as a minor-closed family, for a partial order that we define below.

Let ϕ be a disjunctive sentence. A level is a non-empty set of variables11 W such
that every atom in ϕ contains at most one variable in W and for any unifiable variables
x, x′, if x ∈ W then x′ ∈ W . In particular, a separator is a level W that has one
variable in common with each atom; in general, a level does not need to be a separator.
For a variable x ∈W , let nx be the number of atoms that contain x; let n = maxx nx.
Let A = {a1, . . . , ak} be a set of constants not occurring in ϕ s.t. k ≤ n. Denote
ϕ[A/W] the sentence obtained as follows: substitute each variable x ∈ W with some
constant ai ∈ A and take the union of all such substitutions:

ϕ[A/W] =
∨

θ:W→A

ϕ[θ]

Note that ϕ[A/W] is not necessarily a disjunctive sentence, since some components
γi may become disconnected in ϕ[A/W]. Moreover, since our vocabulary is ranked,
we assume that in ϕ[A/W] have a new symbol Sa for every symbol S that contains an
attribute on the level W , and every constant a ∈ A: thus, Sa(x1, x2, . . . , y1, y2, . . .)
denotes S(x1, x2, . . . , a, y1, y2, . . .).

Definition 6.3 Define the following rewrite rule Φ→ Φ0 on positive sentences. Below,
ϕ,ϕ0, ϕ1, denote disjunctive sentences:

ϕ → ϕ[A/W] W is a level, A is a set of constants
ϕ0 ∨ ϕ1 → ϕ1 if V ar(ϕ0) = ∅

Φ → ϕ ∃u ∈ LC(Φ).µ(u, 1̂) 6= 0, ϕ = λ(u)

The second and third rules are called simple rules. The first rule is also simple if W is
a separator and |A| = 1.

The first rewrite rule allows us to substitute variables with constants; the second
to get rid of disjuncts without any variables; the last rule allows us to replace a CNF
sentence Φ with one element of its C-lattice, provided its Mobius value is non-zero.
The transitive closure ∗→ defines a partial order on positive sentences.

Definition 6.4 A positive sentence Φ is called unsafe if there exists a sequence of sim-
ple rewritings Φ ∗→ ϕ s.t. ϕ is a disjunctive sentence without separators. Otherwise it
is called safe.

Thus, the set of safe sentences can be defined as the downwards closed family (un-
der the partial order defined by simple rewritings) that does not contain any disjunctive
sentence without separators. The main result in this paper is:

Theorem 6.5 (Soundness and Completeness) Fix a positive sentence Φ.

11No connection to the maximal sets Wi in Sec. 5.2.

20

Soundness If Φ is safe then, for any probabilistic structure, Algorithm 6.1 terminates
successfully (i.e. doesn’t fail), computes correctly P (Φ), and runs in timeO(nk),
where n is the size of the active domain of the structure, and k the largest arity
of any symbol in the vocabulary.

Completeness If Φ is unsafe then it is hard for FP#P .

Soundness follows immediately, by induction: if the algorithms starts with Φ, then
for any sentence Φ0 processed recursively, it is the case that Φ ∗→ Φ0, where all rewrites
are simple. Thus, if the algorithm ever gets stuck, Φ is unsafe; conversely, if Φ is safe,
then the algorithm will succeed in evaluating it on any probabilistic structure. The
complexity follows from the fact that each recursive step of the algorithm removes one
variable from every atom, and traverses the domain D once, at a cost O(n). Complete-
ness is harder to prove, and we discuss it in Sec. 6.3.

For a simple illustration, consider the sentence:

ϕ = R(z1, x1), S(z1, x1, y1) ∨ S(z2, x2, y2), T (z2, y2)

To show that it is hard, we substitute the separator variables z1, z2 with a constant
a, and obtain

ϕ → R(a, x1), S(a, x1, y1) ∨ S(a, x2, y2), T (a, y2)

Since the latter is a disjunctive sentence without a separator, it follows that ϕ is hard.

6.2 Discussion
An Optimization The first step of the algorithm can be optimized, as follows. If
the DNF sentence Φ =

∧
γi is such that the relational symbols appearing in γi are

distinct for different i, then the first step of the algorithm can be optimized to compute
P (Φ) =

∏
i P (γi) instead of using Mobius’ inversion formula. To see an example,

consider the sentence Φ = R(x), S(y), which can be computed as

P (Φ) = (1−
∏
a

(1− P (R(a))))(1−
∏
a

(1− P (S(a))))

Without this optimization, the algorithm would apply Mobius’ inversion formula
first:

P (Φ) = P (R(x)) + P (S(y))− P (R(x) ∨ S(y))

= 1−
Y
a

(1− P (R(a))) + 1−
Y
a

(1− S(a))

− 1 +
Y
a

(1− P (R(a))− P (S(a)) + P (R(a)) · P (S(a)))

The two expressions are equal, but the former is easier to compute.
A Justification We justify here two major choices we made in the algorithm: using

the C-lattice instead of the D-lattice, and relying on the inversion formula with the
Mobius function instead of some simpler method to eliminate unsafe subexpressions.

21

To see the need for the C-lattice, let’s examine a possible dual algorithm, which
applies the Mobius step to the D-lattice. Such an algorithm fails on Ex. 5.8, because
here the D-lattice is 2[3], and the Mobius function is +1 or −1 for every element of the
lattice. The lattice contains R(z1, x1), S(z1, x1, y1), S(z2, x2, y2), T (z2, y2), which is
unsafe12. Thus, the dual algorithm fails.

To see the need of the Mobius inversion, we prove that an existential, positive FO
sentence can be “as hard as any lattice”.

Theorem 6.6 (Representation theorem) Let (L̂,≤) be any lattice. There exists a pos-
itive sentence Φ such that: LD(Φ) = (L̂,≤, λ), λ(0̂) is unsafe, and for all u 6= 0̂, λ(u)
is safe. The dual statement holds for the C-lattice.

Proof: Call an element r ∈ L join irreducible if whenever v1 ∨ v2 = r, then either
v1 = r or v2 = r. (Every atom is join irreducible, but the converse is not true in
general.) Let R = {r0, r1, . . . , rk} be all join irreducible elements in L. For every
u ∈ L denote Ru = {r | r ∈ R, r ≤ u}, and note that Ru∧v = Ru ∪ Rv . Define the
following components13:

γ0 = R(x1), S1(x1, y1)
γi = Si(xi+1, yi+1), Si+1(xi+1, yi+1) i = 1, k − 1
γk = Sk(xk, yk), T (yk)

Consider the sentences Φ and Ψ below:

Φ =
∨
u<1̂

∧
ri∈Ru

γi Ψ =
∧
u<1̂

∨
ri∈Ru

γi

Then both L̂D(Φ) and L̂C(Ψ) satisfy the theorem. 2

The theorem says that the lattice associated to a sentence can be as complex as
any lattice. There is no substitute for checking if the Mobius function of a sub-query
is zero: for any complex lattice L̂ one can construct a sentence Φ that generates that
lattice and where the only unsafe sentence is at 0̂: then Φ is safe iff µL̂(0̂, 1̂) = 0.

6.3 Outline of the Completeness Proof
In this section we give an outline of the completeness proof and defer details to the
Appendix. We have seen that Φ is unsafe iff there exists a rewriting Φ ∗→ ϕ where
ϕ has no separators. Call a rewriting maximal if every instance of the third rule in
Def. 6.3, Φ→ λ(u), is such that for all lattice elements v > u, λ(v) is safe: that is u is
a maximal unsafe element in the CNF lattice. Clearly, if Φ is unsafe then there exists a
maximal rewriting Φ ∗→ ϕ where ϕ has no separators. We prove the following:

12It rewrites to R(a, x1), S(a, x1, y1), S(a, x2, y2), T (a, y2) −→ R(a, x1), S(a, x1, y1) ∨
S(a, x2, y2), T (a, y2).

13That is,
W
γi = hk.

22

Lemma 6.7 If Φ ∗→ ϕ is a maximal rewriting, then there exists a PTIME algorithm for
evaluating PA(ϕ) on probabilistic structure A, with a single access to an oracle for
computing PB(Φ) on probabilistic structures B.

Thus, to prove that every unsafe sentence is hard, it suffices to prove that every
sentence without separators is hard. To prove the latter, we will continue to apply the
same rewrite rules to further simplify the sentence, until we reach an unsafe sentence
where each atom has at most two variables: we call it a forbidden sentence. Then, we
prove that all forbidden sentences are hard.

However, there is a problem with this plan. We may get stuck during rewriting be-
fore reaching a sentence with two variables per atom. This happens when a disjunctive
sentence has no level, which prevents us from applying any rewrite rule. We illustrate
here a simple sentence without a level:

ϕ = R(x, y), S(y, z) ∨R(x′, y′), S(x′, y′)

Each consecutive pair of variables in the sequence x, x′, y, y′, z is unifiable. This in-
dicates that no level exists, because it would have to include all variables, while by
definition a level may have at most one variable from each atom; hence, this sentence
does not have any level. While this sentence already has only two variables per atom,
it illustrates where we may get stuck in trying to apply a rewriting.

To circumvent this, we transform the sentence (with two variables or more) as
follows. Let V = V ar(ϕ). A leveling is a function l : V → [L], where L > 0, s.t.
for all i ∈ [L], l−1(i) is a level. Conceptually, l partitions the variables into levels,
and assigns an integer to each level. This, in turn, associates exactly one level to each
relation attribute, since unifiable variables must be in the same level. We also call ϕ an
L-leveled sentence, or simply leveled sentence. Clearly, a leveled sentence has a level:
in fact it has L disjoint levels. We show that each sentence is equivalent to a leveled
sentence, on some restricted structures.

Call a structure A L-leveled if there exists a function l : A → [L] s.t. if two
constants a 6= b appear in the same tuple then l(a) 6= l(b), and if they appear in the
same column of a relation then l(a) = l(b). For example, consider a single binary re-
lation R(A,B). An instance of R represents a graph. There are no 1-leveled instances,
because for every tuple (a, b) we must have l(a) 6= l(b). A 2-leveled instance is a
bipartite graph. There are no 3-leveled structures, except if one level is empty. For a
second example, consider two relations R(A,B), S(A,B). (Recall that our structures
are ranked, hence for every tuple R(a, b) or S(a, b) we have a < b). An example
of a 3-leveled structure is a 3-partite graph where the R-edges go from partition 1 to
partition 2 and the S-edges go from partition 2 to partition 3.

Proposition 6.8 Let ϕ be a disjunctive sentence that has no separators. Then there
exists L > 0 and an L-leveled sentence ϕL s.t. that ϕL has no separator and the
evaluation problem of ϕL over L-leveled structures can be reduced in PTIME to the
evaluation problem of ϕ.

23

The proof is in Appendix II. We illustrate the main idea on the example above. We
choose L = 4 and the leveled sentence ϕ becomes:

ϕL = R23(x2, y3), S34(y3, u4) ∨R12(x1, y2), S23(y2, z3) ∨
R23(x′2, y

′
3), S23(x′2, y

′
3)

Here ϕL is leveled, and still does not have a separator. It is also easy to see that if a
probabilistic structure A is 4-leveled, then ϕ and ϕL are equivalent over that structure.
Thus, it suffices to prove hardness of ϕL on 4-leveled structures: this implies hardness
of ϕ.

To summarize, our hardness proof is as follows. Start with a disjunctive sentence
without separators, and apply the leveling construct once. Then continue to apply the
rewritings 6.3: it is easy to see that, whenever ϕ→ ϕ′ and ϕ is leveled, then ϕ′ is also
leveled; in other words we only need to level once.

Definition 6.9 A forbidden sentence is a disjunctive sentence ϕ that has no separator,
and is 2-leveled; in particular, every atom has at most two variables.

All sentences hk in Sec. 5.2 are forbidden sentences. Another example of a forbid-
den sentence is:

Q = S1(x, y1), S2(x, y2) ∨ S1(x1, y), S2(x2, y)

On the other hand, R(x, y), S(y, z), T (x, z) is not a forbidden sentence because it has
3 levels.

We prove the following in Appendix II.

Theorem 6.10 Suppose ϕ is leveled, and has no separator. Then there exists a rewrit-
ing ϕ ∗→ ϕ′ s.t. ϕ′ is a forbidden sentence.

The level L may decrease after rewriting. In this theorem we must be allowed to
use non-simple rewritings ϕ → ϕ[A/W], where W is not a separator (of course) and
A has more than one constant. We show in Appendix II examples were the theorem
fails if one restricts A to have size 1.

Finally, the completeness of the algorithm follows from the following theorem,
which is technically the hardest result of this work. The proof is in Appendix III.

Theorem 6.11 If ϕ is a forbidden sentence then it is hard for FP#P over 2-leveled
structures.

7 Lifted Inference
Conditioning and disjointness are two important techniques in probabilistic inference.
The first expresses the probability of some Boolean expression Φ as P (Φ) = P (Φ |
X)∗P (X) + P (Φ | ¬X)∗(1 − P (X)) where X is a Boolean variable. Disjointness
allows us to write P (Φ∨Ψ) = P (Φ)+P (Ψ) when Φ and Ψ are exclusive probabilistic
events. Recently, a complementary set of techniques called lifted inference has been

24

shown to be very effective in probabilistic inference [13, 16, 15], by doing inference
at the logic formula level instead of at the Boolean expression level. In the case of
conditioning, lifted conditioning uses a sentence rather than a variable to condition.

We give an algorithm that uses lifted conditioning and disjointness in place of the
Mobius step of Algorithm 6.1. When the algorithm succeeds, it runs in PTIME in
the size of the probabilistic structure. However, we also show that the algorithm is
incomplete; in fact, we claim that no algorithm based on these two techniques only can
be complete.

Given Φ =
∨
ϕi, our goal is to computeP (Φ) in a sequence of conditioning/disjointness

steps, without Mobius’ inversion formula. The second step of Algorithm 6.1 (existen-
tial quantification based on independence) remains the same and is not repeated here.
For reasons discussed earlier, that step requires that we have a CNF representation of
the sentence, Ψ =

∧
ϕi, but both conditioning and disjointness operate on disjunc-

tions, so we apply De Morgan’s laws P (
∧
ϕi) = 1 − P (

∨¬ϕi). Thus, with some
abuse of terminology we assume that our input is a D-lattice, although its elements are
labeled with negations of disjunctive sentences.

We illustrate first with an example.

Example 7.1 Consider the sentence in Example 6.1:

Φ = R(x1), S(x1, y1) ∨ S(x2, y2), T (y2) ∨R(x3), T (y3)
= ϕ1 ∨ ϕ2 ∨ ϕ3

We illustrate here directly on the DNF lattice, without using the negation. (This works
in our simple example, but in general one must start from the CNF, then negate.) The
Hasse diagram of the DNF lattice is shown in Fig. 1. First, let’s revisit Mobius’ inver-
sion formula:

P (Φ) = P (ϕ1) + P (ϕ2) + P (ϕ3)− P (ϕ1ϕ3)− P (ϕ2ϕ3)

The only unsafe sentence in the lattice is the bottom element of the lattice, where ϕ1

and ϕ2 occur together, but that disappears from the sum because µ(0̂, 1̂) = 0. We show
how to compute Φ by conditioning on ϕ3. We denote ϕ̄ = ¬ϕ for a formula ϕ:

P (Φ) = P (ϕ3) + P ((ϕ1 ∨ ϕ2) ∧ ϕ̄3)
= P (ϕ3) + P ((ϕ1, ϕ̄3) ∨ (ϕ2, ϕ̄3))
= P (ϕ3) + P (ϕ1, ϕ̄3) + P (ϕ2, ϕ̄3)
= P (ϕ3) + (P (ϕ1)− P (ϕ1, ϕ3)) + (P (ϕ2)− P (ϕ2, ϕ3))

The first line is conditioning (ϕ3 is either true, or false), and the third line is based
on mutual exclusion: ϕ1 and ϕ2 become mutually exclusive when ϕ3 is false. We
expand one more step, because our algorithm operates only on positive sentences: this
is the fourth line. This last expansion may be replaced with a different usage, e.g. the
construction of a BDD, not addressed in this paper. All sentences in the last line are
safe, and the algorithm can proceed recursively.

25

For lifted conditioning to work, it is of key importance that we choose the correct
subformula to condition. Consider what would happen if we conditioned on ϕ1 instead:

P (Φ) = P (ϕ1) + P ((ϕ2 ∨ ϕ3) ∧ ϕ̄1)
= P (ϕ1) + P (ϕ2 ∧ ϕ̄1) + P (ϕ3 ∧ ϕ̄1)

Now we are stuck, because the expression ϕ2 ∧ ϕ̄1 is hard.

Algorithm 7.1 computes the probability of a DNF formula using conditionals and
disjointness. The algorithm operates on a DNF lattice (the negation of a CNF sen-
tence). The algorithm starts by minimizing the expression

∨
i ϕi, which corresponds to

removing all elements that are not co-atomic from the DNF lattice L (Prop 3.4). Recall
that Φ =

∨
u<1̂ λ(u).

Next, the algorithm chooses a particular sub-lattice E, called the cond-lattice,
and conditions on the disjunction of all sentences in the lattice. We define E be-
low: first we show how to use it. Denote u1, . . . , uk the minimal elements of {z |
¬(∃x ∈ E.z ≤ x)}. For any subset S ⊆ L, denote ΦS =

∨
u∈S,u<1̂ λ(u); in particu-

lar, ΦL = Φ.
The conditioning and the disjointness rules give us:

P (ΦL) = P (ΦE) + P (ΦL−E ∧ (¬ΦE))

= P (ΦE) +
∑
i=1,k

(Φ[ui,1̂] ∧ (¬ΦE))

We have used here the fact that, for i 6= j, the sentences Φ[ui,1̂] and Φ[uj ,1̂] are disjoint
given ¬ΦE . Finally, we do this:

P (Φ[ui,1̂] ∧ (¬ΦE)) = P (Φ[ui,1̂])− P (Φ[ui,1̂]∧E)

where [ui, 1̂] ∧ E = {u ∧ v | u ≥ ui, v ∈ E − {1̂}}
This completes the high level description of the algorithm. We show now how to

choose the cond-lattice, then show that the algorithm is incomplete.

7.1 Computing the Cond-Lattice
Fix a lattice (L̂,≤). The set of zero elements, Z, and the set of z-atoms ZA are defined
as follows14:

Z = {z | µL(z, 1̂) = 0}
ZA = {a | a covers some element z ∈ Z}

The algorithm reduces the problem of computing P (ΦL) for the entire lattice L to
computing P (ΦK) for three kinds of sub-lattices K: E, [ui, 1̂] ∧ E, and [ui, 1̂]. The

14“Covers” is defined in Sec. 3.

26

goal is to choose E to avoid computing unsafe sentences. We assume the worse: that
every zero element z ∈ Z is unsafe (if a non-zero element is unsafe then the sentence is
hard). So our goal is: choose E s.t. for any sub-lattice K above, if z is a zero element
and z ∈ K, then µK(z, 1̂) = 0. That is, we can’t necessarily remove the zeros in one
conditioning step, but if we ensure that they continue to be zeroes, they will eventually
be eliminated.

The join closure of S ⊆ L is cl(S) = {∨u∈s u | s ⊆ S}. Note that 0̂ ∈ cl(S). The
join closure is a join-semilattice and is made into a lattice by adding 1̂.

Definition 7.2 Let L be a lattice. The cond-lattice E ⊆ L is E = {1̂} ∪ cl(Z ∪ ZA).

Next, we show that, if some element z ∈ Z remains in one of the smaller lattices,
then its Mobius function is the same as at was in L: since we assumed µL(z, 1̂) = 0,
this implies that z continues to be a Zero in the smaller lattice.

We start with the lattices [ui, 1̂]: here the claim holds vacuously, because Z ∩
[ui, 1̂] = ∅.

Next, consider the lattice E. We prove in Appendix I:

Proposition 7.3 For all z ∈ Z, µL(z, 1̂) = µE(z, 1̂).

Finally, consider the lattices [ui, 1̂] ∧ E. We prove in Appendix I:

Proposition 7.4 For all z ∈ Z, and all u ∈ L, µE(z, 1̂) = µ[u,1̂]∧E(z, 1̂).

Combined with Prop. 7.3, we obtain µL(z, 1̂) = µ[u,1̂]∧E(z, 1̂).

Example 7.5 Consider Example 7.1. The cond-lattice for Fig. 1 (a) is

E = cl({0̂, (ϕ1, ϕ3), (ϕ3, ϕ2)})
= {0̂, (ϕ1, ϕ3), (ϕ3, ϕ2), ϕ3, 1̂}

Notice that this set is not co-atomic: in other words, when viewed as a sentence, it
minimizes to ϕ3, and thus we have gotten rid of 0̂.

To get a better intuition on how conditioning works from a lattice-theoretic per-
spective, consider the case when Z = {0̂}. In this case ZA is the set of atoms, and
E is simply the set of all atomic elements; usually this is a strict subset of L, and
conditioning partitions the lattice into E, [ui, 1̂] ∧ E, and [u1, 1̂]. When processing E
recursively, the algorithm retains only co-atomic elements. Thus, conditioning works
by repeatedly removing elements that are not atomic, then elements that are not co-
atomic, until 0̂ is removed, in which case we have removed the unsafe sentence and we
can proceed arbitrarily.

27

1̂

ϕ1 ϕ3 ϕ2

ϕ1, ϕ3 ϕ2, ϕ3

0̂ = ϕ1, ϕ2, ϕ3

1̂

ϕ4 ϕ5

0̂ = ϕ4 ∨ ϕ5

1̂

ϕ1 ϕ2 ϕ3

ϕ1, ϕ2 ϕ1, ϕ3 ϕ2, ϕ3

ϕ4

0̂ = ϕ1, ϕ2, ϕ3, ϕ4

1

γ1 = R(x1), S1(x1, y1)
γ2 = S1(x2, y2), S2(x2, y2)
γ3 = S2(x3, y3), S3(x3, y3)
γ4 = S3(x4, y4), T (y4)

ϕ1 = γ3, γ4

ϕ2 = γ2, γ4

ϕ3 = γ1, γ4

ϕ4 = γ1, γ2, γ3

Φ = ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ ϕ4

Figure 2: A lattice that is atomic, coatomic, and µ(0̂, 1̂) = 0. Its sentence Φ is given
by Th. 6.6 (compare to h3 in Sec. 5.2).

7.2 Incompleteness
Assume 0̂ is an unsafe sentence, and all other sentences in the lattice are safe. Lifted
conditioning proceeds by repeatedly replacing the lattice L with a smaller lattice E,
obtained as follows: first retain only the atomic elements (= cl(Z ∪ ZA)), then retain
only the co-atomic elements (this is minimization of the resulting formula). Condition-
ing on any formula other than E is a bad idea, because then we get stuck having to
evaluate the unsafe formula at 0̂. Thus, lifted conditioning repeatedly trims the lattice
to the atomic-, then to the co-atomic-elements, until, hopefully, 0̂ is removed. Proposi-
tion 3.4 implies that, if 0̂ is eventually removed this way, then µ(0̂, 1̂) = 0. But does
the converse hold ?

Fig.2 shows a lattice where this process fails. Here µ(0̂, 1̂) = 0; by Th. 6.6 there
exists a sentence Φ that generates this lattice, where 0̂ is unsafe and all other elements
are safe (Φ is shown in the Figure). Yet the lattice is both atomic and co-atomic. Hence
cond-lattice is the entire lattice E = L. We cannot condition on any formula and
still have µ(0̂, 1̂) = 0 in the new lattice. In other words, no matter what formula we
condition on, we will eventually get stuck having to evaluate the sentence at 0̂. On the
other hand, Mobius’ inversion formula easily computes the probability of this sentence,
by exploiting directly the fact that µ(0̂, 1̂) = 0.

8 Conclusions
We have proposed a simple, yet non-obvious algorithm for computing the probabil-
ity of an existential, positive sentence over a probabilistic structure. For every safe
sentence, the algorithm runs in PTIME in the size of the input structure; every unsafe
sentence is hard. Our algorithm relies in a critical way on Mobius’ inversion formula,
which allows it to avoid attempting to compute the probability of sub-sentences that are
hard. We have also discussed the limitations of an alternative approach to computing
probabilities, based on conditioning and independence.

28

Algorithm 7.1 Compute PΦ) using lifted conditional
Input: Φ =

∨
i=1,m ϕi, L = LDNF (Φ)

Output P (Φ)
1: Function Cond(L)
2: If L has a single co-atom Then proceed with IndepStep
3: Remove from L all elements that are not co-atomic (Prop 3.4)
4: Let Z = {u | u ∈ L, µL(u, 1̂) = 0}
5: Let ZA = {u | u ∈ L, u covers some z ∈ Z}
6: If Z = ∅ Then E := [u, 1̂] for arbitrary u
7: Else E := cl(Z ∪ ZA)
8: If E = L then FAIL (unable to proceed)
9: Let u1, . . . , uk be the minimal elements of L− E

10: Return Cond(E) +
∑
i=1,k Cond(ui)−Cond([ui, 1̂] ∧ E)

Acknowledgments We thank Christoph Koch and Paul Beame for pointing us (in-
dependently) to incidence algebras, and the anonymous reviewers for their comments.
This work was partially supported by NSF IIS-0713576.

References
[1] N. Creignou and M. Hermann. Complexity of generalized satisfiability counting

problems. Inf. Comput, 125(1):1–12, 1996.

[2] Nadia Creignou. A dichotomy theorem for maximum generalized satisfiability
problems. J. Comput. Syst. Sci., 51(3):511–522, 1995.

[3] N. Dalvi, K. Schnaitter, and D. Suciu. Computing query probability with inci-
dence algebras. Tehnical Report UW-CSE-10-03-02, University of Washington,
March 2010.

[4] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases. In
VLDB, Toronto, Canada, 2004.

[5] N. Dalvi and D. Suciu. The dichotomy of conjunctive queries on probabilistic
structures. In PODS, pages 293–302, 2007.

[6] N. Dalvi and D. Suciu. Management of probabilistic data: Foundations and chal-
lenges. In PODS, pages 1–12, Beijing, China, 2007. (invited talk).

[7] Adnan Darwiche. A differential approach to inference in bayesian networks.
Journal of the ACM, 50(3):280–305, 2003.

[8] E. Grädel, Y. Gurevich, and C. Hirsch. The complexity of query reliability. In
PODS, pages 227–234, 1998.

[9] Kevin H. Knuth. Lattice duality: The origin of probability and entropy. Neuro-
computing, 67:245–274, 2005.

29

[10] C. Krattenthaler. Advanced determinant calculus. Seminaire Lotharingien Com-
bin, 42 (The Andrews Festschrift):1–66, 1999. Article B42q.

[11] Dan Olteanu and Jiewen Huang. Secondary-storage confidence computation for
conjunctive queries with inequalities. In SIGMOD, pages 389–402, 2009.

[12] Dan Olteanu, Jiewen Huang, and Christoph Koch. Sprout: Lazy vs. eager query
plans for tuple-independent probabilistic databases. In ICDE, pages 640–651,
2009.

[13] D. Poole. First-order probabilistic inference. In IJCAI, 2003.

[14] Yehoushua Sagiv and Mihalis Yannakakis. Equivalences among relational expres-
sions with the union and difference operators. Journal of the ACM, 27:633–655,
1980.

[15] P. Sen, A.Deshpande, and L. Getoor. Bisimulation-based approximate lifted in-
ference. In UAI, 2009.

[16] Parag Singla and Pedro Domingos. Lifted first-order belief propagation. In AAAI,
pages 1094–1099, 2008.

[17] Richard P. Stanley. Enumerative Combinatorics. Cambridge University Press,
1997.

[18] Ingo Wegener. BDDs–design, analysis, complexity, and applications. Discrete
Applied Mathematics, 138(1-2):229–251, 2004.

Part I

Lattice Theory
A Background
We review here a few results from lattice theory that we need throughout the paper.

Proposition A.1 [17, pp.159, exercise 30] Let (L̂,≤) be a finite lattice. A mapping
x → x̄ on L̂ is called a closure if forall x, y ∈ L̂: (a) x ≤ x̄, (b) if x ≤ y then x̄ ≤ ȳ,
and (c) ¯̄x = x̄. A closed element is an element x s.t. x = x̄. Denote L̄ the subset of
closed elements. Then:

µL̄(x̄, ȳ) =
∑

z∈L̂:z̄=ȳ

µL̂(x̄, z)

Corollary A.2 Let E ⊆ L̂ be a subset that is closed under meet. If all coatoms are in
E then forall u ∈ E, µE(u, 1̂) = µL̂(u, 1̂).

30

Proof: The mapping x→ x̄ =
∧
y∈E:y≤x y is a closure. The proposition follows from

the fact that the only element z s.t. z̄ = 1̂ is z = 1̂ (because all coatoms are closed). 2

Finally, we review the form of the Mobius function on a product space, which
we need in Part III. Here we use the notation L̄ = L ∪ {1̂} for the completion of a
semilattice L.

Lemma A.3 Let (L,≤) be a meet-semilattice, and let L̄ = L ∪ {1̂} be its completion
to a lattice. Let (LX ,≤) be the product space of the meet-semilattice, and LX =
LX ∪ {1̂} be its completion. Then, forall f ∈ LX , µ

LX (f, 1̂) = −∏a∈X µL̄(f(a), 1̂)

Proof: Recall that if K is any lattice, then µKX (f, g) =
∏
a∈X µK(f(a), g(a)). That

is, the Mobius function of the cartesian product is the product of the Mobius functions.
The lattice LX , is not a cartesian product. In fact, it is a strict subset of the cartesian
product (L̄)X . However, for every f, g ∈ LX , the subset [f, g] ⊆ LX is a lattice, and
is the cartesian product of lattices, [f, g] =

∏
a∈X [f(a), g(a)]. Let f ∈ LX . Using the

standard identity for the Mobius function we have:

µ
LX (f, 1̂) = −

∑
g∈LX :f≤g<1̂

µ
LX (f, g)

If g ∈ LX and g < 1̂ then g ∈ LX , hence:

µ
LX (f, 1̂) = −

∑
g∈LX :f≤g

µ
LX (f, g)

= −
∑

g∈LX :f≤g

µ[f,g](f, g) = −
∑

g∈LX :f≤g

(∏
a∈X

µ[f(a),g(a)](f(a), g(a))

)
= −

∏
a∈X

∑
u∈L:f(a)≤u

µL(f(a), u) = −
∏
a∈X

(−µL(f(a), 1̂))

= (−1)|X|+1
∏
a∈X

µL(f(a), 1̂)

2

B Proofs
We can prove now Prop. 3.4, Prop. 7.3, and Prop 7.4.

Proof: (of Proposition 3.4) (1) See [17]. (2) Apply Corollary A.2 to the set of co-
atomic elements. 2

Proof: (Of Prop. 7.3) It is a standard fact in incidence algebras that µL(x, y) de-
pends only on the sublattice [x, y]. Thus, µL(z, 1̂) = µ[z,1̂](z, 1̂) and µE(z, 1̂) =
µE∩[z,1̂](z, 1̂). We need to prove µ[z,1̂](z, 1̂) = µE∩[z,1̂](z, 1̂), and for that we use the
dual of Corollary A.2, in the lattice [z, 1̂]. By construction of E, the set E ∩ [z, 1̂] is
closed under joins, and contains all atoms of [z, 1̂], which proves the claim. 2

31

Proof: (Of Prop 7.4) The proof is identical to that of Prop. 7.3. First, notice that
E ⊆ [u, 1̂] ∧ E, because every element x ∈ E can be written as 1̂ ∧ x. Denote
L′ = [u, 1̂] ∧ E. Then E is a subset of L′ that is closed under joins, and contains all
atoms of [z, 1̂]. Then, as in Prop. 7.3, we have µE∩[z,1̂](z, 1̂) = µ([u,1̂]∧E)∩[z,1̂](z, 1̂) 2

Part II

Rewriting to Forbidden Queries
C Rewriting Preserves Hardness

We prove here Lemma 6.7, which states that, if Φ ∗→ ϕ is a maximal rewriting, then
the evaluation problem for ϕ can be reduced to that for Φ.

Proof: We consider each type of rewriting (1) ϕ → ϕ[C/W] and ϕ[C/W], where
W is a level and C is a set of constants. Suppose we are given an input structure A
for ϕ[C/W]. Recall that this structure is over a different vocabulary, where each sym-
bol S containing an element of the level W is replaced with |C| symbols Sa, forall
a ∈ C. Given the structure A, we construct a new structure B for the vocabulary
for ϕ as follows: for every tuple Sa(b1, b2, . . . , c1, c2, . . .) in A we create a tuple
Sa(b1, b2, . . . , a, c1, c2, . . .) in B, with the same probability. All tuples belonging to
relations that do not have any attributes in the level W we simply copy from the struc-
ture A to B. Obviously, PA(ϕ[C/W]) = PB(ϕ).

(2) Assume ϕ = ϕ0 ∨ ϕ1 and ϕ1 is unsafe. Let A be a structure. Remove from A
all ground tuples that occurs in ϕ0; this does not affect P (ϕ1), because the alphabet is
ranked, hence ϕ0 and ϕ1 are independent; call B the new structure. Then PA(ϕ1) =
PB(ϕ).

(3) Assume Φ → ϕ, where ϕ = λ(u), for u ∈ LC s.t. µ(u, 1̂) 6= 0. Here we will
choose u s.t. it is a maximal element in the lattice with this property. In other words,
forall v > u, λ(v) is safe. That is, we choose a particular rewriting from Φ into a
sentence without separator. Let A be an input structure. We construct a new structure
B by adding some more tuples to A, as follows. Write ϕ =

∨
γi. Let v ∈ L be such

that u 6< v, and denote ϕ′ = λ(v) =
∨
j γ
′
j . Since ϕ′ 6⇒ ϕ, there exists a component γ′j

s.t. for any i, γ′j 6⇒ γi. Let Av be a structure obtained from γ′j by substituting a fresh
constant for each variable; that is, Av |= γ′j . Moreover, set the probabilities of all these
tuples to 1. We claim that PA(ϕ) = PA∪Av (ϕ). Suppose a component γi of ϕ is true
on some substructure of A ∪Av . Since γi is a component, it must be true in either a
substructure of A or in Av: to prove this we use that fact that the only constants shared
between A and Av are those in C (the constants in Φ), and none of the variables in γi
can be mapped to C (because the vocabulary is ranked w.r.t. C), hence, since γi is a
component it is mapped either entirely to one or the other. But γi cannot be mapped
to Av , because that would mean that there exists a homomorphism γi → γ′j , implying
γ′j ⇒ γi. Thus, we can add to A all structures Av for all v s.t. u 6< v, without affecting
the probability of ϕ. Denote B the resulting structure. We have: , P (ϕ) can be reduced

32

in PTIME to P (Φ), because PB(Φ) = PB(
∧
v∈L λ(v)) = PB(

∧
v≥u λ(v)) because

for all v 6> u, λ(v) is true on the substructure Av , and all those tuples have probability
1. Mobius’ inversion formula gives us gives us PB(Φ) = −∑v≥u µ(v, 1̂)PB(λ(v)).
For v = u, we have µ(u, 1̂) 6= 0 and PB(λ(u)) = PA(λ(u)) = PA(ϕ). For v > u
we have that λ(v) is safe, and therefore we can compute PB(λ(v)) in PTIME using
Algorithm 6.1. This gives us PA(ϕ). 2

D Leveling
We give now the Proof of Prop. 6.8.

We start with a more formal definition of a level. Let V denote all variables in the
disjunctive sentence ϕ = γ1 ∨ . . . ∨ γm (we assume that γi and γj have disjoint sets
of variables, when i 6= j). Let A denote the set of all attributes in the vocabulary:
that is A is a set of pairs a = (i, j), where i is the index of a relation symbol Ri and
j = 1,arity(Ri). Define two functions:

f : V → A f(v) = {a | v appears on the position of the attribute a}
g : A→ V g(a) = {v | a contains the variable v}

When extended to sets, f, g form a Galois connection. Recall that f and g define a
bijection between the closed subsets of V and the closed subsets of A. We call a level
any closed subset of V ; equivalently, a level is any closed subset of A. Thus, every
sentence ϕ defines, through f, g above, a family of closed subsets of V and A which
we call levels. One can check that ϕ is leveled if for any two distinct attributes a, b of
the same relation symbol R, ā 6= b̄. We also assume w.l.o.g. that l−1(k) 6= ∅, for all
k ∈ [L].

Consider a disjunctive sentenceϕ =
∨
i=1,m γi without separators. Suppose V ar(γi)∩

V ar(γj) = ∅ for i 6= j, and let L = |V ar(ϕ)|m2
. We will construct a new L-leveled

sentence varphiL over a new vocabulary, s.t. for any L-leveled structure A for ϕL can
be translated in PTIME to a structure B for ϕ s.t. pA(ϕL) = pB(ϕ), and, furthermore,
ϕL has no separator.

We start by describing the new vocabulary, which we call the leveled vocabulary.
For every relational symbol R of arity k and every k-tuple n̄ = (n1, . . . , nk) of k
distinct numbers 1 ≤ n1 < n2 < . . . < nk ≤ L, define a new relational symbol Rn̄.
The mapping from an L-leveled structure A over the new vocabulary to a structure B
over the vocabulary for ϕ is straightforward: take RB to be the union of all (Rn̄)A.
This union is disjoint: that is, if n̄ 6= m̄, then no two tuples inRn̄ andRm̄ can be equal,
because the structure A is leveled, which implies that attributes at different levels do
not share any common constants. Thus, we define the probability of a tuple in B to be
the same as that of the unique tuple in A that generated it.

Next, we define the leveled sentence ϕL. First, we level the variables. For every
variable x ∈ V ar(ϕ) and every n = 1, . . . , L define a new variable xn: here n is the
level of the new variable. A valid atom over the leveled vocabulary is an atom of the
form a = Rn1n2...nk(xn1

1 , . . . , xnk

k), i.e. where each variable has the same level as the

33

corresponding attribute in the relation symbol. The eraser of the atom a is the atom
e(a) = R(x1, . . . , xk) over the old vocabulary. Given any component (i.e. connected
conjunctive sentence) γL, its eraser e(γL) = γ is a conjunctive component over the
old vocabulary. Finally, consider our disjunctive sentence ϕ. Define ϕL to be the
disjunction of all connected components γL s.t. e(γL) is a component in ϕ.

Proposition D.1 Let A be a leveled structure over the leveled vocabulary, and B
be the corresponding unleveled structure, over the old vocabulary. Then PA(ϕL) =
PB(ϕ).

Proof: There is a one to one correspondence between possible worlds A0 ⊆ A and
possible worlds B0 ⊆ B, which preserves their probabilities. We will show that A0 |=
ϕL iff B0 |= ϕ, which proves the proposition. Clearly, if A0 |= ϕL, then B0 |= ϕ:
simply take any component γL in ϕL and valuation θL : γL → A0 and notice that it
extends to a valuation θ : e(γL) → B0. Conversely, suppose there exists a valuation
θ : γ → B0. Each tuple t ∈ B0 comes from a tuple tL ∈ A0, hence θ induces a
leveling over the variables, and, therefore, a leveled component γL s.t. θ extends to
θL : γL → A0. This proves the claim. 2

Next, we prove that ϕL has no separator. By Prop 5.7 we need to show that some
component γL has no maximal variable, i.e. each variable x ∈ V ar(γL) unifies (indi-
rectly) with a non-root variable.

The level range of a leveled relational symbol Rn1...nk is the interval [n1, nk]. The
level range of a leveled component γL is the interval [n′, n′′], where n′ is the minimum
level of any variable in ϕL, and n′′ is the maximum level of any variable in ϕL.

Lemma D.2 Let γ1 unify with γ2 (i.e. they share a relational symbol R), and let their
common atom R have arity k. Let v1 = V ar(γ1) and v2 = V ar(γ2), and v =
max(v1, v2). Then there exists leveled instances ϕL1 , ϕ

L
2 s.t. the atom R has the same

leveling Rn̄ in both leveled components ϕL1 and ϕL2 , and the width of the leveled range
of both ϕL1 and ϕL2 is at most 2v − 2k + (k − 1)(v − k) ≤ v2.

Proof: Start by assigning levels to the atom R, and the variables occurring in R: leave
a gap of size v − 1 between each two consecutive levels. Next assign a consistent
leveling to ϕ1: this is possible since we have left gaps wide enough, i.e. the remaining
v1 − k variables can either occupy entirely a single gap, or be below, or above. The
total gap is at most 2(v − k) + (k − 1)(v − k). Similarly for ϕL2 . 2

Corollary D.3 Let S = (γ1, . . . , γp) be a sequence of components in ϕ s.t. any two
consecutive components unify. Then there exists levelings s.t. any two consecutive
components unify, and the width of the leveled range in each γLi is at most |V ar(ϕ)|p.
We denote SL = (γL1 , . . . , γ

L
p).

Proof: By induction, using the previous lemma, and observing that every arity k is
≤ |V ar(γi)|, for every i. The induction step is the following. Start with a leveling
for γ1, . . . , γp−1: γL1 , . . . , γ

L
p−1. Modify the leveling by spreading each level to create

new gaps of size |V ar(ϕ)| between any two consecutive levels: thus, the spread has
increased by a factor of |V ar(ϕ)|. Now we can create a leveling for ϕp by placing its
new variables appropriately in the right gaps. 2

34

Finally, we have:

Corollary D.4 Fix γ, and let S1, S2, . . . , St be t sequences of unifications. Then
there exists a leveling of all components occurring in all sequences s.t. all sequences
SL1 , . . . , S

L
t are valid sequences of unifications in ϕL and the widths of their spreads

is at most |V ar(ϕ)pt, where p is the maximum length of any sequence Si.

The proof extends the one above.

Example D.5 Let:

ϕ = R(x, y), S(y, z) ∨R(x′, y′), S(x′, y′) = γ0 ∨ γ1

To level this sentence, we choose L = 4, and consider three leveling labels for both R
and S: 12, 23, and 34. The sentence becomes:

ϕL = R23(x2, y3), S34(y3, u4) ∨
R12(x1, y2), S23(y2, z3) ∨
R23(x′2, y

′
3), S23(x′2, y

′
3)

And inversion is (x2, y3), (x′2, y
′
3), (y2, z3).

E Rewriting to a Forbidden Query
We give here the Proof of Theorem 6.10. Let ϕ be a leveled, disjunctive sentence
without separators, and with at least three distinct levels. More precisely, if V is its set
of variables, then there exists a leveling function l : V → [L] where L ≥ 3, and there
is no leveling function V → [2]. We will prove that ϕ rewrites to a simpler disjunctive
sentence, still without separator.

E.1 Definitions
Definition E.1 The co-occurrence graph of ϕ =

∨
i γi is the following undirected

graph. The nodes are all components γi and there exists an edge from a component γi
to γj if γi and γj share a common relational symbol.

The connected components of the co-occurrence graph partition ϕ into ϕ1∨ϕ2∨. . .
s.t. ϕi and ϕj do not share any common predicate, for i 6= j. Obviously, ϕ has a
separator iff every ϕi has a separator. Since ϕ has no separator, assume w.l.o.g. that
ϕ1 also has no separator. Then ϕ ∗→ ϕ1. To see this, simply rewrite all the other ϕj by
substituting their variables with constants (i.e. repeated applications of the first rule in
Def. 6.3), thus ϕ ∗→ ϕ0 ∨ ϕ1, where ϕ0 consists only of constant atoms. Then apply
the second rewrite rule in Def. 6.3, ϕ0 ∨ ϕ1 → ϕ1. Therefore, to prove Theorem 6.10,
it suffices to assume w.l.o.g. that the co-occurrence graph of ϕ is connected.

35

Given a level l ∈ L and a component γi, denote V ar(γi, l) the variables in γi that
are on level l. Given a set of constants A, denote:

Θl(γi, A) = AV ars(γi,l)

γi[A/l] =
∨

θ∈Θl(γi,A)

γi[θ]

ϕ[A/l] =
∨
i

γi[A/l]

Thus, Θl(γi, A) denotes all substitutions of variables at level l in γi with constants
from A, and ϕ[A/l] is the sentence obtained by substituting variables at level l with
constants from A.

The main difficulty in the proof of Theorem 6.10 is the fact that γi[θ] may no longer
be a connected conjunctive sentence. If that happens, then we must write ϕ[A/l] in
CNF, then apply the third rewrite rule in Def 6.3. We examine now when γi[θ] is
disconnected.

Let γi be a component and l a level. Define the level-l subcomponents of γi as
follows. Construct a graph where the nodes are the atoms of γi and there exists an
edge between two atoms if they share at least one variable that is not on level l. Denote
scl(γi) = {σ1, . . . , σm} the level l-subcomponents of γi. Obviously, if θ ∈ Θl(γi, A),
then the connected components in γi[θ] are precisely the subcomponents in scl(γi).
That is:

γi[θ] =
∧

σ∈scl(γi)

σ[θ]

and each σ[θ] is a separate connected component. Consider the CNF expression:

ϕ[A/l] =
∨
i

∨
θ∈Θl(γi,A)

γi[θ]

=
∧
k

ϕk

Each ϕk has the form:

ϕk =
∨
i

∨
θ∈Θl(γi,A)

σ[θ] (9)

where σ ∈ scl(γi). In other words, the CNF is obtained as follows. For each com-
ponent γi and each substitution θ of its l-level variables, choose a subcomponent
σ ∈ scl(γi), and take the disjunction

∨
i,θ σ[θ]; this gives once disjunctive sentence

ϕk. Repeat this for all possible choices of σ and take the conjunction of the resulting
expressions.

We assume thatϕ is minimized. In particular there are no homomorphisms γi → γj
when i 6= j. However, such homomorphisms may exists between the components ofϕk
as expressed in Eq.(9). We establish below a sequence of results that give us sufficient
conditions for such homomorphisms not to exists.

36

Lemma E.2 Let γi and γj be two components, and l a level. Suppose that forall σk ∈
scl(γi) there exists a homomorphism hk : σk → γj such that forall k1, k2 and all x ∈
V ar(γi, l), hk1(x) = hk2(x); that is, for all subcomponents, their homomorphisms
agree on the variables at level l. Then there exists a homomorphism γi → γj . In
particular, if ϕ is minimized, then i = j.

Proof: The proof follows immediately from the definition of subcomponents. Any
two subcomponents σk1 and σk2 share only variables at level l, and their homomor-
phisms agree on these variables. Hence, we can extend the homomorphisms to a single
homomorphism on the entire γi. 2

This immediately implies:

Corollary E.3 Letϕ be minimized, and let i 6= j. Then for any function h : V ar(γi, l)→
V ar(γj) there exists a subcomponent σ ∈ scl(σi) s.t. there is no homomorphism
σ → γj that agrees with h on the variables at level l.

Fix a component γi, a subcomponent σi ∈ scl(γi), and an injective substitution
θi : V ars(γi, l)→ A; such a substitution exists whenever |A| ≥ |V ars(γi, l)|. Let ϕk
be a disjunctive sentence given by Eq.(9); the conjunction of all the ϕk’s forms ϕ[A/l].

Definition E.4 We say that ϕk contains σi[θi], if after minimizing ϕk one of its com-
ponents is (isomorphic to) σi[θi].

Recall that, if ϕk1 ⇒ ϕk2 then we need to remove ϕk1 from the CNF expression
ϕ[A/l] =

∧
k ϕk. However, if ϕk1 contains σi[θi], then so does ϕk2 , by the contain-

ment criteria of Sagiv and Yannakakis [14] (see Eq.(5)). Thus, to prove that σi[θi]
appears in ϕ[A/l] it suffices to show that there exists some k s.t. ϕk contains it. We do
not need to worry whether ϕk is redundant.

Recall that ϕk is uniquely determined by choosing, for each component γj and
substitution θ ∈ Θj(γj , A), a subcomponent σ ∈ scl(γj): then ϕk is the disjunction∨
j,θ σ[θ]. We say that σ ∈ scl(γj) is compatible with σi[θi] and θ if there exists a

homomorphism σ[θ]→ σi[θi]. Otherwise we call it incompatible.

Corollary E.5 If ϕ is minimized then forall σi ∈ scl(γi), θi ∈ Θl(γi, A) and θ ∈
Θl(γj , A), if θi is injective then there exists a subcomponent σ ∈ scl(γj) s.t. σ[θ] is
incompatible with σi[θi].

Proof: Since θi is injective it admits a left inverse g : A → V ar(γi, l): that is, g is
a partial function s.t. g(θi(x)) = x forall x ∈ V ar(γi, l). Define h = g ◦ θ; this
is a function h : V ar(γj , l) → V ar(γi, l), which is possibly partial. If it is a total
function, then choose σ ∈ scl(γj) as given in Corollary E.3, i.e. such that there exists
no homomorphism σ → γi that extends h: it follows that there is no homomorphism
k : σ[θ]→ σi[θi] because if there were one then g ◦ k ◦ θ would give a homomorphism
σ → σi that extends h, which is a contradiction. If h is not a total function, then
choose σ ∈ scl(γj) arbitrary: there is no homomorphism σ[θ] → σi[θi] because σ[θ]
uses constants in A that do not occur in σi[θi] (this is why h is not total). 2

37

Corollary E.6 Fix γi, σ ∈ scl(γi) and θi ∈ Θl(γi, A) s.t. θi is injective. Let ϕk be
a disjunctive sentence in the CNF expression of ϕ[A/l] obtained as follows: for each
(γj , θ) 6= (γi, θi), choose a component σ ∈ scl(γj) that is incompatible with σi[θi];
for γi, θi, choose the subcomponent σi. Then ϕk contains σi[θi]. In particular, there
exists ϕk s.t. contains σi[θi].

The proof follows immediately from the previous corollary.

E.2 Root Variables
Recall that a root variable for γi is a variable that occurs in all atoms. Suppose γi has
no root variables: then γi is not a hierarchical sentence [4, 6]. It is possible to show
that directly that every non-hierarchical sentence is #P-hard, and thus remove them
completely from the discussion: we have proven this in [5] for conjunctive queries
with self-joins, and also include a proof here in Theorem J.1. However, Theorem 6.10
also holds for non-hierarchical queries, which is a result of independent interest from
their hardness property, and therefore we treat non-hierarchical queries together with
the rest. We give here the proof of Theorem 6.10 for the case when one component γi
has no root variables; in particular, it is non-hierarchical.

Clearly, if γi has no root variables, then ϕ =
∨
i γi does not have a separator: this

follows from the fact that a separator must include a root variable from each compo-
nent. Notice that γi has at least two variables x, y s.t. (a) there exists an atom that
contains both x and y; in particular l(x) 6= l(y); (b) there exists an atom that contains
x but not y, and (c) there exists an atom that contains y but not x. Let l be a level
that is different from l(x) and l(y); choose A a set of constants s.t. |A| ≥ |V ar(γj , l)|
forall γj , and consider the CNF expression (9) for ϕ[A/l]. Let σi ∈ scl(γi) be the
subcomponent that contains the variables x and y, and let θi ∈ Θl(γi, A) be any injec-
tive substitution. By Corollary E.6 there exists a disjunctive sentence ϕk in the CNF
expression of ϕ[A/l] that contains σi[θi], even after minimization. Then, ϕk does not
have a separator: indeed, σi[θi] continues to have the two variables x, y, and they still
satisfy conditions (a), (b), (c), hence none of them is a root variable. Thus, ϕk does not
have a separator. Then, the two step rewriting:

ϕ→ ϕ[A/l]→ ϕk

proves Theorem 6.10.
Thus, from now on we will assume that every component γi in ϕ has at least one

root variable.

E.3 The Proof
If l is a level, then |scl(γi)| > 1 iff γi has exactly one root variable, and its level is
l. This is because γi must have a root variable, and if it has at least one root variable
on a level other than l, then that variable will keep all atoms of γi connected, hence
|scl(γi)| = 1.

Denote:

38

U = {l | ∀i.|scl(γi)| = 1}
The following is obvious:

Lemma E.7 If l ∈ U , then ϕ[A/l] is a disjunctive sentence.

When U 6= ∅ then we will choose any level in U . Suppose U = ∅. By assumption
there are at least three distinct levels, call them 1,2,3. For i = 1, 2, 3, let:

Γi = {γ | |sci(γ)| > 1}
By assumption Γi 6= ∅, for all i = 1, 2, 3 (otherwise we have i ∈ U).

To prove Theorem 6.10 we need to show how to choose the level l such that ϕ[A/l]
has no separator. We consider three cases:

Case 1 If U 6= ∅ then choose l to be any level in U .

For the remaining cases we assume U = ∅ and consider Γ1,Γ2,Γ3 defined
above.

Case 2 Fix three components γi ∈ Γi, for i = 1, 2, 3. If there exists σ ∈ sci(γi)
and a homomorphism σ → γj for j 6= i, then we choose l to be the third level,
i.e. l 6= i, l 6= j. (If there are multiple choices for i, j, pick one arbitrarily and
choose l as described).

Case 3 For any i 6= j, let nij be the length of the shortest path in the co-occurrence
graph from some γi ∈ Γi to some γj ∈ Γj . Let i, j be such that nij =
min(n12, n13, n23). Then choose l to be the third level, i.e. different from i
and j.

Once we picked the level l, then we choose a set of constants A s.t. |A| >
|2V ar(γi, l)| forall i, and rewrite:

ϕ −→ ϕ[A/l]

Next, we write ϕ[A/l] in CNF using Equation (9). We will prove below that there
exists k such that ϕk has no separator.

Before we give the proof, we illustrate with a few examples. We assume that the
variables x, y, z are assigned to levels 1, 2, 3 respectively.

Example E.8 We illustrate Case 1. Consider:

ϕ = R(x), S(x, y, z) ∨ S(x, y, z), T (y)

Level 1 (i.e. the variable x) splits γ1 into two subcomponents R(x) and S(x, y, z),
while level 2 splits γ2 into two subcomponents S(x, y, z) and T (y). Thus, U = {3},
meaning that level 3 does not split any component. We rewrite the sentence to15

ϕ[a/3] = R(x), S(x, y, a) ∨ S(x, y, a), T (y)
15In this example it suffices to choose A = {a}; choosing a larger set A = {a, b} leads to a similar but

longer sentence.

39

The new disjunctive sentence is still without separator. Note that it would have been a
mistake to choose level 1 because in that case the sentence rewrites to:

ϕ[a/1] = R(a), S(a, x, y) ∨ S(a, y, z), T (y)
= (R(a) ∨ S(a, y, z), T (y)) ∧ (S(a, x, y) ∨ S(a, y, z), T (y))

and both conjuncts have a separator (the sentence is actually safe). Thus, Case 1 is
necessary.

We show now why it is necessary to choose |A| > 1. Consider:

ϕ = R(x, z1)S(x, y1, z1)S(x, y2, z2)U(x, z2) ∨ S(x, y, z)T (y) ∨R(x, z)U(x, z)

We also have U = {3}, because variable x disconnects the first component, and vari-
able y disconnects the second. So we pick level 3 to rewrite. However, if we use a
single constant a then the first component becomes redundant and the sentence mini-
mizes:

ϕ[a/3] = R(x, a)S(x, y1, a)S(x, y2, a)U(x, a) ∨ S(x, y, a)T (y) ∨R(x, a)U(x, a)
= S(x, y, a)T (y) ∨R(x, a)U(x, a)

Therefore ϕ[a/3] has a separator (it is actually safe). We need to choose two constants,
A = {a, b}:

ϕ[{a, b}/3] = R(x, a)S(x, y1, a)S(x, y2, b)U(x, b) ∨R(x, b)S(x, y1, b)S(x, y2, a)U(x, a) ∨
S(x, y, a)T (y) ∨ S(x, y, b)T (y) ∨R(x, a)U(x, a) ∨R(x, b)U(x, b)

One can check that ϕ[{a, b}/3] is minimized and has no separator.

Example E.9 Next we illustrate Case 2. Consider:

ϕ = R(x, y, z)S(x, y′, z′) ∨R(x, y, z)T (x′, y, z′) ∨ S(x, y, z), T (x′, y′, z)
= γ1 ∨ γ2 ∨ γ3

Level 1 (variable x) splits the first component into two subcomponents: R(x, y, z)
and S(x, y′, z′); similarly levels 2 and 3 split the second and third components. Thus
U = ∅. Moreover, Case 2 applies here, because every subcomponent maps into every
other component. That is, we may choose any level l to do the rewriting. We illustrate
with l = 3. Here we must choose at least two constants: A = {a, b} and rewrite to:

ϕ[{a, b}/3] = γ1[{a, b}/3] ∨ γ2[{a, b}/3] ∨ S(x, y, a)T (x′, y′, a) ∨ S(x, y, b)T (x′, y′, b)
= (γ1[{a, b}/3] ∨ γ2[{a, b}/3] ∨ S(x, y, a) ∨ S(x, y, b)) ∧

(γ1[{a, b}/3] ∨ γ2[{a, b}/3] ∨ S(x, y, a) ∨ T (x′, y′, b)) ∧
(γ1[{a, b}/3] ∨ γ2[{a, b}/3] ∨ T (x′, y′, a) ∨ S(x, y, b)) ∧
(γ1[{a, b}/3] ∨ γ2[{a, b}/3] ∨ T (x′, y′, a) ∨ T (x′, y′, b))

40

The CNF expression is given in the last four rows, and has four conjuncts: each row is
obtained by choosing, for each constant a, b, either the subcomponent S(x, y, z) or the
subcomponent T (x′, y′, z), for a total of four conjuncts. Consider the second conjunct:

ϕ2 = γ1[{a, b}/3] ∨ γ2[{a, b}/3] ∨ S(x, y, a) ∨ T (x, y, b)

Expanding the first two expressions results in 8 components. Some of these are redun-
dant, because they contain either S(x, y, a) or T (x, y, b). However, the following two
components are not redundant:

ϕ2 = . . . R(x, y, a)S(x, y′, b) ∨R(x, y, a)T (x′, y, a) . . .

Hence ϕ2 has no separator, because neither level 1 nor level 2 is a separator (they are
not root levels in the two components above).

In the example above Case 2 applied, but we were allowed to pick any level we
wanted. We illustrate now how Case 2 may restrict our choice. Consider:

ϕ = U(x, y′, z′)V (x, y′′, z′′) ∨R(x′, y, z′)S(x′′, y, z′′)U(x′′, y, z′′) ∨ V (x′, y′, z)S(x′, y′, z)T (x′′, y′′, z)
= γ1 ∨ γ2 ∨ γ3

Here the variable x splits γ1 into two subcomponents: U(x, y′, z′) and V (x, y′′, z′′).
There is homomrphism from the first subcomponent to γ2: by Case 2 we should not
select levels 1 or 2, but select level l = 3 to expand. There is also a homomorphism
from the second component to γ3: by Case 2 we should select level l = 2 to expand.
But we should not select level 1. In other words, Case 2 allows us to select levels 2 or
3, but not level 1. To see why level 1 doesn’t work, consider expanding it with a set of
constants A = {a, b, c, . . .}:

ϕ[A/1] =
∨
v∈A

U(v, y′, z′)V (v, y′′, z′′) ∨ γ2[A/1] ∨ γ3[A/1]

=
∧
k

ϕk

Hereϕk represent the disjuncts in the CNF expansion. Each suchϕk contains γ2[A/1]∨
γ3[A/1] and, for each constant v ∈ A, it contains either U(v, y′, z′) or V (v, y′′, z′′)
(thus, there are 2|A| disjunctive sentences ϕk). However, each ϕk has a separator. In-
deed, consider two terms from the expansion of γ2[A/1]∨ γ3[A/1] that, together, have
no separator:

γi = . . . R(a, y, z′)S(b, y, z′′)U(b, y, z′′) ∨ V (b, y′, z)S(b, y′, z)T (x′′, y′′, z)

Note that we must use the same common constant, say b, in the two atoms S, to allow
them to be unifiable (otherwise the two components have a separator). But γi contains
either U(b, y′, z′) or V (b, y′′, z′′), making either the first or the second component
above redundant. This shows that we cannot expand on level 1. Instead, if we follow
Case 2, then we will expand on either level 2 or 3. Choosing l = 3 and a single constant

41

a we obtain:

ϕ[a/3] = U(x, y′, a)V (x, y′′, a) ∨R(x′, y, a)S(x′′, y, a)U(x′′, y, a) ∨ V (x′, y′, a)S(x′, y′, a)T (x′′, y′′, a)
= (U(x, y′, a)V (x, y′′, a) ∨R(x′, y, a)S(x′′, y, a)U(x′′, y, a) ∨ V (x′, y′, a)S(x′, y′, a)) ∧

(U(x, y′, a)V (x, y′′, a) ∨R(x′, y, a)S(x′′, y, a)U(x′′, y, a) ∨ T (x′′, y′′, a))

Neither conjunct has a separator.

Suppose ϕ has no separator. Our theorem follows from the following three lemmas.

Lemma E.10 (Case 1) Suppose ϕ has no separator, U 6= ∅, and let l ∈ U . Let A be a
set of constants s.t. |A| ≥ |V ar(γi, l)| for all i. Then ϕ[A/l] is a disjunctive sentence
and has no separator.

Proof: For any substitution θ ∈ Θl(γi, A), γi[θ] is connected. Thus, ϕ[A/l] is a
disjunctive sentence. Some of the components γi[θ] may be redundant. However,
by Corollary E.6, for any injective substitution θi : V ars(γi, l) → A, γi[θ] is not
redundant.

We show now that ϕ[A/l] has no separator. Suppose it had a separator V ′. Con-
struct a separator V for ϕ as follows. For each component γi, let θ be any injective
substitution θ : V ar(γi, l)→ A. Define the separator variable xi for γi to be the same
separator variable for γi[θ] (the two sentences are isomorphic and “the same variable”
means up to this isomorphism). Note that this definition is independent on our choice
of θ. Indeed, if θ′ is another injective substitution that agrees with θ on at least one
variable x (θ(x) = θ′(x)) then γi[θ] and γi[θ′] have two atoms that unify, hence their
separator variables must unify, which means that they correspond to the same variable
in γi. It is easy to check that the set {xi | i = 1, . . .} is indeed a separator for ϕ: if
γi and γj unify, then there exists substitutions θ, θ′ s.t. γi[θ] unifies with γj [θ′], and
therefore the separator variables must unify as well. 2

From now on we will assume that Case 1 does not apply. Let 1,2,3 be three arbitrary
levels, and Γ1,Γ2,Γ3 be as defined above. Fix γi ∈ Γi, for i = 1, 2, 3.

Lemma E.11 (Case 2) Suppose there exists σ1 ∈ sc1(γ1) and a homomorphism h :
σ1 → γ2. Let A be a set of constants such that |A| ≥ |V ar(γ1, 3)| + |V ar(γ2, 3)|
(the number of variables on the 3rd level in γ1 plus those in γ2). Consider the CNF
expression for ϕ[A/3] =

∧
ϕk. Then there exists k s.t. ϕk has no separator.

Proof: Let θ2 ∈ Θ3(γ2, A) be any injective substitution, and denoteA2 ⊆ A the set of
constants in Im(θ2). Define θ1 to be injective and s.t. forall x ∈ V ar(γ1, 3)∩V ar(σ1),
θ1(x) = θ2(h(x)); that is, we use |V ar(γ1, 3)−V ar(σ1)| constants in addition to those
in Im(θ2): denote A1 the set consisting of these constants. We claim that there exists
some ϕk in Eq.(9) that contains both components γ1[θ1] and γ2[θ2] (note that both are
connected). Note that this proves our claim: ϕk does not have a separator, because the
only root variable in γ1[θ1] is on level 1, and the only root variable in γ2[θ2] is on level
2.

42

Suppose that there exists a homomorphism σ[θ] → γi[θi], for i = 1 or 2, where
σ ∈ sc3(γ). Then γ ∈ Γ3: otherwise σ = γ and we obtain a homomorphism γ → γi,
contradicting the fact that the sentence ϕ was minimized. Thus, assume γ ∈ Γ3, and
let z denote the variable at level 3 in γ (z is the single root variable in γ). Recall that,
when defining ϕk, we may choose any σ ∈ sc3(γ) for each γ, θ. We consider two
cases. First, when θ(z) ∈ A2. Then we choose σ s.t. it is incompatible with γ2[θ2]:
this is possible by Corollary E.5. It follows that there is no homomorphism σ[θ] →
γ1[θ1] either, because the image of such a homomorphism must be in σ1[θ1] (since all
constants in A2 are here), and this would give us a homomorphism σ[θ] → γ2[θ2].
Second, when θ(z) ∈ A1. Then we choose σ to be incompatible with γ1[θ1]. Clearly
there is no homomorphism σ[θ] → γ1[θ1]. In addition there is no homomorphism
σ[θ] → γ2[θ2] either, because every atom in σ[θ] contains the constant θ(z), which
does not occur in γ2[θ2]. 2

Fix i 6= j, and γi ∈ Γi and γj ∈ Γj . Since we assumed that the co-occurrence
graph is connected, there is a path δ0 = γi, δ1, δ2, . . . , δn = γj s.t. any two consecutive
components δk−1, δk share a common relational symbol. Call n the length of the path
from γi to γj . Let nij be the length of the shortest path from any component in Γi to
any component in Γj

Lemma E.12 (Case 3) Suppose n12 = min(n12, n13, n23). LetA be a set of constants
such that |A| ≥ maxi(|V ar(γ, 3)|), for all components γ in ϕ. Then there exists a
disjunctive sentence γk in the expansion (9) of ϕ[A/3] that has no separator.

Proof: Let δ0 = γ1, δ1, . . . , δn = γ2 be a shortest path from some component γ1 ∈ Γ1

to some component γ2 ∈ Γ2; thus, n12 = n. Note that δi 6∈ Γ3 for all i = 0, n:
otherwise, we would have a shorter path from Γ1 to Γ3.

Define, inductively, the substitutions θi ∈ Θ(δi, A) as follows. Start by defining
θ0 : V ar(δ0, 3)→ A to be any injective substitution. To define θk : V ar(δk, 3)→ A,
consider the two atoms in δk−1 and δk that share a common relational symbol. They
may share at most one variable at level 3: choose θk to be any injective substitution
that agrees with θk−1 on the common variable at level 3. Note that δi[θi] is connected,
for all i = 0, . . . , n, because none of the δi’s is in Γ3.

We will show now that there exists a disjunctive sentence γk that contains all com-
ponents δi[θi]: this proves our claim, since γk cannot have a separator, because the only
root variable in δ0 is on level 1, and the only root variable in δn is on level 2. Thus, we
need to show that, for every component γ and every substitution θ ∈ Θ3(γ,A), there
exists σ ∈ sc3(γ) s.t. σ[θ] is incompatible with δi[θi] for all i = 0, . . . , n.

First, notice that the only way we can have a homomorphism σ[θ] → δi[θi] is if
γ ∈ Γ3: otherwise, |sc3(γ)| = 1, and σ = γ, and a homomorphism γ[θ] → δi[θi]
implies a homomorphism γ → δ, which is a contradiction. So assume γ ∈ Γ3. Then
we cannot have i = 0 or i = n, because then we would be in Case 2, and we have
assumed that the condition for Case 2 does not hold. Thus i ∈ {1, . . . , n − 1}. We
consider two cases.

Case 1: there exists σ, θ such that there exists a homomorphism σ[θ] → δi[θi],
for some i = 1, . . . , n − 1. This gives us the path δ0 = γ1, δ1, . . . , δi, γ in the co-
occurrence graph from Γ1 to Γ3. Since we assumed our path from Γ1 to Γ2 is the

43

shortest one, we conclude i = n−1. Similarly, we obtain the path γ, δi+1, . . . , δn = γ2

from Γ3 to Γ2: we conclude that i = 1. Thus, n = 2, in other words the path from Γ1

to Γ2 is γ1, δ1, γ2. For any γ, θ, choose σ ∈ sc3(γ) such that σ[θ] is incompatible with
δ1[θ1]: this is possible by Corollary E.5. Then the resulting ϕk contains the entire path
γ1[θ0], δ1[θ1], γ2[θ2].

Case 2: there is no homomorphism σ[θ] → δi[θi], for any i = 1, . . . , n − 1. Then
any ϕk contains all components δi[θi], for i = 0, . . . , n. 2

Part III

Forbidden Queries are Hard
We give here the proof of the most difficult result in this paper: that all forbidden
sentences are hard. We use in this chapter the term Boolean query or simply query to
refer to a positive, existential FO sentence.

F Problem Setting
Let Q be a disjunctive query:

Q = q1 ∨ q2 ∨ q3 ∨ . . .

where each qi is a connected, conjunctive query, called a component. The query
is 2-leveled: that means, there exists a function l : V ar(Q) → {1, 2} s.t. forall
k ∈ {1, 2}, l−1(k) is a level, i.e. contains exactly one variable from each atom, and is
closed under unification.

Definition F.1 The co-occurrence graph ofQ is the following undirected graphG(Q).
The nodes are all relation symbols, and there exists an edge from Si to Sj if Si and Sj
co-occur in a component qk.

Denote l−1(1) = {x1, x2, . . .} and l−1(2) = {y1, y2, . . .}. Each atom may contain
at most one x-variable and one y-variable. We call a component qi a left component if
no variable y occurs in all atoms; we call it a right component if no variable x occurs
in all atoms. Any symbol that occurs in some left component is called a left symbol;
any symbol occurring in some right component is a right symbol.

Definition F.2 A 2-leveled disjunctive query Q is called a forbidden query if there
exists a path in G(Q) from a left symbol to a right symbol.

Lemma F.3 A 2-leveled query Q is forbidden iff it has no separator.

Proof: Suppose that there exists a path from S to S′. We show that there is no sepa-
rator. Suppose W is a separator. Let q be a left component that contains S: then W

44

must contain the x-variable in q. Similarly, if q′ is a right component containing S′,
then W must contain the y-variable from q′. Consider path from S to S′ in the co-
occurrence graph. Each edge between two symbols Si, Sj corresponds to a component
that contains both symbols. Augment the beginning of the path with the edge S, S (cor-
responding to q) and the end of the path with the edge S′, S′ (corresponding to q′). The
separator contains either an x- or a y-variable from each query along the path. Since it
starts with an x-variable and ends with a y-variable, there exists two consecutive edges
where the separator chooses an x-variable from qi on the first edge, and a y-variable
from qj on the other edge; but this violates the condition that the separator be closed
under unification.

Conversely, assume no such path exists. Then we partition the co-occurrence graph
into connected components. We show how to construct a separator, by including from
each component either a x or a y variable, as follows. There are three kinds of con-
nected components: (a) those that contain at least one left-component; then it cannot
contain a right component: here choose the x-variable. (b) those that contain at least
one right-component; here choose the y-variable. (c) those that contain only middle
queries; choose arbitrarily the x-variable. 2

In this document we prove:

Theorem F.4 For every forbidden queryQ, computingP (Q) on a probabilistic database
is hard for FP#P .

G The Signature Counting Problem
Let Φ =

∨
(x,y)∈E x ∧ y be a PP2DNF. The counting problem for PP2DNF, denoted

#PP2DNF, asks for the number of assignments that make the formula true. It is known
to be #P-complete [1].

Equivalently, Φ is a bipartite graph (X,Y,E), where E ⊆ X × Y . Let n1 = |X|,
n2 = |Y |, n = |E|. We call interchangeably xy an edge, or a conjunct in Φ. Let
m1,m2 = O(1) be two numbers, m1 ≥ 2,m2 ≥ 2: that is, these numbers are fixed,
and independent of n1, n2, and are at least 2. We define the set of left labels and right
labels as LL = [m1] and RR = [m2]. In all definitions below we assume that the
bipartite graph Φ is fixed.

Definition G.1 A labeling is a pair of functions l = (l1, l2), where l1 : X → LL and
l2 : Y → RR. There are nm1

1 × nm2
2 labelings.

Definition G.2 An edge signature σE , a node signature on the left σX and a node
signature on the right σY are functions:

σE : LL×RR→ {0, 1, . . . , n}
σX : LL→ {0, 1, . . . , n}
σY : LL→ {0, 1, . . . , n}

Definition G.3 We define four types of signatures: the left end may be of type 1 or 2,
and the right end may be of type 1 or 2.

45

• A signature of type 1-1 is σ = σE .

• A signature of type 1-2 is σ = (σE , σY).

• A signature of type 2-1 is σ = (σX , σE).

• A signature of type 2-2 is σ = (σX , σE , σY).

We write a signature as σ = ([σX ,]σE [, σY]) to indicate that σX and σY are
optional. In the sequel, the type of all signatures is fixed by the query Q, and is one
of 1-1, 1-2, 2-1, 2-2. We will assume the type to be fixed, and denote Σm1,m2 be
the set of signatures of the fixed type, for the bipartite graph Φ. Note: |Σm1,m2 | ≤
nm1m2+m1+m2 .

Definition G.4 Let l = (l1, l2) be a labeling. The signature of the labeling l is σl =
([σXl ,]σ

E
l [, σYl]), where:

σEl (τ1, τ2) = |{(x, y) ∈ E | l1(x) = τ1, l2(y) = τ2}| ∀(τ1, τ2) ∈ LL×RR
σXl (τ1) = |{x ∈ X | l1(x) = τ1}| ∀τ1 ∈ LL
σYl (τ2) = |{y ∈ Y | l2(y) = τ2}| ∀τ2 ∈ RR

Definition G.5 Let σ ∈ Σm1,m2(Φ) be a signature. The signature count of σ, denoted
#σ, is the number of labelings that have signature σ:

#σ = |{l | σl = σ}|
Let #Σm1,m2(Φ) = {#σ | σ ∈ Σm1,m2(Φ)} denote the set of all signature counts.
There are |#Σm1,m2(Φ)| ≤ nm1m2+m1+m2 signature counts.

Definition G.6 Fix m1,m2 ≥ 2. The m1,m2-Signature-Counting (SC) problem is the
following: given a bipartite graph Φ, compute #Σm1,m2(Φ).

Example G.7 Let m1 = m2 = 2. Assume the type 1-1. Then the 2,2-counting
problem is the following. Given a bipartite graph Φ = (X,Y,E), for all tuples of 4
numbers σ = σE = (n11, n12, n21, n22) where n11, n12, n21, n22 ≤ |E|, compute
#σ the number of possible labelings of the X-nodes and the Y -nodes s.t. exactly n11

edges have their endpoints labeled 1 and 1, exactly n12 edges have their endpoints
labeled 1 and 2, etc. Note that, if n11 + n12 + n21 + n22 6= n, then #σ = 0, because
no such labelings is possible: we leave such inconsistent signatures in the problem
definition, for convenience. Suppose now that the type is 2-2. Then forall 8 numbers
σE = (n11, n12, n21, n22), σX = (n1, n2) and σY = (n′1, n

′
2) we need to compute the

number of labelings s.t., the number of edges whose endpoints are labeled 1,1 is n11

etc; the number of nodes in X labeled 1 is n1 and the number of nodes in X labeled
2 is n2; and the number of nodes in Y labeled 1 is n′1 and the number of nodes in Y
labeled 2 is n′2.

Let m1 ≤ m′1 and m2 ≤ m′2. Given an m1,m2 signature σ, we can view it as
an m′1,m

′
2-signature by setting σ(τ1, τ2) = 0 whenever τ1 > m1 or τ2 > m2. With

this convention, we have Σm1,m2(Φ) ⊆ Σm′
1,m

′
2
(Φ) and similarly #Σm1,m2(Φ) ⊆

#Σm′
1,m

′
2
(Φ).

46

Proposition G.8 SC is hard for FP#P .

Proof: By reduction from the PP2DNF problem. Assume that we have an oracle for
solving the m1,m2-SC problem, for m1,m2 ≥ 2. We can assume w.l.o.g. that the sig-
natures are of type 1,1: if the signatures are of, say, type 2,2, then we convert signature
counts #(σX , σE , σY) into #σE by summing over all signatures σX and σY . Thus,
we assume all signatures are of type 1,1. From Σm1,m2(Φ) we obtain Σ2,2(Φ) (since
Σ2,2(Φ) ⊆ Σm1,m2(Φ)). Next, we use an oracle for the 2, 2-SC problem to solve the
#PP2DNF problem: assuming the encoding 1 = false, 2 = true, we obtain the
number of satisfying assignments to the Boolean expression Φ by summing #σ over
all signatures σ where |{(x, y) ∈ E | l1(x) = 2, l2(y) = 2}| ≥ 1:

#PP2DNF =
∑
{#σ | σ ∈ Σ2,2(Φ), σ(2, 2) ≥ 1}

2

The proof Theorem F.4 is the following: we will show that, for every forbidden
query Q, there exists two numbers m1,m2 ≥ 2 such that the m1,m2-SC problem can
be reduced to the evaluation problem P (Q) over probabilistic databases D.

H An Example
We illustrate the key elements of the proof, by proving hardness of the query:

H1 = R(x), S(x, y) ∨ S(x, y), T (y)

Recall that hardness of H0 = R(x), S(x, y), T (y) is very easy to prove, by direct
reduction from #PP2DNF: given Φ = (X,Y,E) construct a database having tuples
R(ai), T (bj), S(ai, bj) with probabilities 1/2, 1/2, 1, forall ai ∈ X , bj ∈ Y , and
(ai, bj) ∈ E: the number of satisfying assignments for Φ is exactly the number of
worlds that make H0 true. Hence, the associated counting problem for H0 is #P-hard.

We do not know of a similarly simple construct for H1, or for any other forbidden
query, and this forces us to use a more complex proof. We illustrate here the hardness
proof forH1. This query is of type 1-1, so all signatures below are of type 1-1. We will
prove its hardness by providing a PTIME algorithm for the 2, 2-SC problem with access
to an oracle for computing P (H1): this shows that P (H1) is hard for FP#P . Note that
the 2, 2-SC problem is more general that the #PP2DNF (but still complete for FP#P).
There are two parts to the hardness proof of H1, which we call the Algorithmic and the
Algebra. There is a third part, called the Combinatorics, for more complex queries.

H.1 Algorithmic Part
Fix Φ = (X,Y,E), X = {ai | i = 1, n1}, Y = {bj | j = 1, n2}, E ⊆ X × Y ,
|E| = n. Construct a probabilistic database D as the union of blocks D(ai, bj), one
for each edge (ai, bj) ∈ E. Each blockD(ai, bj) is, in turn, of the union of four blocks
Dk(ai, bj), for k = 1, 2, 3, 4:

47

D =
⋃

(ai,bj)∈E

D(ai, bj)

D(ai, bj) = D1(ai, bj) ∪D2(ai, bj) ∪D3(ai, bj) ∪D4(ai, bj)
Dk(ai, bj) = {R(ai), S(ai, cijk), T (cijk), S(dijk, cijk), R(dijk), S(dijk, bj), T (bj)}

The only tuples shared between blocks are R(ai), T (bj): we set their probabilities
to 1/2 and call them endpoints. Each block Dk(ai, bj) contains two endpoints and five
additional tuples. We fix the probabilities of four of them to some constant values (same
values forall i, j, k), and for the fifth tuple we set its probability to be some variable
xk ∈ (0, 1) (same forall i, j, different for k = 1, 2, 3, 4). For example, we may set
P (S(dijk, cijk)) = xk, and for all other tuples we set their probabilities to 1/2, but
this choice needs to be made carefully, as we explain below. For now it suffices to say
that a single tuple in each block Dk(ai, bj) has a variable probability.

Let LL = RR = {1, 2}. Each possible world W ⊆ D defines lW = (lW1 , lW2) for
Φ as follows:

lW1 (ai) =
{

1 if R(ai) ∈W
2 if R(ai) 6∈W lW2 (bj) =

{
1 if T (bj) ∈W
2 if T (bj) 6∈W

Fix a labeling l and consider the event “a possible world W ⊆ D has labeling l”,
formally lW = l. Clearly P (lW = l) = 1/2n1+n2 . We want to compute the probability
that H1 is false conditioned on lW = l: P (¬H1|lW = l).

Fix an edge (ai, bj) and let τ1 = l(ai), τ2 = l(bj) be the labeling of its endpoints,
τ = (τ1, τ2). Denote fτ (xk) the probability that the query H1 is false on the block
Dk(ai, bj), conditioned on the label τ . That is, given that R(ai) and T (bj) are true
or false, as specified by τ1 and τ2, fτ (xk) denotes the probability that Hk is false on
Dk(ai, bj); for example, f12(xk) denotes the probability that H1 is false on a block
Dk(ai, bj), assuming R(ai) is true and T (bj) is false. Note that fτ (xk) is the same for
all i and j, so we do not include the indices i, j in the expression. Thus, fτ (xk) is a
linear polynomial in xk:

fτ (xk) = Aτ +Bτxk

The two coefficients depend on the labeling τ . The probability that H1 is false on
D(ai, bj) conditioned on the label τ is:

Fτ (x̄) = fτ (x1) · fτ (x2) · fτ (x3) · fτ (x4) (10)

This gives us:

48

P (¬H1|lW = l) =
∏

(ai,bj)∈E

Fl1(ai),l2(bj)(x̄)

=
∏

τ∈LL×RR
Fσl(τ)
τ (x̄)

= Fn11
11 (x̄) · Fn12

12 (x̄) · Fn21
21 (x̄) · Fn22

22 (x̄)

where σl = (n11, n12, n21, n22), and each nτ represents the number of edges in
E whose endpoints are labeled τ . For each σ ∈ Σ2,2(Φ) there are #σ labelings l s.t.
σl = σ, and therefore we obtain (recall that P (lW = l) = 1/2n1+n2):

P (¬H1) =
∑
l

P (¬H1|lW = l)P (lW = l)

=
1

2n1+n2

∑
σ∈Σ2,2(Φ)

∏
τ∈LL×RR

Fσ(τ)
τ (x̄) ·#σ

We will use repeatedly an oracle for computing P (¬H1) in order to obtain the
values #σ, forall σ ∈ Σ2,2(Φ), thus solving the 2,2-SC problem. Since |Σ2,2(Φ)| =
(n+ 1)4, we have (n+ 1)4 unknowns16 #σ. Choose (n+ 1)4 different values for the
four variables x̄ = (x1, x2, x3, x4), x̄ = v̄1, v̄2, . . . , v̄(n+1)4 and invoke the P (H1)-
oracle for each value. We obtain a linear system with (n+ 1)4 equations and (n+ 1)4

unknowns, whose matrix is:

M = (
∏
τ

Fσ(τ)
τ (v̄))σ∈Σ,v̄∈V

= (Fn11
11 (v̄i) · Fn12

12 (v̄i) · Fn21
21 (v̄i) · Fn22

22 (v̄i)) n11, n12, n21, n22 ≤ n
i = 0, . . . , (n+ 1)4

where V = {v̄1, v̄2, . . . , v̄(n+1)4}. If M is non-singular, then we can solve the
system in polynomial time, and thus obtain the solution to the 2,2-SC problem, proving
hardness for the computation problem for P (H1).

H.2 Algebra Part
It remains to show that M is non-singular. This follows from three facts, which we
describe below, continuing to restrict the discussion to H1.

Fact H.1 Let F̄ (x̄) = (F1(x̄), F2(x̄), F3(x̄), F4(x̄)), where x̄ = (x1, x2, x3, x4) be
a function R4 → R4, where each Fk is a multilinear polynomial. Suppose that the

16For every labeling l, its signature has the property
P
τ∈LL×RR #σl(τ) = n. If a signature does not

have this property, then #σ = 0, hence there are only O(n3) unknowns, but we prefer to treat all #σ’s as
an unknowns, for a total of (n+ 1)4.

49

Jacobian x̄→ F̄ is non-zero at some point x̄ ∈ R4. Define the following matrix:

M =
(
F j11 (x̄i) · F j22 (x̄i) · F j33 (x̄i) · F j44 (x̄i)

)
i = 1, (n+ 1)4

0 ≤ j1, j2, j3, j4 ≤ n
(11)

That is, the columns are given by four independent exponents j1, j2, j3, j4 and the rows
are given by (n+1)4 values for the variables x̄. ThenM is nonsingular, and, moreover,
one can find in PTIME (n+ 1)4 values V = {v̄1, . . . , v̄(n+1)4} such that the matrix M
at these values is non-singular.

We give the general statement and proof in Sec. I.1. The intuition is quite simple,
however. When the values V are considered unknowns, then det(M) is a multivariate
polynomial in 4(n+ 1)4 variables, where each variable has degree ≤ 4(n+ 1)4. Thus,
the idea in the proof is to show that one can find in PTIME values for the unknowns s.t.
det(M) 6= 0. To give the intuition why this is possible, consider a simpler problem:
given a polynomial f(x) in a single variable x, of degree N , find a value v s.t. f(v) 6=
0. Clearly this can be done in time O(N), times the time needed to evaluate f . Indeed,
by trying out at most N + 1 values for x, one can find a value v s.t. f(v) 6= 0. We will
show that this idea extends to a proof of the claim.

Next, we turn to the Jacobian of the function F̄ (x̄).

Fact H.2 Let f1(x), f2(x), f3(x), f4(x) be four linear, non-constant polynomials in
one variable x. Suppose their roots are distinct. For k = 1, . . . , 4 define:

Fk(x1, x2, x3, x4) = fk(x1) · fk(x2) · fk(x3) · fk(x4)

Then, for any four distinct values v̄ = (v1, v2, v3, v4), the Jacobian of F̄ (x̄) is non-zero
at v̄.

We give the general statement and proof in Sec. I.2.
Next, we need to show that the polynomials f11, f12, f21, f22 have distinct roots.

Recall that two multivariate polynomials f, g are called equivalent if there exists a
number c 6= 0 s.t. f = c·g. If f(x), g(x) are two linear polynomials in a single variable
x, then they are equivalent iff their roots are equal. A multivariate polynomial is called
irreducible if it cannot be expressed as a product of two non-constant polynomials:
a classic result in algebra states that every multivariate polynomial can be uniquely
decomposed as a product of irreducible polynomials, up to equivalence. Recall that we
obtained the polynomials f11(x), . . . , f22(x) by setting other variables to constants.
We prove:

Fact H.3 Let p1, p2, p3, p4 be four multilinear polynomials. Suppose that they have
some irreducible factors p0

1, p
0
2, p

0
3, p

0
4, such that p0

i is a factor of pi, with the follow-
ing properties: the four factors are pairwise inequivalent, and they share a common
variable x. Let ȳ be all variables other than x in p1, . . . , p4. Then there exists val-
ues v̄ such that after substituting v̄ for ȳ in p1, . . . , p4 the resulting linear polynomials
f1(x), . . . , f4(x) are not constants, and have distinct roots.

50

We give the general statement and the proof in Sec. I.3.
This brings us to the very core of the hardness proof: the connection between

queries without separator and irreducible polynomials. Recall that the blockDk(ai, bj)
has five tuples: S(ai, cijk), T (cijk), S(dijk, cijk), R(dijk), S(dijk, bj). DenoteZ1, . . . , Z5

the events that the tuples are not present in a possible world W ⊆ Dk(ai, bj), and
X,Y the events that R(ai) and T (bj) are not in W . Then, the event that H1 is false on
Dk(ai, bj) is given by the Boolean expression:

ϕ = (X ∨ Z1)(Z1 ∨ Z2)(Z2 ∨ Z3)(Z3 ∨ Z4)(Z4 ∨ Z5)(Z5 ∨ Y)

Let ϕτ1τ2 denote the event “the query is false given that R(ai) and T (bj) are labeled
τ1 and τ2 respectively”:

ϕ11 = (Z1 ∨ Z2)(Z2 ∨ Z3)(Z3 ∨ Z4)(Z4 ∨ Z5)
ϕ12 = (Z1 ∨ Z2)(Z2 ∨ Z3)(Z3 ∨ Z4)Z5

ϕ21 = Z1(Z2 ∨ Z3)(Z3 ∨ Z4)(Z4 ∨ Z5)
ϕ22 = Z1(Z2 ∨ Z3)(Z3 ∨ Z4)Z5

Denote p11, p12, p21, p22 the multivariate polynomials in real variables z1, . . . , z5

giving the probabilities of ϕ11, ϕ12, ϕ21, ϕ22. We claim that these polynomials factor-
ize as follows:

p11 = p0
11

p12 = p0
12 · z5

p21 = z1 · p0
21

p22 = z1 · p0
22 · z5

where p0
11, p

0
12, p

0
21, p

0
22 are inequivalent irreducible polynomials, having the variables

z2, z3, z4 in common. Indeed, start with p11 = p(ϕ11). Suppose it had two non-trivial
factors p11 = f ·g. Since p11 is multilinear, f and g do not share any common variables.
In that case one could express ϕ11 as ϕ11 = ψ ∧ ν, where ψ and ν are Boolean
expressions that do not share any common variables. But this is not possible: the
expression ϕ11 connects all variables Z1, . . . , Z5 and cannot be written as the conjunct
of two independent expressions. Thus, p11 is irreducible. On the other hand, p22 has
three factors, z1, z5 and the multilinear polynomial in z2, z3, z4 giving the probability
of (Z2 ∨ Z3)(Z3 ∨ Z4).

The four irreducible polynomials have three common variables z2, z3, z4. Chose x
to be any one of them, say x = z3, and set the other variables to some constants to
obtain for linear polynomials f11(x), . . . , f22(x) that have distinct roots.

It is interesting to notice that this does not work if the query Q is not forbidden.
For example, consider the queryQ = R(x), S1(x, y)∨S2(x, y), T (y) can be separated
into two independent parts, and the p-polynomials factorize as:

51

p11 = q1r1 p12 = q1r2 p21 = q2r1 p22 = q2r2

qi and rj cannot have any variables in common. If we choose a variable x that
occurs in r1, r2 only, then after setting all other variables to constants the polynomials
become a · r1(x), a · r2(x), b · r1(x), b · r2(x) where a, b are constants: thus, the
first and third polynomials are equivalent, and so are the second and fourth. We can
actually prove a necessary and sufficient condition: Q is not a forbidden query iff a
corresponding polynomial factorizes in a way that separates the left from the right.

H.3 Combinatorics Part
For queries Q more complex than H1 we need to pre-process them, both in order to
develop the algorithm, and in order to prove the algebraic properties.

I Part 1 of the Proof: Algebra

I.1 Solving for det(M) 6= 0

Here we formalize and generalize Fact H.1. This consists of two theorems. The first is:

Theorem I.1 Let x̄ = (x1, . . . , xm) bem variables, and Ḡ(x̄) = (G1(x̄), . . . , Gn(x̄))
be n multivariate polynomials in x̄. Consider n distinct copies of x̄, denoted x̄i, i =
1, n, and let X̄ = (x̄i)i=1,n be the set of m · n distinct variables. Define the matrix of
polynomials:

M(Ḡ) = (Gj(x̄i))i,j=1,n (12)

We assume m = O(1). Then there exists an algorithm that runs in time nO(1) and
either determines that det(M) ≡ 0 (as a multivariate polynomial in X̄) or finds values
V̄ s.t. det(M(Ḡ)[V̄ /X̄]) 6= 0.

The second theorem is:

Theorem I.2 Let F̄ (x̄) = (F1(x̄), . . . , Fm(x̄)) be m multivariate polynomials, each
in m variables x̄. For each n > 0, define (n+ 1)m polynomials Ḡ(x̄) as follows:

Ḡ = (
∏
i=1,m

F jii (x̄))0≤j1,...,jm≤n (13)

Thus, for each m-tuple (j1, j2, . . . , jm) ∈ {0, . . . , n}m there is one polynomial in
Ḡ. Suppose that the Jacobian of the function x̄ → F̄ (x̄) is not identically zero. Then
det(M(Ḡ)) 6≡ 0, where M(Ḡ) is the matrix defined in Eq.(12).

Together, these two theorems prove the following, which generalizes Fact H.1.
Suppose we are given m polynomials F1(x̄), . . . , Fm(x̄) in m variables x̄ with a non-
zero Jacobian. Define a matrixM of dimensions (n+1)m×(n+1)m, where each row

52

is given by Ḡ in Eq.(13) and distinct rows differ only in the choice of the arguments
x̄. Thus, the matrix generalizes that given by Eq.(11). Then det(M) is not identically
zero, and one can find in PTIME (n+ 1)m values V̄ for x̄ s.t. det(M)[V̄] 6= 0.

In the remainder of this section we prove the two theorems. We start with a theorem
that we will also need later.

Theorem I.3 For a multivariate polynomial P in m variables, denote V(P) the set of
points in the m-dimensional complex vector space where P is zero:

V(P) = {v̄ | v ∈ Cm, P (v̄) = 0}

This is called the variety of P . Suppose F is a multilinear polynomial s.t. V(F) ⊆
V(P). Then there exists a polynomial G s.t. P = F ·G

Proof: Recall Hilbert’s Nullstellensatz: for any multivariate polynomialsF1, . . . , Fk, P ,
if V(F1)∩ . . .V(Fk) ⊆ V(P) then there exists n ≥ 1 and polynomials G1, . . . , Gk s.t.
Pn = F1 ·G1 + . . .+ Fk ·Gk. (In other words, Pn belongs to the ideal generated by
F1, . . . , Fk.) In our case, this implies that there exists G and n ≥ 1 s.t. Pn = F · G.
Decompose F into irreducible factors: F = f1f2 · · · Since F is multilinear, no two
factors share any common variables. In particular, all factors are distinct, and, since
each factor divides P , it follows that P is divisible by F , proving our claim. 2

To prove Theorem I.1 we need the following two lemmas.

Lemma I.4 Let P (x1, . . . , xm) be a multivariate polynomial of degree n, with m =
O(1) variables. Suppose we have an Oracle that, given values v1, . . . , vm, computes
P (v1, . . . , vm) in time T . Then there exists an algorithm that runs in time O(nmT)
and either determines that P ≡ 0 or returns a set of values v̄ = (v1, . . . , vm) s.t.
P (v̄) 6= 0.

Proof: By induction on m. Choose n + 1 distinct values for the last variable: xm =
v0
m, xm = v1

m, . . ., xm = vnm. For each value vim we substitute xm = vim in
P . We obtain a new polynomial, Q = P [xm/vim], with m − 1 variables. Ap-
ply induction hypothesis to this polynomial, to find a set of values v1, . . . , vm−1 s.t.
Q[x1/v1, . . . , xm−1/vm−1] 6= 0. If we find such values, then augment them with
vim and return (v1, . . . , vm−1, v

i
m). If we don’t find them, then we know that Q =

P [vim/xm] ≡ 0, in other words P is divisible by xm − vim, by Theorem I.3. If the
latter case holds for all n + 1 values for xm, then we know that the polynomial is
identically 0. 2

Recall that n multivariate polynomials G1, . . . , Gn are called linearly independent
if, for any constants c1, . . . , cn, if c1G1 + . . .+ cnGn ≡ 0 then c1 = . . . = cn = 0.

Lemma I.5 The polynomials G1, . . . , GN are linearly dependent iff det(M(Ḡ)) ≡ 0
(where M is given by Eq.(12)).

53

Proof: The “if” direction follows immediately from the fact that the columns in M
are linearly dependent. For the “only if” direction, we prove by induction on n that,
if n polynomials G1, . . . , Gn are linearly independent, then det(M) 6≡ 0. Let M ′

be the (n − 1) × (n − 1) upper-left minor of M . Since G1, . . . , Gn−1 are also lin-
early independent, det(M ′) 6≡ 0. Hence, there exists values V̄ ′ = (v̄1, . . . , v̄n−1) s.t.
det(M ′)[V̄ ′] 6≡ 0. Consider now det(M)[V̄ ′]: that is, we substitute x̄1, . . . , x̄n−1 with
the values V̄ ′, and keep only the variables x̄N . Then det(M(V̄ ′)) has in the last row
the polynomialsG1(x̄n), . . . , Gn(x̄n), and has constants in all other rows. Its value is a
linear combination of the polynomials in the last row: det(M) = c1 ·G1+. . .+cn ·Gn.
The last coefficient, cn = det(M ′)[V̄ ′], is non-zero, hence det(M) 6≡ 0, because the
polynomials are linearly independent. 2

We can now prove Theorem I.1.

Proof: (of Theorem I.1) We proceed by induction on n. Consider the upper left minor
M ′ of dimensions (n − 1) × (n − 1). Run the algorithm on the matrix M ′, and this
takes (n − 1)O(1) steps. If we determine that det(M ′) ≡ 0, then this implies that
G1, . . . , Gn−1 are linearly dependent, and therefore so are G1, . . . , Gn, which implies
det(M) = 0. Otherwise, we have computed a set of values V̄ ′ = (v̄1, . . . , v̄n−1) that
make the upper left minor M ′ non-singular. Then det(M) is a polynomial P (x̄n) in
m = O(1) variables x̄n. We also have an oracle for computing P in time O(n3):
given values v̄, substitute them in last row ofM , then compute det(M) using Gaussian
elimination. Thus, we can apply Lemma I.4 to compute a set of values v̄ for which this
polynomial is non-zero. Return the vector consisting of V̄ ′ concatenated with v̄. 2

Next, we prove Theorem I.2. For this, we need to recall two notions. A Vander-
monde matrix of dimensions n× n is:

V (y1, . . . , yn) =
(
yj−1
i

)
i,j=1,n

The Kronecker product of two matrices A = (aij), B = (bkl) of dimensions
n1×n1 and n2×n2 respecitvely, is the following matrix of dimensions n1n2×n1n2:

A⊗B = (aij · bkl)(i,k)∈[n1]×[n2];(j,l)∈[n1]×[n2]

Furthermore, if det(A) 6= 0 and det(B) 6= 0 then det(A⊗B) 6= 0.

Proof: (of Theorem I.2) Note that here the matrix M(Ḡ) has dimension (1 + n)m ×
(1+n)m. Consider row i of the matrix: its entries are products of the form F j11 · · ·F jmm
for all possible values j1, . . . , jm ∈ {0, . . . , n}, and all over the same set of variables
x̄i.

Since the Jacobian of F̄ (x̄) is non-zero, the image of F̄ includes a closed, m-
dimensional cube C. Therefore, for each dimension i = 1,m one can choose a set
Yi = {yi,0, yi,1, . . . , yi,n} of n + 1 numbers yi,0 < yi,1 < yi,2 < . . . < yi,n such
that all (n + 1)m points can can be formed with these coordinates are in C, i.e. Ȳ =

54

Y1 × . . . × Ym ⊆ C. In other words, for every ȳ ∈ Ȳ there exists values x̄i s.t.
F̄ (x̄) = ȳ. By choosing these (n + 1)m values for x̄i in the definition of M(Ḡ) we
obtain the following matrix:

M(Ḡ) =
(
yj11 · · · yjmm

)
(y1,...,ym)∈Ȳ ,(j1,...,jm)∈{0,...,n}m

= V (y1,0, y1,1, . . . , y1,n)⊗ · · · ⊗ V (ym,0, y1,1, . . . , ym,n)

Each Vandermonde matrix is non-singular, because the values yi,0, . . . , yi,n are dis-
tinct, hence M is non-singular. 2

I.2 Non-zero Jacobian
Here we formalize and generalize Fact H.2.

Theorem I.6 Let pi(x) = aix+ bi, i = 1, n be n linear polynomials in one variable x
s.t. ai 6= 0 forall i = 1, n, with distinct roots (that is, they are inequivalent polynomi-
als). Define the following n multivariate polynomials, where x1, . . . , xn are n distinct
variables:

fi(x1, . . . , xn) = pi(x1) · pi(x2) · · · pi(xn)

Let J(x̄) = D(f̄)/D(x̄) be the Jacobian. Let v̄ = (v1, . . . , vn) ∈ Rn be any n distinct
values. Then det(J(v̄)) 6= 0.

Proof: We can assume w.l.o.g. that a1 = . . . = an = 1. Thus, the polynomials can be
written as pi(x) = x + yi, where y1, . . . , yn are distinct values. Then the Jacobian J ,
and its determinant are:

J =

∏
k 6=j

(xk + yi)


ij

det(J) =
∏
i<j

(xi − xj)(yi − yj) (14)

Thus, det(J) is a polynomial in the variables x̄ and ȳ, which is non-zero whenever
both the xj’s are distinct and the yi’s are distinct.

We prove now the identity (14). Denote det(J) = P (x̄, ȳ); obviously P is a
multivariate polynomial in the variables x̄, ȳ. The degree of any variable xj is at most
n− 1; indeed, xj occurs in each column of J with degree 1, except in column j where
it does not occur at all. Next, express det(J) in terms of det(M) for the following
matrix M :

M =
(

1
xj + yi

)
ij

P (x̄, ȳ) =
∏
ij

(xj + yi) · det(M)

55

(The determinant of M is called Cauchy’s double alternant [10].) We notice that
M is symmetric in x̄ and ȳ, which implies that the degree of every variable yi in P
is also at most n − 1. Next, consider what happens to det(M) if we set xi = xj :
we obtain det(M) = 0, because two columns become equal. Hence, by Theorem I.3
the polynomial P is divisible by (xi − xj), for all i < j. Similarly, it is divisible
by (yi − yj). It follows that P = c

∏
i<j(xi − xj)(yi − yj). It remains to com-

pute the constant c. For that, we compute in det(J) the coefficient of the monomial
m = c · x0

1x
1
2 · · ·xn−1

n y0
1y

1
2 · · · yn−1

n . In the first row, none of the columns 2, 3, . . . , n
contributes tom, because they have the factor x1 +y1, thus all terms will contain either
x1 or y1. Consider now the first column in the first row, (x2+y1)(x3+y1) · · · (xn+y1).
When viewed as a polynomial in y1, only the free term x2x3 · · ·xn contributes to
m (all others contain y1). Dividing m by x2x3 · · ·xn, we obtain a new monomial
c·x0

2x
1
3 · · ·xn−2

n y0
2y

1
3 · · · yn−2

n , which is obtained from the lower right minor of det(J);
we can conclude inductively that c = 1. 2

I.3 Irreducible Polynomials
Here we formalize and generalize Fact. H.3. Recall that two multivariate polynomials
p and q are called equivalent if there exists a constant c 6= 0 such that p ≡ c · q.

Theorem I.7 Let p1(x̄), p2(x̄), . . . , pn(x̄) be n multi-linear polynomials in variables
x̄. Suppose that, for each i, pi has an irreducible factor p0

i s.t. p0
1, . . . , p

0
n are inequiv-

alent, and all depend on a common variable x. Let ȳ = x̄ − {x} denote all the other
variables. Then there exists real values v̄, s.t. denoting fi = pi[v̄/ȳ], the linear poly-
nomials f1(x), . . . , fn(x) have the following properties: (a) each of them depends on
x, (b) they are inequivalent (i.e. have distinct roots).

Proof: Write p0
i (x) = ai∗x − bi where ai, bi are polynomials in the variables ȳ.

We have ai 6≡ 0 because p0
i depends on x. We prove that for any distinct i, k, the

polynomials aibk and akbi are not identical. Suppose otherwise, i.e. aibk ≡ akbi.
Then we can factorize them like this:

ai = u · v
bk = w · z
ak = u · z
bi = v · w

Then p0
i (x) = u · v · x + v · w = v · (u · x + w) and p0

k(x) = z · (u · x + w). We
know that u 6≡ 0, because ai 6≡ 0 (and ak 6≡ 0). Since both p0

i and p0
k are irreducible,

we must have both v and z constant polynomials. But then p0
i and p0

k are equivalent,
which is a contradiction. This proves the claim that aibk 6≡ akbi.

Consider the following polynomial:

F (ȳ) = (
∏
i

ai)× (
∏
ik

(ai∗bk − ak∗bi))

56

Here F (ȳ) is a multivariate polynomial in variables ȳ that is not identically zero.
Hence there are values ȳ = v̄ s.t. F [v̄/ȳ] 6= 0. We check that these values satisfy
the two conditions in the theorem. Indeed, we have ai[v̄/ȳ] 6= 0, hence fi(x) =
ai[v̄/ȳ] · x− bi[v̄/ȳ] depends on x, thus (a) is satisfied. To check (b) it suffices to note
that, forall i 6= k, ai[v̄/ȳ]bk[v̄/ȳ] 6= ai[v̄/ȳ]bi[v̄/ȳ]. 2

J Part 2 of the Proof: Combinatorics
The reduction from a Signature Counting problem to a forbidden query that we sketched
in Sec. H does not work for all queries. Instead, in this section we describe several
ways to simplify the query until it reaches a normal form, where the reduction from SC
works.

For example, consider the following variation of H1:

Q = R1(x), R2(x), S1(x, y) ∨ S1(x, y), S2(x, y) ∨ S2(x, y), T1(y), T2(y)

A naive way to attempt this reduction is to consider four left labels, corresponding
to all possible truth assignments to the events R1(a), R2(a), and similarly four right
labels. But this a reduction from the 4,4-SC problem fails, because we do not obtain
16 distinct irreducible polynomials: the truth assignments (0, 1), (1, 0), and (1, 1) to
R1(a), R2(a) lead to the same expressions, and same for T1(a), T2(a), and there are
only four in-equivalent polynomials instead of 16. Instead, we prove hardness for Q
by making all tuples R2(a) and T2(a) deterministic: then Q becomes H1.

We assume throughout this section that the query Q is minimized. We transform a
forbidden query into two ways: first we make it “long”, then we “normalize” it.

Let l denote the leveling function for Q =
∨
i qi. Denoting the variables in l−1(1)

with x, x1, x2, . . . and those in l−1(2) with y, y1, y2, Every atom has at most one
x- and one y-variable. A variable is a root variable in qi if it occurs in all atoms of qi;
qi is hierarchical if it has a root variable.

We start by showing that we can discard non-hierarchical queries, by giving a direct
proof that every non-hierarchical query is hard. The proof is similar to the proof given
in [5] for the fact that non-hierarchical conjunctive queries are hard; we included it here
for completeness.

Theorem J.1 If Q is minimzed and has a non-hierarchical component q, then comput-
ing p(Q) on probabilistic databases is hard for #P .

Proof: By reduction from the PP2DNF problem. Let Φ = (X,Y,E) be a bipartited
graph representing a PP2DNF instance

∨
(a,b)∈E a ∧ b.

Since q is connected and non-hierarchical, there exists two variables x, y and three
atoms S1(x,−), S2(x, y), S3(−, y) s.t. S2 contains both x, y, S1 contains x and pos-
sibly a second variable, and S3 contains y and possibly a second variable. For ev-
ery other variable z in Q let cz be a fresh constant, unique for z. For every pair of
constants a ∈ X and b ∈ Y denote D(a, b) the structure consisting of all tuples in
q[a/x, b/y, . . . cz/z . . .]. Define D =

⋃
(a,b)∈E D(a, b). Set the probabilities of all

57

unary tuples S1(a,−), S3(−) to 1/2, and the probabilities of all other tuples to 1. We
prove that pD(Q) is precisely the probability that Φ is true when each Boolean variable
is set to true with probability 1/2.

Let W ⊆ D be a world. W corresponds uniquely to a truth assigment of the
Boolean variables in Φ, namely a is true iff S1(a,−) ∈ W and similarly b is true iff
S3(−, b) ∈ W . We prove that W |= Q iff the corresponding truth assignment makes
Φ true. Indeed, let θ be a valuation from some component q1 in Q to W . Compose
this valuation with the homomorphism W → q that maps a to x, b to y, and each
constant cz to the variable z: we obtain a homomorphism q1 → q. Thus, q1 is q and
the homomorphism q1 → q is an isomorphism. Thus, the valuation θ must contain
both tuples S1(a,−) and S3(−, b) where (a, b) ∈ E, and therefore it corresponds to an
assigment making Φ true. The converse is straightforward: if the assignment θ makes
Φ true then there exists (a, b) ∈ E s.t. both S1(a,−) and S3(−, b) are in W , hence the
mapping x 7→ a and y 7→ b is a valuation from q to W . 2

Thus, from now on we will assume w.l.o.g. that Q is hierarchical. Thus, each
component has a root variable, which is either x, or y, or both, and we have:

Definition J.2 Let qi be a component in Q.

• qi is a left component if it has an x-root but no y-root variable.

• qi is a right component if it has a y-root but no x-root variable.

• qi is a center component if it has both an x-root and a y-root variable.

A center component has exactly two variables, x, y, both root variables.

Definition J.3 A relational symbol S (binary or unary) is called a left symbol if it
occurs in a left component; it is called a right symbol if it occurs in a right component.
A symbol that is neither left nor right is called a center symbol.

Definition J.4 Let q be a component of Q. A subcomponent of q is a maximal subset
of atoms that contain exactly the same set of variables.

For example, consider the component q:

q = R(x), S1(x, y1), S2(x, y1), S1(x, y2), S3(x, y2)

it has three subcomponents s1, s2, s3:

s1 = R(x) s2 = S1(x, y1), S2(x, y1) s3 = S1(x, y2), S3(x, y2)

J.1 Long Forbidden Queries
Definition J.5 The forbidden query Q is called long if no component contains both a
left and a right symbol.

58

Example J.6

H1 = R(x), S(x, y) ∨ S(x, y), T (y)
H2 = R(x), S1(x, y) ∨ S1(x, y), S2(x, y) ∨ S2(x, y), T (y)
H3 = R(x), S1(x, y) ∨ S1(x, y), S2(x, y) ∨ S2(x, y), S3(x, y) ∨ S3(x, y), T (y)

. . .

Every Hk for k ≥ 3 is long; H1, H2 are short.

Q = S1(x, y1), S2(x, y2) ∨ S1(x1, y), S2(x2, y)

Query Q a forbidden query because both S1, S2 are both left and right symbols; but Q
is short.

Our reduction from the SC-Problem only works when Q is long. In this section we
prove the following:

Proposition J.7 For every hierarchical forbidden query Q there exists a long forbid-
den query Qm such that the evaluation problem of Qm on 2-leveled structures can be
reduced to the evaluation problem of Q on 2-leveled structures.

Proof: Let Q be a (short) forbidden query. Let nx be the maximum number of xi
variables, and ny the maximum number of yi variables in any component q. Fix a
number m ≥ 2: for the claim in the proposition it suffices to set m = 2, but we
describe the proof for general m ≥ 2.

Given two constants d, c, construct the following 2-leveled structureG(d, c), which
we call the template:

• The level 1 constants are: X = X1 ∪X2 ∪ . . .∪Xm where X1 = {d} and forall
i = 2,m, |Xi| = nx.

• The level 2 constants are: Y = Y1 ∪ Y2 ∪ . . . ∪ Ym where forall j = 1,m − 1,
|Yj | = ny , and Ym = {c}.

• For every left unary symbol R(x), the structure contains all tuples of the form
R(u) for u ∈ X .

• For every right unary symbol T (y), the structure contains all tuples of the form
T (v) for v ∈ Y .

• For every binary symbol S(x, y), the structure contains all tuples for the form
S(u, v) where u ∈ Xi and v ∈ Yi, or u ∈ Xi+1 and v ∈ Yi.

One can think of the template G(d, c) as a bipartite graph, where both the left
nodes and the right nodes are partitioned into m sets. The subgraph restricted to Xi, Yi
is complete; the subgraph restricted toXi+1, Yi is also complete; and there are no other
edges. We call d and c the distinguished nodes of the template.

59

We will define Qm over a new vocabulary, with the following property. For every
2-leveled probabilistic database Dm over the vocabulary of Qm, there exits a 2-leveled
probabilistic database D over Q’s vocabulary such that pD(Q) = pDm(Qm).

We describe the new vocabulary for Qm together with the translation Dm 7→ D.
Recall thatDm must be leveled: : letA = l−1(1) andB = l−1(2). ThenD consists of
the union of structures G(a, b) forall a ∈ A, b ∈ B. More precisely, for every pair of
constants a, b and every template node u ∈ X ∪ Y , D contains a distinct constant ua,b

except that we equate ca,b = a and da,b = b. Thus, two different substructures G(a, b)
and G(a, b′) share the node a and nothing else; similarly G(a, b) and G(a′, b) share
b and nothing else. Now we describe the new vocabulary for Qm and the translation
Dm 7→ D:

• For every left unary symbol R(x) for Q, there is a unary symbol R(x) for Qm.
Every tupleR(a) inDm is copied to a tupleR(a) inD. Moreover, for every non-
distinguish node u ∈ X , there is a binary symbol Ru(x, y) in the vocabulary for
Qm. Every tuple Ru(a, b) in Dm is copied to a tuple R(ua,b) in D.

• Similarly for a right unary unary symbol T (y) for Q: there is a unary sym-
bol T (y) for Qm and there are binary symbols T v(x, y), one for each non-
distinguish node v ∈ Y .

• For every tuple S(u, v) in the template G(c, d) there exists a binary symbol
Su,v(x, y) in the vocabulary for Qm. Every tuple Su,v(a, b) is copied to a tuple
S(ua,b, va,b) in D. Here we apply the convention that, if u = d then ua,b = a,
and if v = c then va,b = b.

We define now the translated query Qm. Let q be a component in Q, and let η :
q → G(d, c) be any valuation from q to the template G(d, c). We define qη to be the
following component in Qm:

• Suppose q has a root variable x (thus, it is a left component or a center com-
ponent) and η(x) = d (the distinguished node). In that case we copy each left
unary atom R(x) in q to qη (for all left unary symbols R), and for each binary
atom S(x, yi) in q we insert a binary atom Sd,η(yi)(x, yi) in qη .

• Suppose q has a root variable y and η(y) = c (the distinguished node). The we
proceed similarly to the case above.

• Otherwise, qη will have exactly two variables x, y. For each left unary atom
R(xi) in q we create a binary atom Rη(xi)(x, y); for each binary atom S(xi, yj)
we create a binary atom Sη(xi),η(yj)(x, y); and for each right unary atom T (yj)
we create a binary atom T η(yj)(x, y) in qη .

Finally, define Qm =
⋃
q,η q

η .
Note that every component qη has either a root variable x, or a root variable y, or

both. Thus, Qm is hierarchical.
We first prove that Qm is a long query. For that we notice that a left component

in Q consists of only the unary symbols R(x), and of binary symbols Suv , where

60

(u, v) ∈ X1 × Y1; thus, these are the only left symbols. Similarly the right symbols
are T , and all symbols Suv where (u, v) ∈ Xm × Ym. On the other hand, every
component contains symbols whose level differs by at most one. That is, if qη contains
both symbols Su1v1

1 and Su2v2
2 and (u1, vl) ∈ Xi1 × Yj1 , (u2, v2) ∈ Xi2 × Yj2 , then

i1 = i2 and |j1 − j2| ≤ 1, or |i1 − i2| ≤ 1 and j1 = j2|. It follows that, if m ≥ 2, then
no component qη may contain both a left symbol and a right symbol.

Next we prove that Qm is forbidden. This follows from the following four claims.
Claim 1: if q is a left component in Q, S is a left symbol in q, and (c, u) ∈ X1×Y1

is an edge, then there exists η s.t. qη is a left component, contains the symbol Scu, and
is non-redundant in Q. Indeed, let S(x, yi) be any atom in q containing S. Then any
injective mapping η from the variables in q to the nodes of the template G(d, c) that
maps yi to u satisfies the conditions. To see that this is a left component, notice that q
either has two distinct y-variables, or has a unary predicate R(x), and these properties
are preserved in qη . To see that it is non-redundant, we notice that any homomorphism
qη11 → qη can be extended to a homomorphism q1 → q, contradicting the fact that Q
is minimal.

Claim 2: symmetrically, if q is a right component in Q, S is a right symbol in q,
and (u, d) ∈ Xm × Ym is an edge, then there exists η s.t. qη is a right component,
contains the symbol Sud, and is non-redundant in Q. The proof is similar to claim 1
and omitted.

Claim 3: if q is a central component in Q, S a symbol in q, and (u, v) an edge in
the template, then there exists a non-redudant component qη that contains the symbol
Suv . This follows immediately from the mapping η(x) = u, η(y) = v, and all atoms
S(x, y) in q become Suv(x, y) (same u, v for all atoms).

Claim 4: if q is a left component in Q, then for any two consecutive edges (u, v) ∈
Xi × Yi−1 and (u,w) ∈ Xi × Yi, and every two (not necessarily distinct) binary
symbols S1, S2 in q, the symbols Suv1 and Suw2 are connected in the co-occurrence
graph. The proof considers two cases. The first is when there exists two atoms with
the relation symbols S1, S2 that have distinct y-variables: S1(x, y1), S2(x, y2). Then
let η be x 7→ u, y1 7→ v, y2 7→ w, and every other variable yi is mapped to an-
other distinct constant in either Yi−1 or Yi. The resulting query qη has the form
Suv1 (x, y), Suw2 (x, y) . . . Suzi

j , (x, y) We show that it is non-redudant. If there were
a homomorphism qη11 → qη then superscripts of the relation name in qη11 must have the
same shape uv, uw, . . . uzi . . . Whenever we have a distinct node zi, there is a distinct
variable yi in q1. This allows us to construct a homomorphism q1 → q, contradicting
the fact that Q is minimal. The second case is when S1(x, y), S2(x, y) have the same y
variable. If there exists a unary predicate R(x) in q, then we consider two mappings η:
the first maps x, y to u, v, and hence maps R(x), S1(x, y) to Ru(x, y), Suv1 (x, y); the
second maps x, y to u,w and hence maps the atomsR(x), S2(x, y) toRu(x, y), Suw2 (x, y).
Thus, Suv1 and Suw2 are connected in the co-occurrence graph. If there is no unary sym-
bol, then there is another binary symbol using a different variable y: S3(x, y3). Here we
consider three mappings: x, y, y3 7→ u, v, w, resulting in the symbols Suv1 , Suv2 , Suw3 ,
then x, y, y3 7→ u,w, v, resulting in the symbols Suw1 , Suw2 , Suv3 . To connect them, we
consider a third mapping η3: x, y, y3 7→ u, v, v, resulting in Suv1 (x, y), Suv2 (x, y), Suv3 (x, y).
If qη3 is non-redundant, then we are done. Otherwise, there exists a homomorphism
rη

′ → qη3 . Then rη
′

forms the needed connection.

61

Claim 5: symmetrically, if q is a right component inQ, then for any two consecutive
edges (u, v) ∈ Xi×Yi and (w, v) ∈ Xi+1×Yi, and every two (not necessarily distinct)
binary symbols S1, S2 in q, Suv1 and Swv2 are connected in the co-occurrence graph of
Qm.

Combining claims 1-4 allows us to prove that there exists a path in the co-occurrence
graph of Qm from a left to a right symbol. Consider a path in Q from a left symbol S1

to a right symbol Sk. Start in Qm with a left component that contains the left symbol
Sdu1 , for any u ∈ Y1 (claim 1). Using claim 3, we argue that it is connected to Scuk ;
using claim 5 we connect this to Swuk , where w ∈ X2; using claim 3 we connect it to
Swu1 , then claim 1 to connect it to Swv1 , for v ∈ Y2, etc. Continuing this way we end at
Suck where c ∈ Xm.

Finally, we prove that pD(Q) = pDm(Qm). For that, we claim the following. Let
Wm ⊆ Dm be a possible world, andW ⊆ D be its corresponding possible world inD.
Then W |= q iff there exists η s.t. Wm |= qη: this implies that pD(Q) = pDm(Qm).
It remains to prove the claim.

Suppose W |= q. Then there exists a valuation θ from V ar(q) to the active domain
of W s.t. all atoms in q are mapped to tuples in W . We will define η by considering
three cases, and prove that Wm |= qη .

Case 1 The image of θ does not contain any constants a ∈ A or b ∈ B. Then Im(θ)
is contained in a single template G(a, b). Every variable xi is mapped to some
constant ua,b ∈ X and every yj is mapped to va,b ∈ Y . Define η(xi) = u and
η(yj) = v. Consider a binary atom Suv(x, y) in qη . This means that there exists
an atom S(xi, yj) in q s.t. u(xi) = u and u(yj) = v. This means that there
exists a tuple S(ua,b, va,b) in W : the corresponding tuple Suv(a, b) must be in
Wm. Similarly, consider a binary atom Ru(x, y) in qη . This means that there
exists an atom R(xi) in q s.t. η(xi) = u; hence there exists a tuple R(ua,b) in
W ; therefore the corresponding tuple Ru(a, b) must exists in Wm. Similarly for
a binary atom Tu(x, y).

Case 2 The image of θ contains some constant a. Then it cannot contain a constant
b, and hence Im(θ) is included in D(a, b1) ∪D(a, b2) ∪ . . . In this case q must
be a left or center component, hence it has a unique variable x, and θ(x) = a
For each variable yi, assume θ(yi) = va,bj . Define η(yi) = v. First, any unary
predicate R(x) in q is the same unary predicate in qη , and since R(a) ∈ W we
know that it is also in Wm. Now consider a binary predicate S(x, yi). This is
mapped to S(a, va,b) ∈W . The corresponding atom in qη is Sdv(x, y); and this
corresponds to the tuple Sdv(a, b) inWm, which we know must be present since
it corresponds to S(a, vab) ∈W .

Case 3 The image of θ contains some constant b. This case is similar to the previous
one and is omitted.

Conversely, suppose that Wm |= qη for some η, thus there exists a valuation θm

from qη to Wm. We prove that W |= q. Since qη is hierarchical, it has either a
root variable x or a root variable y. Assume the former. We define the valuation θ
as follows. For a binary symbol S(x, yi), consider the corresponding binary symbol

62

Suv(x, yi) in qm: this is mapped to Suv(a, bj) in Wm. We define θ to map S(x, yi) to
S((η(x))a,bj , η(yi)a,bj). For a unary symbol R(x), then we either map it to R(a) (if
η(x) = d) or to R((η(x))a,bj) (if η(x) is a non-distinguished node). 2

The construction in the proof looks similar to the blocks Dk(ai, bj) that we illus-
trated in Sec. H, but they are in fact quite different. For example, here we change the
vocabulary, while in the construction in Sec. H we keep the same vocabulary. These
two constructions are different, and are used at different places in the proof.

Example J.8 Consider H1, which is not a long query. Taking m = 2 (as in the proof
of Prop.J.7) we transform it into a long query:

H1 = R(x), S(x, y) ∨ S(x, y), T (y)
H2

1 = R(x), S11(x, y) ∨ S11(x, y), T 1(x, y) ∨
R2(x, y), S21(x, y) ∨ S21(x, y), T 1(x, y) ∨
R2(x, y), S22(x, y) ∨ S22(x, y), T (y)

The left symbols are R and S11; the right symbols are S22 and T . They do not
co-occur, hence the query is long. The following is a path in the co-occurrence graph,
proving that the query is forbidden:

S11, T 1, S21, R2, S22

Consider now:

Q = S1(x, y1), S2(x, y2) ∨ S1(x1, y), S2(x2, y)

Take m = 2 and define X1 = {1}, X2 = {2, 2′}. Similarly Y1 = {1, 1′}, Y2 =
{2}. Then:

63

Q2 =
∨

u,v∈Y1

S1u
1 (x, y1)S1v

2 (x, y2)

∨
∨
u∈Y1

S1u
1 (x, y)S1u

2 (x, y) /∗ redundant ∗/

∨
∨

u∈X2,v∈Y1

S1v
1 (x, y), Suv2 (x, y)

∨
∨

u∈X2,v∈Y1

Suv1 (x, y), S1v
2 (x, y)

∨
∨

u∈X2,v∈Y1

Suv1 (x, y), Suv2 (x, y)

∨
∨

u∈X2,v∈Y1

Suv1 (x, y), Su2
2 (x, y)

∨
∨

u∈X2,v∈Y1

Su2
1 (x, y), Suv2 (x, y)

∨
∨
u∈X2

Su2
1 (x, y), Su2

2 (x, y) /∗ redundant ∗/

∨
∨

u,v∈X2

Su2
1 (x1, y), Sv2

2 (x2, y)

The left symbols are S11
k , S11′

k for k = 1, 2; the right symbols are S22
k , S2′2

k , for
k = 1, 2. They do not co-occur in any component, thus the query Q2 is long.

From now on we will assume wlog that the query is long, and will we prove hard-
ness only for long queries.

As a final remark, we note that the construction in the proof of Prop. J.7 also works
for some non-hierarchical queries. For example, consider H0: we can transform it into
a long query by taking m = 3:

H0 = R(x), S(x, y), T (y)
H3

1 = R(x), S11(x, y), T 1(x, y)
R2(x, y), S21(x, y), T 1(x, y)
R2(x, y), S22(x, y), T 2(x, y)
R3(x, y), S32(x, y), T 2(x, y)
R3(x, y), S33(x, y), T (y)

However, if applied to arbitrary non-hierarchical queries Qm then it doesn’t work.
An example is:

64

Q = S1(x1, y1), S2(x1, y2), S3(x2, y1), S4(x2, y2) ∨
S1(x, y), S2(x, y) ∨ S1(x, y), S3(x, y) ∨ S1(x, y), S4(x, y) ∨
S2(x, y), S3(x, y) ∨ S2(x, y), S4(x, y) ∨ S3(x, y), S4(x, y)

This is a forbidden query because the first component is non-hierarchical (hence all
its symbols are both left and right). If we computeQm as in Prop. J.7, then the resulting
query is no longer forbidden. This is because whenever we equate either x1 = x2 or
y1 = y2 in the first component, it becomes redundant.

J.2 Normalizing Forbidden Queries
We further simplify the query by repeatedly applying three simple rewrite rules; we
call the resulting query normalized. In this section we establish several properties of
normalized queries, which we later use to show that certain multivariate polynomials
are irreducible.

The three rewrite rules are the following. Given a conjunctive query q, denote
q[S = 0] to be q if it doesn’t contain the symbol S, and ∅ if it contains S. Denote
q[S = 1] to be the query obtained from q by removing all atoms that contain S, then
minimizing the resulting query. If Q is a disjunctive query, then we write Q[S = 0]
and Q[S = 1] the query obtained by replacing each component q with q[S = 0] or
q[S = 1] respectively, then minimizing the query.

Definition J.9 LetQ, Q′ be two 2-leveled queries, over two different vocabularies. We
say that Q rewrites to Q′, in notation Q→ Q′, if Q′ can be obtained from Q by one of
the following steps.

Empty rewriting Set a unary or binary symbol Si to 0 (empty), thus Q′ ≡ Q[Si = 0].
The vocabulary of Q′ is that of Q less Si.

Deterministic rewriting Set a unary or binary symbol Si to 1 (deterministic), thus
Q′ ≡ Q[Si = 1]. The vocabulary of Q′ is that of Q less Si.

Left unary rewriting Let c1, . . . , ck be fresh constants. For each subcomponent s(x, y)
that contains only left symbols, replace it with s(x, y)∨ s(x, c1)∨ . . .∨ s(x, ck),
then replace each Si(x, cj) with a new unary relation name Rij(x). After this
step we need to convert Q′ to DNF, then minimize it. The vocabulary of Q′

consist of that of Q, plus all new unary symbols Rij .

Right unary rewriting Symmetrically.

The left unary rewriting differs from the first rewriting in Def. 6.3 in that it allows
the subcomponent s(x, y) to exists. In fact, because of that, the rewriting always results
in a query that is equivalent toQ: however, before we minimize the rewritten query, we
will apply an empty rewriting, and thus remove some of the subcomponents s(x, y).

65

Proposition J.10 If Q→ Q′ then the query evaluation problem for Q′ can be reduced
to that for Q.

Proof: Let D′ be a probabilistic database instance for Q′. For an empty rewriting, add
to D′ a new relation symbol Si which is empty (i.e. it has no tuples; equivalently, all
its tuples have probability 0). For a deterministic rewriting, add a new relation symbol
Si with all tuples Si(a, b) over the active domain of D′, and with probability 1. For a
unary rewriting, replace each tuple Rij(a) with Si(a, cj). Call D the new probabilistic
database. In all three cases, the probability of Q over D is equal to the probability of
Q′ over D′. 2

Thus, if Q′ is hard, then Q is hard. For example, recall the query at the beginning
of this section:

Q = R1(x), R2(x), S1(x, y) ∨ S1(x, y), S2(x, y) ∨ S2(x, y), T1(y), T2(y)

By rewritingQ[R2 = 1] we obtain a query that is isomorphic toH1, and, therefore,
Q is hard.

Notice that there are infinitely long rewritings, because of the unary rewriting. To
avoid this, we introduce a simple restriction:

Definition J.11 We say that Q strictly rewrites to Q′, Q ⇒ Q′, if Q → Q′ using an
empty or a deterministic rewriting, or if there exists Q′′ s.t. Q → Q′′ with a unary
rewriting, and Q′′ → Q′ using an empty rewriting on a binary symbol.

Consider the transitive closure ∗⇒; it is always terminating, because every rewrit-
ing either results in strictly fewer binary symbols, or has the same number of binary
symbols and strictly fewer unary symbols.

Definition J.12 A forbidden query Q is in normal form if there is no forbidden query
Q′ such that Q⇒ Q′.

Obviously, every forbidden query rewrites to some (not necessarily unique) forbid-
den query in normal form.

We describe now some key properties of normalized queries. Recall that a query Q
is forbidden if the co-occurrence graph contains a path S0, S1, S2, . . . , Sn where S0 is
a left symbol, Sn is a right symbol, and any pair of symbols Si−1, Si co-occur in some
component qi. Equivalently, consider the dual graph: the nodes are components qi, and
two components are connected by an edge if they share a common symbol.

Definition J.13 A left-to-right path, or LR-path, from a left symbol S to a right symbol
S′ is a path P = (q1, q2, . . . , qn) where q1 contains S and qn contains S′.

Obviously, Q is forbidden iff there exists a left-to-right path. We call an LR-path
strict if no subpath is an LR-path:

Definition J.14 P = (q1, . . . , qn) is a strict LR path if q1 contains a left symbol, qn
contains a right symbol, and for all i = 2, n− 1, qi contains only central symbols.

66

If the query Q is long, then n ≥ 2 because no left and right symbols co-occur.

Proposition J.15 If Q is a forbidden query then there exists a strict LR-path.

Proof: Any LR path of minimal length is a strict LR path. 2

Definition J.16 A component qi is called useful if there exists a strict LR path contain-
ing q; otherwise it is called useless, or superfluous. A symbol S is called useful if it
occurs in some useful component; otherwise it is called useless, or superfluous.

Example J.17 Consider the following query in normal form:

K = S(x, y1), S1(x, y1), S(x, y2), S2(x, y2),
∨ S1(x, y), S2(x, y), C(x, y)
∨ C(x, y), S′1(x, y), S′2(x, y)
∨ S′(x1, y), S′1(x1, y), S′(x2, y), S′2(x2, y) (15)

The left symbols are S, S1, S2; the right symbols are S′1, S
′
2, S
′; symbol C is a center

symbol. Components 2 and 3 are useful; components 1 and 4 are superfluous. Symbols
S1, S2, C, S

′
1, S
′
2 are useful; symbols S, S′ are superfluous.

Consider the following query in normal form:

K ′ = S(x, y1), S1(x, y1), S(x, y2), S2(x, y2),
∨ S(x, y), S1(x, y), D(x, y)
∨ S1(x, y), S2(x, y), C(x, y), D(x, y)
∨ C(x, y), S′(x, y)
∨ S′(x, y), T (y)

S, S1, S2 are left symbols; S′, T are right symbols; D,C are center symbols. Compo-
nents 3,4 are useful; components 1,2,5 are superfluous; symbols S1, S2, C,D, S

′ are
useful; symbols S, T are superfluous.

All left components, and all right components are superfluous, and all unary sym-
bols are superfluous; the examples above show that the converse fails.

Proposition J.18 Let Q be a normalized query and P = (q1, q2, . . . , qn) be any strict
LR-path. Then every central symbol C occurs in P , i.e. there exists i s.t. qi contains
C. In particular, every central symbol is useful.

For example, in K ′ above both central symbols C,D are useful.

Proof: LetC be a central symbol that does not occur in the path. The by settingC = 0
we rewrite the query to Q[C = 0] which is still a forbidden query because it continues
to have the path P ; this contradicts the fact that Q is normalized. 2

67

Let UL denote the set of left components that contain some useful left symbol,
and similarly UR is the set of right components containing some useful right symbol.
Thus, every component in UL is useless, and contains a useful symbol; similarly for
UR.

Proposition J.19 (Superfluous is Ubiquitous) IfQ is normalized and S is a superflu-
ous left symbol, then every component q ∈ UL contains S.

Proof: Suppose not: set the symbol to empty, S = 0. Let q ∈ UL be a left, useful
component in Q that does not contain S. Then Q continues to exists in Q[S = 0].
Since q ∈ UL, it contains a useful left symbol, S1. Hence, there exists a strict path
P = (q1, q2, . . .) in Q from S1 to a right symbol. None of qi contains S, otherwise S
would be useful. Thus, the same path exists inQ[S = 0], soQ[S = 0] is still forbidden,
contradicting the fact that Q is in normal form. 2

Definition J.20 Let S be a symbol and q be a component. Denote sq(S) the set of all
subcomponents of q that contain S. (If q does not contain S, then sq(S) = ∅.)

Definition J.21 Let S be a symbol. Denote c(S) the set of useful components that
contain S. In particular, S is useful iff c(S) 6= ∅.

The following is a key technical lemma.

Lemma J.22 LetQ be a normalized query. Let S, S1 be two left symbols, and q any left
component. Then one of the following must hold: sq(S1) ⊆ sq(S) or c(S1) ⊆ c(S).

We illustrate before giving the proof with:

S(x, y1)S2(x, y1), S1(x, y2) ∨ S1(x, y)S2(x, y)C(x, y) ∨ C(x, y)S′(x, y) ∨ S′(x, y)T (y)

Here S and S1 violate the lemma. S1 is useful, c(S1) = {q2} (where q2 = the
second component), S is useless, c(S) = ∅, hence c(S1) 6⊆ c(S). On the other hand in
q1, S appears in the first subcomponent, and S1 in the second, hence we have sq1(S1) 6⊆
sq1(S). This violates the lemma. The lemma says that we can get rid of such queries
by normalizing, using a unary rewriting. That is, consider only databases where all
tuples for S have the form S(x, c), for a fixed constant c. The query rewrites to:

S(x, c)S2(x, c), S1(x, y2) ∨ S1(x, y)S2(x, y)C(x, y) ∨ C(x, y)S′(x, y) ∨ S′(x, y)T (y)
≡ R(x), R2(x), S1(x, y2) ∨ S1(x, y)S2(x, y)C(x, y) ∨ C(x, y)S′(x, y) ∨ S′(x, y)T (y)

WhereR(x) andR2(x) are new relation symbols representing S(x, c) and S2(x, c)
respectively.

Proof: Suppose otherwise. Let’s write q to expose its subcomponents:

q = [s0(x),]s1(x, y1), s2(x, y2), . . . , sk(x, yk)

68

q may, or may not have unary symbols, hence s0(x) is optional. By assumption there
exists a component si in q that contains S1(x, yi) but does not contain S. (It is pos-
sible that q does not contain S at all.) Also, since c(S1) 6⊆ c(S), there exists a strict
LR-path P = (q1, q2, . . . , qn) s.t. q1 contains S1 but does not contain S. Perform
a left unary rewriting with m constants, followed by the empty rewriting S = 0.
This means that, for each binary symbol S′(x, y) we create k fresh unary symbols
S′(x, c1), . . . , S′(x, ck), and rewrite the query by replacing each subcomponent s(x, y)
with s(x, y) ∨ s(x, c1) ∨ . . . ∨ s(x, ck): then we rewrite the query in DNF, minimize,
then substitute S(x, y) with empty, S = 0. Thus, Q⇒ Q′. Let’s examine the structure
of the resulting query Q′:

• Each component r in Q that does not contain S is also in Q′. This is because,
when we expand in DNF, one of the components contains exactly all the orig-
inal subcomponents s(x, y) in r. (On the other hand if r contains S, then the
subcomponents that contain S no longer exists after rewriting; only their unary
rewritings s(x, ci) survive.) In particular, the strict LR-path P continues to exists
in Q′, since it doesn’t contain S.

• From the component q, we obtain the following component q′ (among others):
[s0], s′1, s

′
2, . . . , s

′
k, where s′i is si(x, y) if si does not contain S, and is si(x, ci)

if it contains S. In other words, we provide each subcomponent containing S
with a fresh constant, and leave other subcomponents untouched. Notice that
at least one subcomponent containing S1(x, y) remains (since by assumption
sq(S1) 6⊆ sq(S)), and therefore this is still a left component. It remains to check
that it is not redundant. This follows from the fact that we have chosen enough
constants c1, . . . , ck: if there exists a homomorphism h : r′ → q′, then, by
renaming the constants ci to variables yi we obtain a homomorphism h : r → q,
contradicting the fact that Q was minimal.

Thus, the new query Q′ is still forbidden, because the same path P is still a strict
LR-path, contradicting the fact that Q was normalized. 2

Since this is the most difficult lemma involving rewritings, we illustrate with a few
examples. By a unary rewriting for S we mean a unary rewriting, followed by S = 0.

Example J.23 Consider:

Q = S(x, y1)S1(x, y2) ∨ S(x, y1)S2(x, y2) ∨ S1(x, y)S2(x, y)C(x, y) . . .

The left unary rewriting for S is:

Q → (S(x, y1) ∨ S(x, c))(S1(x, y2) ∨ S1(x, c))
∨(S(x, y1) ∨ S(x, c))(S2(x, y2) ∨ S2(x, c))
∨S1(x, y)S2(x, y)C(x, y) . . .

→ S(x, c), S1(x, y2) ∨ S(x, c), S1(x, c) ∨ S(x, c), S2(x, y2) ∨ S(x, c), S2(x, c) ∨ . . .
= R(x), S1(x, y) ∨R(x), R1(x) ∨R(x), S2(x, y) ∨R(x), R2(x) ∨ . . .

69

In the first step we replaced every symbol Si(x, y) with Si(x, y) ∨ Si(x, c). Notice
that there is no C(x, c): by definition of the unary rewriting only the left symbols are
rewritten. (Thus, the definition only makes sense if no symbol is both left and right.) In
the second step we made S(x, y) = 0. The last line replaces every Si(x, c) with unary
symbols Ri(x).

The important thing to see here is that we have started with the left component
S(x, y1)S1(x, y2) and rewritten it into a left component R(x)S1(x, y), and eliminated
completely the binary symbol S(x, y). The query above further reduces, by setting
R1 = 0.

Example J.24 This shows why we need more constants. Consider a query with two
left components:

Q = S(x, y1)S1(x, y1), S(x, y2)S2(x, y2)S3(x, y2), S4(x, y3) ∨ /∗q∗/
S(x, y1)S1(x, y1)S2(x, y1), S(x, y2), S3(x, y2) /∗q′∗/
. . .

Suppose we do a unary rewriting for S. If we use a single constant c, then the first
component q rewrites to:

Q′ = S(x, c)S1(x, c), S2(x, c), S3(x, c), S4(x, y3) ∨ /∗q∗/
S(x, c)S1(x, c)S2(x, c), S(x, c), S3(x, c) /∗q′∗/

The problem is that now q is redudant: there exists a homomorphism from the
second component. However, if we use two constants c1, c2 (since there are two occur-
rences of S in q) then one of the rewritings of q is:

Q′ = S(x, c1)S1(x, c1), S(x, c2), S2(x, c2), S3(x, c2), S4(x, y3) ∨
S(x, c1)S1(x, c1)S2(x, c1), S(x, c2), S3(x, c2) ∨ . . .

(each component must contain all four combinations c1c1, c1c2, c2c1, c2c2; only c1c2
is shown). Each of the two components shown above is isomorphic to their image inQ,
up to remaining of c1, c2 as y1, y2. Therefore no new homomorphisms are introduced,
and both are non-redudnat.

Example J.25 This shows that the unary rewriting for q may wipe out some other
symbol S1:

q = S(x, y1)S1(x, y1), S2(x, y2)

After the unary rewriting for S, the component becomes:

q′ = S(x, c)S1(x, c), S2(x, y2)

70

That is, we lost S1(x, y). This may be important, if S1 is the only link to the right side.
This is why in the lemma we only do a unary rewriting for S when we know that there
exists a useful symbol S1 s.t. sq(S1) 6⊆ sq(S). In this example sq(S1) = sq(S), and
we cannot apply the rewriting.

Intuitively, Lemma J.22 implies that, if S is supefluous (i.e. c(S) = ∅), then sq(S)
must be very big. We make this precise.

Definition J.26 Call a binary left S symbol ubiquitous if, for every q ∈ UL and every
binary subcomponent s of q, s contains S. That is, sq(S) is the set of all binary
subcomponents of q. Similarly for right ubiquitous symbols.

For an illustration, consider the query K in Example J.17: the symbol S is ubiqui-
tous because it occurs in both subcomponents of S(x, y1)S1(x, y1)S(x, y2)S2(x, y2).

Corollary J.27 If Q is in normal form, then all superfluous symbols are ubiquitous.

Proof: Let S be a superfluous symbol. For any useful symbol S1 we have c(S) = ∅
and c(S1) 6= ∅, which implies c(S1) 6⊆ c(S). Thus, by Lemma J.22, for any left
component q ∈ UL we have sq(S1) ⊆ sq(S). Let:

sq(∗) =
⋃
{sq(S1) | S1 is useful }

Thus, sq(∗) is the set of all subcomponents in q that contain some useful symbol.
For every superfluous symbol S, sq(∗) ⊆ sq(S) because sq(S1) ⊆ sq(S) for any
useful symbol S1. Supose S is a superfluous symbol that is not ubiquituous, i.e. there
exists a left component q ∈ UL s.t. sq(S) is not the set of all binary subcomponents;
let si be a binary subcomponent s.t. si 6∈ sq(S). Then si 6∈ sq(∗), hence si consists
only of binary, superfluous symbols S′. Since q ∈ UL it contains some useful symbol
S1; let sj be a subcomponent that contains S1. In addition, sj contains all superfluous
symbols S′, because sq(S1) ⊆ sq(S′). This implies that there exists a homomorphisms
si → sj , contradicting the fact that Q is minimized. 2

Corollary J.28 If Q is in normal form then every left component contains a useful
symbol. In other words, every left component is in UL.

Proof: Otherwise some left component q contains only supefluous components. Let
q1 be any component in UL. We prove that there exists a homomorphism q → q1,
contradicting the fact that Q is minimal. Consider first any unary symbol R in q. Since
R is superfluous (all unary symbols are superfluous), it follows that R occurs in all
component in UL: thus, R is in q1. Consider a binary symbol S in q. Since S is
superfluous (by assumption), it is ubiquitous, hence it occurs in all binary components
of q1. Therefore there exists a homomorphism q → q1. 2

The converse to Corollary J.27 fails in general. For example in:

H3 = R(x), S1(x, y) ∨ S1(x, y), S2(x, y) ∨ S2(x, y), S3(x, y) ∨ S3(x, y), T (y)

S1 is both ubiquitous and useful. However, the converse does hold under a restriction:

71

Corollary J.29 If Q is in normal form and has at least one non-ubiquitous binary
symbol, then all left ubiquitous symbols are superfluous.

Proof: Let S be a left ubiquitous symbol, and consider the rewriting S = 1. We prove
that the resulting query Q[S = 1] is also forbidden. First, we show that every left
component q remains non-redundant after the rewriting: this is because every homo-
morphism h : r[S = 1] → q[S = 1] extends to a homomorphism h : r → q, because
S appears in all binary subcomponents of q. Also, q[S = 1] continues to be a left
component (i.e. doesn’t become a central component), because it has exactly the same
number of subcomponents as q. Next, assuming S is useful, consider any strict LR
path P = (q1, q2, . . .) where q1 contains S. Let S1 be any non-ubiquitous binary sym-
bol. (There exists at least, by the assumption of the corollary.) Since sq(S) 6⊆ sq(S1)
for any left query q, we have c(S) ⊆ c(S1), hence S1 occurs in q1. Thus, the path
P is also a path from S1 to the right, so if we show that all components in P remain
in Q[S = 1] then we have proven that Q[S = 1] is a forbidden query. Suppose there
exists a homomorphism h : r[S = 1] → qi[S = 1]. Clearly r must contain S. There
are two cases. Case 1: i > 1 then qi contains only central or right symbols: therefore
all symbols in r[S = 1] must be center symbols (since S doesn’t co-occur with a right
symbol). r cannot be a left component, because then r[S = 1] contains at least one
left symbol, so r must be a central component. r is also a useful component, because
the path r, qi, qi+1, . . . is a strict, LR path connecting the left symbol S to the right.
Thus, r ∈ c(S), hence it also contains S1, which is a contradiction because qi does not
contain S1. Consider case 2, i = 1. Then q1 contains S, and we can extend the homo-
morphism r[S = 1] → q1[S = 1] to a homomorphism r → q1. Thus, we have proven
thatQ[S = 1] is also a forbidden query, contradicting the fact that it was normalized. 2

J.3 Classification of Forbidden Queries
In addition to the properties of normal queries described so far, we give now a clas-
sification of their endpoings. We show that their left end is of one of two types, and
similarly their right end; thus, there are four types of forbidden queries.

Definition J.30 (Type 1) If Q has a left unary symbol R, then we say that its left end
is of Type 1. Similarly for the right end.

Theorem J.31 Suppose Q is in normal form and has the left-end of type 1. Then the
following hold:

• Q has exactly one left unary symbol.

• Every left binary symbol is useful.

• Every left component has exactly two variables x, y.

Similarly for a right-end of Type 1.

The second item is stronger than Corollary J.28.

72

Definition J.32 (Type 2) If Q has no left unary symbols, then we say that its left end
is of Type 2. Similarly for the right end.

Theorem J.33 Suppose Q is in normal form and has the left-end of type 2. Then the
following hold:

• There exists q such that q ∈ c(S1) for all left useful symbols S1.

• There exists at least one superfluous symbol S.

Similarly for the right.

Thus, there are for types of normalized forbidden queries: 1-1, 1-2, 2-1, or 2-2.
In the rest of the section we prove the two theorems, through a sequence of lemmas.

Lemma J.34 If Q is in normal form and the left end is of Type 1, then it has exactly
one unary symbol R.

Proof: Let R1, R2, . . . , Rm be all left unary symbols, m ≥ 1 (because the query is of
Type 1). Since all area superfluous, every component q ∈ UL contains all symbols Ri
(Prop. J.19). Suppose m > 1. Then choose any symbol Rj and rewrite Q by making
Rj deterministic: Rj = 1. No component becomes redundant, hence the new query is
still forbidden, contradicting the assumption that Q was normalized. 2

Next, we show that Q has no superfluous left binary symbols. For example:

R(x), S(x, y), S1(x, y) ∨ S1(x, y), C(x, y) ∨ . . .

contains the superfluous left symbol S: simply set S = 1 and we remove it. On the
other hand, consider:

R(x), S(x, y), S1(x, y) ∨ S(x, y), S1(x, y), D(x, y) ∨ S1(x, y), D(x, y), C(x, y)
∨C(x, y), S′1(x, y) ∨ S′1(x, y), T (y)

Here S is still superfluous, but we cannot set S = 1 because we make the S1DC
component redundant, disconnecting the left from the right. Instead, we set S1 = 1:
now S becomes a useful symbol.

Lemma J.35 IfQ is in normal form and the left end is of Type 1, then every left symbol
S is useful.

Proof: Let S1 be any useful left symbol, and consider a strict LR-path P from S1 to a
right symbol, P = (q1, q2, . . .). Let S be a binary, left superfluous symbol; by Corol-
lary J.27 it, is ubiquitous, i.e. occurs in all binary subcomponents of all components in
UL.

Define R the set of all components r with the following properties: r contains S
and there exists a homomorphism h : r[S = 1] → q1 (the first component in P). We
consider two cases.

73

First, R = ∅. Then rewrite Q by setting S = 1. None of the components on
the path P becomes redundant in Q[S = 1]: indeed if there exists a homomorphism
r[S = 1]→ qi then we must have i ≥ 2. Then r cannot be a left component, because it
would contain the symbol R(x). Hence r is a central component. Moreover, r[S = 1]
consists only of central symbols, because it maps to qi and i ≥ 2: but in that case
(r, qi, qi+1, . . .) is an LR path from S to a right symbol contradicting the assumption
that S is superfluous. Thus, the path P continues to exists in Q[S = 1]. Let q ∈ UL
be a left component containing S1. Since S is ubiquitous, q[S = 1] is not redundant
because any homomorphism q′[S = 1]→ q[S = 1] extends to q′ → q, and is still a left
component (contains the left unary symbol R(x), and also S1(x, y)). Thus, Q[S = 1]
still has the strict LR path P .

Second, suppose R 6= ∅. Rewrite Q by setting S1 = 1: we prove that in Q[S1 = 1]
there exists a LR path from the left symbol S to a right symbol, contradicting the fact
that Q is normalized. At least one component r[S1 = 1] for r ∈ R is not redundant.
This is because any homomorphism r′[S1 = 1]→ r[S1 = 1] implies a homomorphism
r′[S1 = 1, S = 1] → r[S1 = 1, S = 1] → q1[S1 = 1] (since, by definition, there
exists a homomorphism r[S = 1] → q1), which can be extended to a homomorphism
r′[S = 1] → q1, meaning r′ ∈ R. Thus, any component in R that becomes redundant
does so because of some other component also in R, and at least one r[S1 = 1] will
remain non-redundant inQ[S1 = 1], for some r ∈ R. Obviously q1[S1 = 1] also exists
in Q[S1 = 1], because q1 already contains S1 and cannot become redundant by setting
it to 1. Thus, in Q[S1 = 1] we have a path from S to a right symbol.

It remains to prove S is a left symbol in Q[S1 = 1], and for that we will show
that at least one component q ∈ UL remains in Q[S1 = 1], i.e. it does not become
redundant. Then, q[S1 = 1] still contains the symbol S (since it is ubiquitous), and
also contains the unary symbolR, and hence it is a left component. To prove the claim,
denote UL(S1) the set of components in UL that contain the symbol S1. We will show
that, for every q ∈ UL(S1) if there exists a homomorphism r[S1 = 1] → q[S1 =
1], then r ∈ UL(S1): this immediately implies that at least one q[S1 = 1] remains
nonredundant. Indeed, suppose r 6∈ UL(S1). Clearly r contains S1 (otherwise we get
a homomorphism r → q), hence the only possibility is for r to be a central component.
It cannot have any central symbols (since q doesn’t have central symbols), and it is a
single subcomponent: r = S1(x, y), S2(x, y), S3(x, y) . . . The homomorphism must
map r[S1 = 1] to a single subcomponent of q, that contains S2, S3, . . . but does not
contain S1 (otherwise we have a homomorphism r → q). Fix i ≥ 2. We have sq(S1) 6⊆
sq(Si) and sq(Si) 6⊆ sq(S1). By Lemma J.22 c(S1) = c(Si); furthermore, this holds
for any i. In this case, however, every starting point q1 of a LR path from S1 to a
right symbol is redundant: indeed, q1 ∈ c(S1) = c(S2) = . . ., hence q1 contains all
symbols S2, S3, . . ., hence there exists a homomrphism r → q1, contradicting that Q
is minimal. 2

Lemma J.36 If Q is in normal form and the left end is of Type 1, then all left compo-
nents have exactly two variables x, y.

Proof: Recall that all left components are in UL (Corollary J.28). Let q0 ∈ UL vio-
late our condition. Thus q0 = R(x), s1(x, y1), . . . , sk(x, yk), with k ≥ 2. Consider

74

any two subcomponents s1, s2. Let S1 be a symbol contained in the first but not the
second, and S2 be a symbol in the second but not the first. Thus, sq0(S1) 6⊆ sq0(S2)
and sq0(S2) 6⊆ sq0(S1); Lemma J.22 implies c(S1) = c(S2). Both S1, S2 are use-
ful symbols, because if S1 were superfluous then it would be ubiquitous, which is a
contradiction.

Let P = (q1, q2, . . .) be aLR-strict path from S1 to a right symbol; q1 also contains
S2 (since c(S1) = c(S2)). Consider the deterministic rewriting, S1 = 1: clearly
q0[S1 = 1] is still a left component, since it still has R(x) and at least one binary
symbol, namely S2(x, y). We will prove that in the new query Q[S1 = 1] the path
P still exists, i.e. none of the components qi[S1 = 1] is redundant: this shows that
Q[S1 = 1] is still a forbidden query, contradicting the fact that Q was normalized.
Suppose otherwise: there exists a homomorphism h : r[S1 = 1] → qi[S1 = 1].
We must have i > 1, because q1 contains S1, hence any homomorphism h extends
to r → q1, contradiction. If i > 1, then qi contains only center and right symbols,
qi[S1 = 1] = qi. There are two cases. First, if r is a center component. Then r is also
useful, because the path r, qi, qi+1, . . . is a strict LR path connecting the left symbol
S1 to something on the right. Thus, r ∈ c(S1), and also r ∈ c(S2), in other words
r[S1 = 1] contains S2: this makes a homomorphism r[S1 = 1] → qi impossible.
Second, if r is a left component, then it must have contain the unary symbol R(x), and
the homomorphism is also not possible. 2

This completes the proof of Theorem J.31. We turn now to the proof of Theo-
rem J.33, which follows from the following two lemmas.

Lemma J.37 If Q is in normal form and the left end is of Type 2, then there exists
a useful central component q that contains every useful symbol S. In other words,
q ∈ c(S) forall left useful symbols S.

Proof: Let s∗(S) denote the set of all subcomponents of all left components that con-
tain the useful symbol S. In other words, s∗(S) is the union of sq(S) for all left
components q. Since a useful symbol S cannot be ubiquitous, s∗(S) does not contain
all subcomponents. On the other hand, every subcomponent s (of every left component
q) must contain at least one useful symbol: otherwise, if it contains only superfluous
symbols then it can be mapped to any other subcomponent, since all superfluous sym-
bols are ubiquitous, contradicting the fact that q is minimized. Order the sets s∗(S) by
set inclusion. There are at least two maximal sets. Indeed, if s∗(S1) is any maximal
set, then let s be any subcomponent that is not included in s∗(S1), and let S be any
useful symbol in s. Let s∗(S2) be any maximal set that contains s∗(S): it is incom-
parable with s∗(S1). Since s∗(S1) 6⊆ s∗(S2) and s∗(S2) 6⊆ s∗(S1) it follows that
c(S1) = c(S2). Let q ∈ c(S1). We will show that q contains all useful left symbols.
Let S be a useful left symbol, and let s∗(S′) be any maximal set containing s∗(S): if
s∗(S) is already maximal, then we take S′ = S, otherwise we have s∗(S) ⊂ s∗(S′).
Consider the set s∗(S′): it may either be equal to s∗(S1), or to s∗(S2), or may be dif-
ferent from both. In all cases s∗(S′) is different from either s∗(S1) or s∗(S2): suppose
it is different from s∗(S1). Then s∗(S′) 6⊆ s∗(S1) and s∗(S1) 6⊆ s∗(S′), implying
c(S1) = c(S′). Returning to S, we either have S = S′, implying that c(S1) = c(S)

75

hence q contains S, or s∗(S) ⊂ s∗(S1), implying c(S1) ⊆ c(S), and we also conclude
that q contains S. 2

Lemma J.38 If Q is in normal form and the left end is of Type 2, then there exists at
least one superfluous symbol S.

Proof: Indeed, let q be the component given by the previous lemma, i.e. q ∈ c(S1)
forall left useful symbols S1. In other words, q contains all left useful symbols S1. Let
q0 be any left component with a useful symbol. If q0 contains no superfluous symbols,
then there exists a homomorphism q0 → q, contradicting the fact that Q is minimal.
This proves the third item. 2

K Part 3 of the Proof: Algorithm
Let Q be a forbidden query. We assume throughout this section that Q is minimized,
long, and normalized. We describe in this section PTIME algorithm for the m1,m2-
Signature-Counting problem with an oracle for computingP (Q) over tuple-independent
databases. Here m1,m2 ≥ 2 and depende on the query Q.

K.1 The Labels
We define two sets of labels LL and RR for the left end, and for the right end of Q.

Definition K.1 If the left end of Q is of Type 1, then LL = {τ1, τ2}, where τ1, τ2 are
the following queries:

τ1 = ¬R(x)
τ2 = R(x)

Here R is the unique left unary symbol in Q.
Similarly, if the right end of Q is of Type 1, then RR = {τ1, τ2} where:

τ1 = ¬T (x)
τ2 = T (x)

Here T is the unique right unary symbol in Q.

Assume that the left end of Q is of type 2. Call a pre-label a disjunction of con-
junctive queries of the form S1(x, y), S2(x, y), . . . , Sk(x, y), for k ≥ 1.

Definition K.2 Let Q have a left end of Type 2, and let UL = {q1, . . . , qk}. Let a be
a constant. The base labels are the prelabels τ1, . . . , τm1 such that:

τ1[a/x] ∧ . . . ∧ τm1 [a/x] ≡ q1[a/x] ∨ . . . ∨ qk[a/x]

and the CNF expression above is not redundant. The set LL is defined as the closure
under ∨ of all base labels.

76

In particular, it follows that for any left component q ∈ UL and every left label
τ ∈ LL, q ⇒ τ .

Example K.3 We illustrate here by showing only the left components of Q. Consider
first a query with one left component:

Q = S(x, y1)S1(x, y1), S(x, y2)S2(x, y2), S(x, y3)S3(x, y3) ∨ . . .
The labels are:

τ1 = S(x, y), S1(x, y)
τ2 = S(x, y), S2(x, y)
τ3 = S(x, y), S3(x, y)

and their closure under disjunctions. Thus, LL has 7 elements.
Consider a query with two left components:

Q = S(x, y1), S1(x, y1), S(x, y2), S2(x, y2) ∨
S(x, y1), S1(x, y1), S(x, y3), S3(x, y3) ∨ . . .

The labels are:

τ1 = S(x, y), S1(x, y)
τ2 = S(x, y), S2(x, y) ∨ S(x, y), S3(x, y)

and τ1 ∨ τ2. Thus, LL has 3 elements.

Thus, for every query Q we have two sets of labels LL and RR. Denote m1 =
|LL|, m2 = |RR|. It should be clear that m1 ≥ 2 and m2 ≥ 2.

K.2 The Expansion Formula
For a left label τ1 ∈ LL and constant a ∈ X , denote τ [a/x] the query obtained by
substituting xwith the constant a. Its negation, ¬τ [a/x], is a formula that is universally
quantified in the variable y. Similarly we denote τ [b/y] when τ ∈ RR and b ∈ Y .

Lemma K.4 Let W be a world (i.e. a deterministic database) s.t. Q is false on W .
Then, for every constant in its active domain, a ∈ Adom(W) there exists a label
τ ∈ LL s.t. τ [a/x] is false on W . In notation:

W |= ¬Q ⇒ ∀a ∈ Adom(W)∃τ ∈ LL : W |= ¬τ [a/x]

Proof: If Q’s left end is of type 1, then the lemma is trivial: for every a ∈ W either
R(a) is false or ¬R(a) is false. Suppose Q’s left end is of type 2. We proof by
contradiction. If the statement is false, then for each i = 1, . . . ,m1 there exists a
constant bi s.t. W |= τi[a/x, bi/y]. In other words:

W |=
∧

i=1,m1

τi[a/x]

hence W |= ∨q∈UL q[a/x]. But this implies W |= Q, contradiction. 2

77

We write W (a, b) to denote a deterministic structure with two distinguished con-
stants, s.t. W (a, b) does not share any constants other than a, b with other structures.
When we don’t care naming b, then we write W (a, ∗); similarly W (∗, b).

If the left end of Q is of Type 1, then a label τ ∈ LL is either ¬R(x) or R(x).
Define ετ ∈ {0, 1} as follows:

ε¬R(x) = 0
εR(x) = 1

Recall that Q[R = 0] means the query Q obtained by setting R(x) ≡ false; and
Q[R = 1] means the query Q obtained by setting R(x) ≡ true. Thus, (τ [a/x] ∨
Q)[R = ¬ετ] is equivalent to Q[R = ¬ετ], because τ [a/b] is false after the sub-
stitution R(a) = ¬ετ . On the other hand if the left end of Q is of Type 2, then
(τ [a/x] ∨ Q)[R = ¬ετ] simply denotes τ [a/x] ∨ Q, since in this case there is no
symbol R. Similarly for the right end.

For fixed a ∈ X, b ∈ Y , define the following queries:

Qa,bτ1,τ2 = (τ1[a/x] ∨Q ∨ τ2[b/y])[R = ¬ετ1 , T = ¬ετ2]
Qaτ1,∗ = (τ1[a/x] ∨Q)[R = ¬ετ1]

Qb∗,τ2 = (Q ∨ τ2[b/y])[T = ¬ετ2]

Fix an instance of the m1,m2-SC problem: Φ = (X,Y,E), where X = {ai |
i = 1, n1}, Y = {bj | j = 1, n2}, E ⊆ X × Y , |E| = n. The type of the signature to
be the same as the type of the left and right endings of the query (i.e. type 1,1 or 1,2 or
2,1 or 2,2). (See Sec. G for the definitions.)

We associate to Φ a probabilistic database D that is the union of three types of
blocks:

• One block D(a, b) for each edge (a, b) ∈ E.

• If Q’s left end is of type 2, then one block D(a, ∗) for each node a ∈ X .

• If Q’s right end is of type 2, then one block D(∗, b) for each node b ∈ Y .

• If the left end is of type 1, then we set p(R(a)) = 1/2 forall a ∈ X ∪ {∗}
• If the right end is of type 1, then we set p(T (b)) = 1/2 forall b ∈ Y ∪ {∗}.

Blocks do not share any constants, except the constants in X and Y . All blocks
D(a, b) isomorphic; all blocks D(a, ∗) are isomorphic; all blocks D(∗, b) are isomor-
phic. All probabilities other than those of the unary tuples are left unspecified: we
will set them later. However, we require the tuple probabilities to be preserved by the
isomorphisms: that is, we only need to specify the probabilities for one block D(a, b),
one block D(a, ∗), and one block D(∗, b); the probabilities in all other blocks will be
equal.

78

Definition K.5 Given a world W and labeling l = (l1, l2), l1 ∈ LLX , l2 ∈ RRY , we
say that W satisfies the labeling, W |= ¬l, if:

∀a ∈ X : W |= ¬l1(a)[a/x]
∀b ∈ Y : W |= ¬l2(b)[b/y]

Lemma K.4 implies that, whenever W |= ¬Q then there exists a labeling l such
that W |= l.

We start with a key technical lemma:

Lemma K.6 LetW =
⋃

(a,b)∈EW (a, b)∪⋃a∈XW (a, ∗)∪⋃b∈Y W (∗, b) be a world
(deterministic database) that is a union of blocks. The blocks do not share any con-
stants other than those in X and Y .

W |= ¬Q ≡
_

l1 ∈ LLX
l2 ∈ RRY

0BBBBBBB@

V
(a,b)∈EW (a, b) |= Qa,bl1(a),l2(b) ∧ (R(a) = εl1(a)) ∧ (T (b) = εl2(b))

Qal1(a),∗ ∧ (R(a) = εl1(a))

Qb∗,l2(b) ∧ (T (b) = εl2(b))

1CCCCCCCA
(16)

Proof: The “only if” implication follows from the previous lemma. We prove the
“if” implication. Suppose the contrary, that W |= Q, and let q be a component in
Q that is true in W . If q is a center component, then it has only two variables x, y
and they must both be mapped to the same block W (a, b), or W (a, ∗) or W (b, ∗):
assuming the former, we have W (a, b) |= Q. If q is a left component with variables
x, y1, . . . , yk then we consider two cases. If x is mapped to a constant a ∈ X , then
we use the fact that q ⇒ l1(a), thus q[a/x] ⇒ l1(a)[a/x], and therefore W |= q[a/x]
implies W |= l1(a)[a/x]. If x mapped to a constant that is not in X , then all yi’s
must be mapped to a common block, say W (a, b), and it follows W (a, b) |= q, hence
W (a, b) |= Q, contradiction. 2

Denote pD(a,b)(−) the probability space defined by the probabilistic databaseD(a, b);
and similarly for D(a, ∗) and D(∗, b). We define:

Fτ1τ2 = pD(a,b)(¬Qa,bτ1,τ2)
Fτ1,∗ = pD(a,∗)(¬Qaτ1,∗)
F∗,τ2 = pD(∗,b)(¬Qb∗,τ2)

These three functions do not depend on a and b, because the blocks are isomorphic.
The key result connecting the probability p(¬Q) to the SC-problem is given in the

next three theorems, one for each type of query 1-1, 1-2, or 2-2.

Theorem K.7 Suppose both left and right ends ofQ are of type 1. LetD =
⋃

(a,b)∈E D(a, b).
Then:

p(¬Q) =
1

2n1+n2

∑
σ∈Σ2,2(Φ)

#σ ·
∏

τ1∈LL,τ2∈RR
Fσ(τ1,τ2)
τ1,τ2

79

Proof: Each possible world W ⊆ D fixes the truth values of R(a), a ∈ X and
T (b), b ∈ Y . We associate to W the following labeling lW = (lW1 , lW2):

∀a ∈ X : lW1 (a) = τ, s.t. τ ∈ LL and W |= ¬τ [a/x]
∀b ∈ Y : lW2 (b) = τ, s.t. τ ∈ RR and W |= ¬τ [b/y]

Fix a labeling l = (l1, l2) and denote lW = l the event that a random world W
defines the label l. We will compute the conditional probability p(¬Q|lW = l), using
Eq. (16): in our case we only have the conjunct

∧
(a,b)∈E , because there are no blocks

of the formD(a, ∗) orD(∗, b). Consider two constants a, b and consider the event that,
for a random world W , Q is false on W (a, b) ⊆ D(a, b). Recall that we assumed that
W satisfies l, and therefore:

W (a, b) |= ¬Q ≡ W (a, b) |= ¬Qa,bl1(a),l2(b)

Let a, b vary and consider the family of events above: this set of events is indepen-
dent, because each event depends only on the probabilistic tuples in the block D(a, b),
which are not shared with any other block. Moreover, the probability of this event is:

pD(a,b)(Q
a,b
l1(a),l2(b)) = Fl1(a),l2(b)

Thus, by Eq. (16), P (¬Q|lW = l) is their product:

p(¬Q|lW = L) =
∏

(a,b)∈E

Fl1(a),l2(a)

=
∏

τ1∈LL,τ2∈RR
Fσl(τ1,τ2)
τ1,τ2

We use the fact that p(lW = l) = 1/2n1+n2 and derive:

p(¬Q) =
1

2n1+n2

∑
l

∏
τ1∈LL,τ2∈RR

Fσl(τ1,τ2)
τ1,τ2

=
1

2n1+n2

∑
σ

#σ
∏

τ1∈LL,τ2∈RR
Fσ(τ1,τ2)
τ1,τ2

2

Next we turn to queries of type 2-1. Here we order the set LL by: τ1 ≤ τ2 if τ2 ⇒
τ1. LL becomes a meet semi-lattice, where the meet operation is query disjunction
τ1 ∨ τ2; we complete it to the lattice LL = LL ∪ {1̂}. Recall that a signature of type
2-1 is σ = (σX , σE).

80

Theorem K.8 Suppose that the left of Q is of type 2, and the right end of type 1. Let
D =

⋃
(a,b)∈E D(a, b) ∪⋃a∈X D(a, ∗). Then:

p(¬Q) =
(−1)n1+1

2n2

∑
σ∈Σm1,2(Φ)

#σ ·
∏

τ1∈LL,τ2∈RR
Fσ

E(τ1,τ2)
τ1,τ2∏

τ1∈LL
(µLL(τ1, 1̂) · Fτ1,∗)σ

X(τ1)

Proof: Each possible world W ⊆ D defines a Y -labeling lW2 as follows:

∀b ∈ Y.lW2 (b) = τ, s.t. τ ∈ RR and W |= ¬τ [b/y]

Conversely, for each Y -labeling l2, we consider the event that the labeling defined
by a random world W agrees with l, i.e. lW2 = l2. For a fixed l2, compute the con-
ditional probability p(¬Q|lW2 = l2), by using Eq. 16: in our case we only have the
conjuncts

∧
(a,b)∈E and

∧
a∈X , because there are no blocks of the form or D(∗, b). We

claim that, conditioned on lW2 = l2, the following is an independent set of events:

{W (a, b) 6|= l1(a)[a/x] ∨Q ∨ l2(b)[b/y] | (a, b) ∈ E} ∪
{W (a, ∗) 6|= l1(a)[a/x] ∨Q | a ∈ X}

Indeed, the truth values of all T (b)’s are fixed, and there is no unary predicate
on a, so all events above depend only on the probabilistic tuples inside their specific
block, D(a, b) or D(a, ∗), which are not shared with any other block. Moreover, the
probability of each such event is:

pD(a,b)(¬l1(a)[a/x] ∧ ¬Q ∧ ¬l2(b)[b/y]|¬l2(b)[b/y]) = pD(a,b)(¬Qa,bτ1,τ2) = Fl1(a),l2(b)

pD(a,∗)(¬l1(a)[a/x] ∧ ¬Q ∧ ¬l2(b)[b/y]|¬l2(b)[b/y]) = pD(a,∗)(¬Qaτ1,∗) = Fl1(a),∗

Therefore, we compute p(¬Q|lW2 = l2) by staring from Eq. 16, then using Mobius’
inversion formula. We abbreviate p(−|lW2 = l2) with pl2(−):

pl2(¬Q) =

pl2(
∨

l1∈LLX

∧
(a,b)∈E

W (a, b) 6|= l1(a)[a/x] ∨Q ∨ l2(b)[b/y] ∧
∧
a∈X

W (a, ∗) 6|= l1(a)[a/x] ∨Q)

=
∑

l1∈LLX

µ
LLX (l1, 1̂)

∏
(a,b)∈E

Fl1(a),l2(b) ×
∏
a∈X

Fl1(a),∗

= (−1)n1+1
∑

l1∈LLX

∏
(a,b)∈E

Fl1(a),l2(b) ×
∏
a∈X

(µLL(l1(a), 1̂)Fl1(a),∗)

81

In the last line above we used Lemma A.3, which states that the Mobius function
in the lattice LLX is the product of Mobius functions in the lattice LL. The claim of
the theorem follows from the fact that p(lW2 = l2) = 1/2n1 . 2

Finally, when both left and right ends are of type 2 then we have:

Theorem K.9 Suppose both that both left and right ends of Q are of type 2. Let D =⋃
(a,b)∈E D(a, b) ∪⋃a∈X D(a, ∗) ∪⋃b∈Y D(∗, b). Then:

p(¬Q) = (−1)n1+n2
∑

σ∈Σm1,m2 (Φ)

#σ ·
∏

τ1∈LL,τ2∈RR
Fσ

E(τ1,τ2)
τ1,τ2∏

τ1∈LL
(µLL(τ1, 1̂) · Fτ1,∗)σ

X(τ1) ·
∏

τ2∈RR
(µRR(τ2, 1̂) · F∗,τ1)σ

Y (τ1)

The proof is similar to the previous theorem and omitted.

K.3 Irreducible Polynomials
Consider a positive CNF formula ϕ =

∧
i Ci, where each clause Ci = X1 ∨X2 ∨ . . .

is a disjunction of Boolean variables. We assume ϕ is non-redundant, i.e. no clause Ci
is contained in any other clause Cj .

Definition K.10 The co-occurrence graph of ϕ is the following: the nodes are the
Boolean variables, and there is an (undirected) edge from Xi to Xj if they co-occur in
a clause.

Theorem K.11 Let f(x1, . . . , xn) be the multilinear polynomial corresponding to ϕ.
Write it as a product of irreducible factors: f = g1g2 . . . gm: each variable xi occurs
in at most one irreducible (since f is multilinear). Then, forall i, j the variables xi, xj
occur in the same irreducible iff Xi, Xj are connected in the co-occurrence graph.

Proof: Assume Xi, Xj are disconnected in the co-occurrence graph. Hence ϕ =
ϕ1 ∧ ϕ2 where ϕ1 contains Xi, ϕ2 contains Xj , and ϕ1, ϕ2 do not share any com-
mon variables. Then f = f1f2, where xi occurs in f1 and x2 occurs in f2.

Assume xi, xj occur in different irreducible factors. Write f = f1f2, and let ϕ1, ϕ2

be the (minimal) CNF formulas corresponding to f1 and f2. Obviously ϕ ≡ ϕ1∧ϕ2. 2

The theorem also extends to non-monotone CNF, but in that case there is no notion
of “reduced” formula, so stating the theorem requires more care. We don’t need non-
monotone CNF.

Let D be a probabilistic database, defining a probability distribution on possible
worlds W ⊆ D.

Definition K.12 The colineage of a query Q =
∨
i qi over a database D is the follow-

ing CNF formula ϕQD.

82

• There is a Boolean variable Xt for each tuple t ∈ D; Xt = 1 iff t 6∈W .

• For each conjunctive query qi and each valuation θ that maps qi to the tuples
t1, t2, . . ., there is a clause Xt1 ∨Xt2 ∨ . . . in F̃ .

• Thus:

ϕQD =
∧
qi,θ

(Xt1 ∨Xt2 ∨ . . .)

Note that the colineage says that the query is false:

p(¬Q) = p(ϕQD)

It follows that the irreducibles of p(¬Q) are the same as the irreducibles of p(ϕQD).
We drop the superscript and/or the subscript from ϕQD when it is clear from the context.

K.4 Constructing the Blocks
We now describe how to construct the blocks D(a, b). This construction is similar to
that in the proof of Prop. J.7.

Given two constants u, v denote B(u, v) the canonical database for Q over the two
constants u and v, i.e. it consists of the following tuples:

• The tuple R(u) (if the left end of Q is of type 1).

• All tuples S(u, v), for all binary symbols S.

• The tuple T (v) (if the right end of Q is of type 2).

Given two sets of constants U, V , denote:

B(U, V) =
⋃

u∈U,v∈V
B(u, v)

Let nx be the maximum number of xi variables, and ny the maximum number of
yi variables in any component q. Let U , V be two sets of constants s.t. |U | = nx,
|V | = ny . We assume that these sets are disjoint from X,Y (the nodes in the bipartite
graph Φ). Fix two constants a ∈ X, b ∈ Y , and define the following blocks, which we
call the generic databases:

G(a, b) = B(a, V) ∪B(U, V) ∪B(U, b)
G(a, ∗) = B(a, V) ∪B(U, V) ∪B(U, ∗)
G(∗, b) = B(∗, V) ∪B(U, V) ∪B(U, b)

83

For each tuple in G(a, b) denote x ∈ [0, 1] its probability. Let x̄ denote the proba-
bilities of all tuples in G(a, b); we view x̄ as a set of unknowns. Similarly, ȳ, z̄ denote
the probabilities of all tuples in G(a, ∗), G(∗, b). Let:

fτ1,τ2(x̄) = pG(a,b)(Qa,bτ1,τ2)
fτ1,∗(ȳ) = pG(a,b)(Qaτ1,∗)

f∗,τ2(z̄) = pG(a,b)(Qb∗,τ2)

Let m = m1m2, and define:

• Forall k = 1,m: Dk(a, b) is an isomorphic copy of G(a, b) and x̄k are its prob-
abilities.

• Forall k = 1,m1: Dk(a, ∗) is an isomorphic copy of G(a, ∗) and ȳk are its
probabilities.

• Forall k = 1,m2: Dk(∗, b) is an isomorphic copy of G(∗, b) and z̄k are its
probabilities.

Finally, define:

D(a, b) =
⋃
k

Dk(a, b)

D(a, ∗) =
⋃
k

Dk(a, ∗)

D(∗, b) =
⋃
k

Dk(∗, b)

Lemma K.13

Fτ1,τ2(x̄1, . . . , x̄m) =
∏

k=1,m

fτ1,τ2(x̄k)

Fτ1,∗(ȳ1, . . . , ȳm1) =
∏

k=1,m1

fτ1,∗(ȳk)

F∗,τ2(z̄1, . . . , z̄m2) =
∏

k=1,m2

f∗,τ2(z̄k)

Proof: Consider the following event: for a random world W ⊆ D(a, b), W |=
¬Qa,bτ1,τ2 . This is the conjunction of the following independent events: W ∩Dk(a, b) |=
Qa,bτ1,τ2 , since the queryQa,bτ1,τ2 only depends on binary tuples (any unary tuplesR(x), T (y)
are set to either false or true in Qa,bτ1,τ2). Hence, these events are independent,
which implies the claim in the lemma. 2

84

Definition K.14 Let q be a conjunctive query whose set of variables is X ∪ Y , and let
U, V be two sets of constants. Denote

q[U, V] =
∨

θx:X→U,θy :Y→V

θ(q)

Thus, q[U, V] is a ground query, where all atoms are grounded.

We will now study the irreducible factors in the multilinear polynomials fτ1,τ2 ,
fτ1,∗, f∗,τ2 . Let:

Q = QL ∨QC ∨QR

where QL contains all left components, QC contains all center components, and QR
contains all right components. Consider the generic database G(a, b) = B(a, V) ∪
B(U, V) ∪B(U, b).

Q̃τ1,τ2 = QL[a, V] ∨QC[a, V] ∨QR[a ∪ U, V]
∨QC[U, V] ∨

QL[U, V ∪ b] ∨QC[U, b] ∨QR[U, b]

This is a grounded query, where all atoms are grounded atoms (i.e. have no vari-
ables). We minimize this query: some of the grounded components are redundant and
thus are eliminated during minimization. However:

• If q is a left component, then every grounding in q[a, V] or in q[U, V] that uses
distinct constants vi for distinct variables yi is non-redundant in Q̃.

• If q is center component, then every grounding in q[a, V], a[U, V], q[U, b] is
non-redundant in Q̃.

• If q is a right component, then every grounding in q[U, V] or in q[U, b] that uses
distinct constants ui for distinct variables xi is non-redundant in Q̃.

In particular, this implies that the connection graph of Q̃ has a path from left atom
S(a, v) to any right atom S′(u, b).

For every τ1 ∈ LL, τ2 ∈ RR define:

Q̃τ1,τ2 = (τ1[a, V] ∨ Q̃ ∨ τ2[U, b])[R(a) = ετ1 , T (b) = ετ2]

Q̃τ1,∗ = (τ1[a, V] ∨ Q̃)[R(a) = ετ1]

Q̃∗,τ2 = (Q̃ ∨ τ2[U, b])[T (b) = ετ2]

It follows that:

85

fτ1,τ2(x̄) = pG(a,b)(Q̃τ1,τ2)

fτ1,∗(ȳ) = pG(a,b)(Q̃τ1,∗)

f∗,τ2(z̄) = pG(a,b)(Q̃∗,τ2)

Recall that the variables of fτ1,τ2 correspond to tuples in D(a, b). Therefore, a
subset of these variables correspond to tuples in QC[U, V]. Similarly, a subset of the
variables of fτ1,∗ correspond to tuples of QC[U, V], and similarly for f∗,τ2 .

Proposition K.15 Let x be any variable of fτ1,τ2 corresponding to a tuple inQC[U, V].
Denote f0

τ1,τ2 the irreducible factor containing x. Then these factors are inequivalent
for distinct labels τ1, τ2. More precisely: if f0

τ1,τ2 ≡ f0
τ ′
1,τ

′
2

then τ1 = τ ′1 and τ2 = τ ′2.
Let y be any variable of fτ1,∗ corresponding to a tuple in QC[U, V] and f0

τ1,∗ is
the irreducible factor containing y. Then f0

τ1,∗ ≡ f0
τ ′
1,∗

implies τ1 = τ ′1.
Let z be any variable of f∗,τ2 corresponding to a tuple in QC[U, V] and f0

τ1,∗ is
the irreducible factor containing z. Then f0

∗,τ2 ≡ f0
∗,τ ′

2
implies τ2 = τ ′2.

Proof: We prove the first statement only, the other two are similar. Suppose the left
end of Q is of type 1. Then τ1[a, V][R(a) = ετ1] ≡ false. Thus, τ1 affects only
QL[a, V][R(a) = ετ1], as follows. When τ1 = R(x), then it sets R(a) = 0 and
thus removes QL completely. In this case the connection graph of Q̃τ1,τ2 remains
connected on the left. Thus, f0

R(x),τ2
contains all variables corresponding to all tuples

in Q[a, V]∨QC[U, V] (and possibly more). When τ1 = ¬R(x) then it sets R(a) = 1,
and some of the center components QC[a, V] may become redundant. Note that the
grounded queries in QC[U, V] are not affected, i.e. f0

¬R(x),τ2
contains all variables

corresponding to the tuples in QC[U, V]. Moreover, Q̃R(x),τ2 6≡ Q¬R(x),τ2 , because
Q̃ depends on R(a), and therefore fR(x),τ2 6≡ f¬R(x),τ2 .

Suppose now that the left end ofQ is of type 2. Then the assignments [R(a) = 0] or
[R(a) = 1] are vacuous, and we will omit them. Here τ1[a, V]∨QL[a, V] ≡ τ1[a, V].
That is, all queries in QL[a, V] are redundant; some queries in QC[a, V] may also be-
come redudant. However, recall that there exists a useless left symbol S and there exists
a center component q ∈ QC that contains all useful symbols S1. Any instance q[a, v]
is non-redudant, because every conjunctive query in τ1[a, V] contains the useless sym-
bol S, and therefore cannot map to q[a, v]. Thus, all symbols in QC[U, V] remain con-
nected to q[a, v], and therefore all symbols inQL[a, V], QC[a, V], QR[a, V], QC[U, V]
are connected. Therefore, f0

τ1,τ2 contains all their corresponding variables. Further-
more, for τ1 6≡ τ ′1 we have Q̃τ1,τ2 6≡ Q̃τ ′

1,τ2
, and therefore f0

τ1,τ2 6≡ f̃0
τ ′
1,τ2

. 2

Consider the generic database G(a, b), and fix any tuple in QC[U, V]: call it the
distinguished tuple, and let x be its variable. From Theorem I.7 we conclude that
there are values v̄ of all other tuple variables in G(a, b) s.t. after substituting those
variables with v̄, the resulting linear polynomials fτ1,τ2(x) in the single variable x are
inequivalent. We use the same values v̄ for all non-distinguished tuples in all copies
Dk(a, b) of the generic block G(a, b): that is the probabilities of all tuples in Dk(a, b)

86

are set according to v̄. The distinguished tuples will have distinct probabilities, set
to some unknown value xk ∈ [0, 1], for k = 1,m. We repeat the same argument to
choose m1 distinguished tuples in D(a, ∗), and similarly for m2 distinguished tuples
in D(∗, b). It follows that:

Fτ1,τ2 = fτ1,τ2(x1) · · · fτ1,τ2(xm)
Fτ1,∗ = fτ1,∗(y1) · · · fτ1,∗(ym1)
F∗,τ2 = f∗,τ2(z1) · · · f∗,τ2(zm2)

K.5 Completing the Proof
Let Q be a normalized, minimized forbidden query; it can be of type 1-1, or 2-1, or
2-2 (the case 1-2 is similar to 2-1). We use an oracle for computing P (Q) to solve
an instance Φ of the m1,m2-Signature Counting problem of the same type. First we
construct a databaseD consisting of blocksD(a, b) (and possiblyD(a, ∗) andD(∗, b),
depending on the type of Q). This database has m = m1m2 unknown probabilities
x̄ = (x1, . . . , xm), (and possibly m1 unknown probabilities ȳ and m2 probabilities z̄).
For that, we use Theorem I.1 to find nm values for the variables x̄ (or nmnm1

1 values
for x̄, ȳ, or nmnm1

1 nm2
2 values for x̄, ȳ, z̄) such that the matrix M of the system of

equations given by the formula in Theorem K.7 (or Theorem K.8 or Theorem K.9) is
non-singular.

We must prove that such values exists, and for that we use Theorem I.2. In turn,
this requires us to check that the following Jaboians are non-zero:

(x1, . . . , xm) → ((Fτ1,τ2)τ1∈LL,τ2∈RR)
(x1, . . . , xm, y1, . . . , ym1) → ((Fτ1,τ2)τ1∈LL,τ2∈RR, (Fτ1,∗)τ1∈LL)

(x1, . . . , xm, y1, . . . , ym1 , z1, . . . , zm2) → ((Fτ1,τ2)τ1∈LL,τ2∈RR, (Fτ1,∗)τ1∈LL, (F∗,τ2)τ2∈RR)

The first follows immediately from Theorem I.6 and the fact that we have chosen
the distinguished tuple inG(a, b) for the variable x and the values of the other variables
such that the conditions in Theorem I.7 are met. The same argument implies that the
mapping ȳ → (Fτ1,∗)τ1∈LL has a non-zero Jacobian, hence the combined mapping
given in line 2 above has a non-zero Jacobian. Same for the third line.

This completes the proof.

87

