
Probabilistic Databases: Diamonds in the Dirt ∗

Nilesh Dalvi
Yahoo!Research

USA
ndalvi@yahoo-inc.com

Christopher Ré
University of Washington

USA
chrisre@cs.washington.edu

Dan Suciu
University of Washington

USA
suciu@cs.washington.edu

1. INTRODUCTION
A wide range of applications have recently emerged that

need to manage large, imprecise data sets. The reasons for
imprecision in data are as diverse as the applications them-
selves: in sensor and RFID data, imprecision is due to mea-
surement errors [15, 34]; in information extraction, impreci-
sion comes from the inherent ambiguity in natural-language
text [20, 26]; and in business intelligence, imprecision is tol-
erated because of the high cost of data cleaning [5]. In some
applications, such as privacy, it is a requirement that the
data be less precise. For example, imprecision is purposely
inserted to hide sensitive attributes of individuals so that
the data may be published [30]. Imprecise data has no place
in traditional, precise database applications like payroll and
inventory, and so, current database management systems are
not prepared to deal with it. In contrast, the newly emerg-
ing applications offer value precisely because they query,
search, and aggregate large volumes of imprecise data to
find the “diamonds in the dirt”. This wide-variety of new
applications points to the need for generic tools to manage
imprecise data. In this paper, we survey the state of the art
of techniques that handle imprecise data, by modeling it as
probabilistic data [2–4,7,12,15,23,27,36].

A probabilistic database management system, or Prob-
DMS, is a system that stores large volumes of probabilistic
data and supports complex queries. A ProbDMS may also
need to perform some additional tasks, such as updates or
recovery, but these do not differ from those in conventional
database management systems and will not be discussed
here. The major challenge in a ProbDMS is that it needs
both to scale to large data volumes, a core competence of
database management systems, and to do probabilistic infer-
ence, which is a problem studied in AI. While many scalable
data management systems exists, probabilistic inference is
a hard problem [35], and current systems do not scale to
the same extent as data management systems do. To ad-
dress this challenge, researchers have focused on the specific

∗This work was partially supported by NSF Grants
IIS-0454425, IIS-0513877, IIS-0713576, and a Gift
from Microsoft. An extended version of this
paper with additional references is available at
http://www.cs.washington.edu/homes/suciu/.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 0001-0782/08/0X00 ...$5.00.

nature of relational probabilistic data, and exploited the spe-
cial form of probabilistic inference that occurs during query
evaluation. A number of such results have emerged recently:
lineage-based representations [4], safe plans [11], algorithms
for top-k queries [31, 37], and representations of views over
probabilistic data [33]. What is common to all these results
is that they apply and extend well known concepts that are
fundamental to data management, such as the separation of
query and data when analyzing complexity [38], incomplete
databases [22], the threshold algorithm [16], and the use of
materialized views to answer queries [21]. In this paper, we
briefly survey the key concepts in probabilistic database sys-
tems, and explain the intellectual roots of these concepts in
data management.

1.1 An Example: The Purple Sox System
We illustrate using an example from an information ex-

traction system. The Purple Sox1 system at Yahoo! Re-
search focuses on technologies to extract and manage struc-
tured information from the Web related to a specific com-
munity. An example is the DbLife system [14] that aggre-
gates structured information about the database commu-
nity from data on the Web. The system extracts lists of
database researchers together with structured, related infor-
mation such as publications that they have authored, their
co-author relationships, talks that they have given, their cur-
rent affiliations, and their professional services. Figure 1(a)
illustrates the researchers’ affiliations, and Figure 1(b) il-
lustrates their professional activities. Although most re-
searchers have a single affiliation, in the data in Figure 1(a),
the extracted affiliations are not unique. This occurs be-
cause outdated/erroneous information is often present on
the Web, and even if the extractor is operating on an up-to-
date Webpage, the difficulty of the extraction problem forces
the extractors to produce many alternative extractions or
risk missing valuable data. Thus, each Name contains sev-
eral possible affiliations. One can think of Affiliation as
being an attribute with uncertain values. Equivalently, one
can think of each row as being a separate uncertain tuple.
There are two constraints on this data: tuples with the same
Name but different Affiliation are mutually exclusive; and
tuples with different values of Name are independent. The
professional services shown in Figure 1 (b) are extracted
from conference Webpages, and are also imprecise: in our
example, each record in this table is an independent extrac-
tion and assumed to be independent.

In both examples, the uncertainty in the data is repre-

1http://research.yahoo.com/node/498

Researchers:

Name Affiliation P

t11 Fred U. Washington p1
1 = 0.3 X1 = 1

t21 U. Wisconsin p2
1 = 0.2 X1 = 2

t31 Y! Research p3
1 = 0.5 X1 = 3

t12 Sue U. Washington p1
2 = 1.0 X2 = 1

t13 John U. Wisconsin p1
3 = 0.7 X3 = 1

t23 U. Washington p2
3 = 0.3 X3 = 2

t14 Frank Y! Research p1
4 = 0.9 X4 = 1

t24 M. Research p2
4 = 0.1 X4 = 2

(a)

Services:

Name Conference Role P

s1 Fred VLDB Session Chair q1 = 0.2 Y1 = 1
s2 Fred VLDB PC Member q2 = 0.8 Y2 = 1
s3 John SIGMOD PC Member q3 = 0.7 Y3 = 1
s4 John VLDB PC Member q4 = 0.7 Y4 = 1
s5 Sue SIGMOD Chair q5 = 0.5 Y5 = 1

(b)

Figure 1: Example of a probabilistic database. This is a block-independent-disjoint database: the 8 tuples
in Researchers are grouped in four groups of disjoint events, e.g., t11, t

2
1, t

3
1 are disjoint, and so are t14, t

2
4, while

tuples from different blocks are independent, e.g., t21, t
2
2, t

1
4 are independent; the five tuples in Services are

independent probabilistic events. This database can be represented as a c-table using the hidden variables
X1, X2, X3, X4 for Researchers and Y1, Y2, Y3, Y4, Y5 for Services.

sented as a probabilistic confidence score, which is com-
puted by the extractor. For example, Conditional Ran-
dom Fields produce extractions with semantically meaning-
ful confidence scores [20]. Other sources of uncertainty can
also be converted to confidence scores, for example prob-
abilities produced by entity matching algorithms (does the
mention Fred in one Webpage refer to the same entity as Fred
in another Webpage?). The example in Figure 1 presents a
very simplified view of a general principle: uncertain data
is annotated with a confidence score, which is interpreted as
a probability. In this paper we use “probabilistic data” and
“uncertain data” as synonyms.

1.2 Facets of aProbDMS

There are three important, related facets of any Prob-
DMS: (1) How do we store (or represent) a probabilistic
database? (2) How do we answer queries using our chosen
representation? (3) How do we present the result of queries
to the user?

There is a tension between the power of a representation
system, i.e., as the system more faithfully models correla-
tions, it becomes increasingly difficult to scale the system.
A simple representation where each tuple is an indepen-
dent probabilistic event is easier to process, but it cannot
faithfully model the correlations important to all applica-
tions. In contrast, a more complicated representation, e.g.,
a large Markov Network [9], can capture the semantics of
the data very faithfully, but it may be impossible to compute
even simple SQL queries using this representation. An extra
challenge is to ensure that the representation system maps
smoothly to relational data, so that the non-probabilistic
part of the data can be processed by a conventional database
system.

A ProbDMS needs to support complex, decision-support
style SQL, with aggregates. While some applications can
benefit from point queries, the real value comes from queries
that search many tuples, or aggregate over many data val-
ues. For example the answer to find the affiliation of PC
Chair of SIGMOD’2008 is inherently imprecise (and can be
answered more effectively by consulting the SIGMOD’2008
home page), but a query like find all institutions (affilia-
tions) with more than 20 SIGMOD and VLDB PC Mem-
bers returns more interesting answers. There are two logical

steps in computing a SQL query on probabilistic data: first,
fetch and transform the data, and second, perform prob-
abilistic inference. A straightforward but näıve approach
is to separate the two steps: use a database engine for the
first step, and a general-purpose probabilistic inference tech-
nique [9, 13] for the second. But on large data the proba-
bilistic inference quickly dominates the total running time.
A better approach is to integrate the two steps, which al-
lows us to leverage some database specific techniques, such
as query optimization, using materialized views, and schema
information, to speedup the probabilistic inference.

Designing a good user interface raises new challenges. The
answer to a SQL query is a set of tuples, and it is critical
to find some way to rank these tuples, because there are
typically lots of false positives when the input data is im-
precise. Alternatively, aggregation queries can extract value
from imprecise data, because errors tend to cancel each other
out (the Law of the Large Numbers). A separate and dif-
ficult task is how to indicate to the user the correlations
between the output tuples. For example, the two highest
ranked tuples may be mutually exclusive, but they could
also be positively correlated. As a result, their ranks alone
convey insufficient information to the user. Finally, a major
challenge of this facet is how to obtain feedback from the
users and how to employ this feedback to ”clean” the under-
lying database. This is a difficult problem, which to date
has not yet been solved.

1.3 Key Applications
Probabilistic databases have found usage in a wide class of

applications. Sensor data is obtained from battery-powered
sensors that acquire temperature, pressure, or humidity read-
ings from the surrounding environment. The BBQ sys-
tem [15] showed that a probabilistic data model could rep-
resent well this kind of sensor data. A key insight was
that the probabilistic model could answer many queries with
sufficient confidence without needing to acquire additional
readings. This is an important optimization since acquir-
ing fewer sensor readings allows longer battery life, and so
more longer lasting sensor deployments. Information Ex-
traction is a process that extracts data items of a given type
from large corpora of text [26]. The extraction is always
noisy, and the system often produces several alternatives.

Gupta and Sarawagi [20] have argued that such data is best
stored and processed by a probabilistic database. In Data
Cleaning, deduplication is one of the key components and is
also a noisy and imperfect process. Andritsos, Fuxman, and
Miller [1] have shown that a probabilistic database can sim-
plify the deduplication task, by allowing multiple conflicting
tuples to coexist in the database. Many other applications
have looked at probabilistic databases for their data man-
agement needs: RFID data management [34], management
of anonymized data [30] and scientific data management [28].

2. KEY CONCEPTS IN A ProbDMS

We present a number of key concepts for managing prob-
abilistic data that have emerged in recent years. We group
these concepts by the three facets, although some concepts
may be relevant to more than one facet.

2.1 Facet 1: Semantics and Representation
The de facto formal semantics of a probabilistic database

is the possible worlds model [12]. By contrast, there is no
agreement on a representation system, instead there are
several approaches covering a spectrum between expressive
power and usability [4]. A key concept in most representa-
tion systems is that of lineage, which is derived from early
work on incomplete databases by Immelinski and Lipski [22].

2.1.1 Possible Worlds Semantics
In its most general form, a probabilistic database is a prob-

ability space over the possible contents of the database. It
is customary to denote a (conventional) relational database
instance with the letter I. Assuming there is a single table in
our database, I is simply a set of tuples (records) represent-
ing that table; this is a conventional database. A probabilis-
tic database is a discrete probability space PDB = (W,P),
where W = {I1, I2, . . . , In} is a set of possible instances,
called possible worlds, and P : W → [0, 1] is such thatP

j=1,n P(Ij) = 1. In the terminology of networks of be-
lief, there is one random variable for each possible tuple
whose values are 0 (meaning that the tuple is not present)
or 1 (meaning that the tuple is present), and a probabilistic
database is a joint probability distribution over the values
of these random variables.

This is a very powerful definition that encompasses all the
concrete data models over discrete domains that have been
studied. In practice, however, one has to step back from this
generality and impose some workable restrictions, but it is
always helpful to keep the general model in mind. Note that
in our discussion we restrict ourselves to discrete domains:
although probabilistic databases with continuous attributes
are needed in some applications [7,15], no formal semantics
in terms of possible worlds has been proposed so far.

Consider some tuple t (we use interchangeably the terms
tuple and record in this paper). The probability that the tu-
ple belongs to a randomly chosen world is P(t) =

P
j:t∈Ij

P(Ij),

and is also called the marginal probability of the tuple t.
Similarly, if we have two tuples t1, t2, we can examine the
probability that both are present in a randomly chosen world,
denoted P(t1t2). When the latter is P(t1)P(t2), we say
that t1, t2 are independent tuples; if it is 0 then we say that
t1, t2 are disjoint tuples or exclusive tuples. If none of these
hold, then the tuples are correlated in a non-obvious way.
Consider a query Q, expressed in some relational query lan-
guage like SQL, and a possible tuple t in the query’s answer.

P(t ∈ Q) denotes the probability that, in a randomly cho-
sen world, t is an answer to Q. The job of a probabilistic
database system is to return all possible tuples t1, t2, . . . to-
gether with their probabilities P(t1 ∈ Q),P(t2 ∈ Q), . . .

2.1.2 Representation Formalisms
In practice, one can never enumerate all possible worlds,

and instead we need to use some more concise representa-
tion formalism. One way to achieve that is to restrict the
class of probabilistic databases that one may represent. A
popular approach is to restrict the possible tuples to be ei-
ther independent or disjoint. Call a probabilistic database
block independent-disjoint, or BID, if the set of all possi-
ble tuples can be partitioned into blocks such that tuples
from the same block are disjoint events, and tuples from
distinct blocks are independent. A BID database is speci-
fied by defining the partition into blocks, and by listing the
tuples’ marginal probabilities. This is illustrated in Figure 1.
The blocks are obtained by grouping Researchers by Name,
and grouping Services by (Name,Conference,Role). The
probabilities are given by the P attribute. Thus, the tuples
t21 and t31 are disjoint (they are in the same block), while
the tuples t11, t25, s1, s2 are independent (they are from dif-
ferent blocks). An intuitive BID model was introduced by
Trio [4] and consists of maybe-tuples, which may or may not
be in the database, and x-tuples, which are sets of mutually
exclusive tuples.

Several applications require a richer representation for-
malism, one that can express complex correlations between
tuples, and several such formalisms have been described in
the literature: lineage-based [4, 18], U-relations [2], or the
closure of BID tables under conjunctive queries [12]. Others
are the Probabilistic Relational Model of Friedman et al. [17]
that separates the data from the probabilistic network, and
Markov Chains [25,34]. Expressive formalisms, however, are
often hard to understand by users, and increase the complex-
ity of query evaluation, which lead researchers to search for
simpler, workable models for probabilistic data [4].

All representation formalisms are, at their core, an in-
stance of database normalization: they decompose a prob-
abilistic database with correlated tuples into several BID
tables. This is similar to the factor decomposition in graph-
ical models [9], and also similar to database normalization
based on multivalued dependencies [39]. A first question is
how to design the normal representation given a probabilis-
tic database. This requires a combination of techniques from
graphical models and database normalization, but, while
the connection between these two theories was described by
Verma and Pearl [39] in the early 1990s, to date there exists
no comprehensive theory of normalization for probabilistic
databases. A second question is how to recover the complex
probabilistic database from its normalized representation as
BID tables. This can be done through SQL views [12] or
through lineage.

2.1.3 Lineage
The lineage of a tuple is an annotation that defines its

derivation. Lineage is used both to represent probabilistic
data, and to represent query results. The Trio system [4] rec-
ognized the importance of lineage in managing data with un-
certainty, and called itself a ULDB, for uncertainty-lineage
database. In Trio, when new data is produced by queries over
uncertain data, the lineage is computed automatically and

captures all correlations needed for computing subsequent
queries over the derived data.

Lineage also provides a powerful mechanism for under-
standing and resolving uncertainty. With lineage, user feed-
back on correctness of results can be traced back to the
sources of the relevant data, allowing unreliable sources to
be identified. Users can provide much detailed feedback if
data lineage is made visible to them. For example, in infor-
mation extraction applications where data items are gener-
ated by pipelines of AI operators, users can not only indicate
if a data item is correct, but can look at the lineage of data
items to locate the exact operator making the error.

The notion of lineage is derived from a landmark paper
by Imielinski and Lipski [22] from 1984, who introduced c-
tables, as a formalism for representing incomplete databases.
We describe c-tables and lineage by using the example in
Figure 2. In a c-table, each tuple is annotated with a Boolean
expression over some hidden variables; today, we call that
expression lineage. In our example there are three tuples, U.
of Washington, U. of Wisconsin, and Y! Research, each
annotated with a lineage expression over variables X1, X3, Y1, Y2, Y4.
The semantics of a c-table is a set of possible worlds. An
assignment of the variables defines the world consisting of
precisely those tuples whose lineage is true under that as-
signment, and the c-table “means” the set of possible worlds
defined by all possible assignments. For an illustration,
in our example any assignment containing X1 = 3, Y2 =
1, X3 = 2, Y4 = 1 (and any values for the other variables) de-
fines the world {Y! Research, U. of Washington}, while
any assignment with Y1 = Y2 = Y3 = 0 defines the empty
world.

Lineage is a powerful tool in ProbDMS because of the
following important property: the answer to a query over a
c-table can always be represented as another c-table, using
the same hidden variables. In other words, it is always pos-
sible to compute the lineage of the output tuples from those
of the input tuples. This is called a closure property and
was first shown by Imielinski and Lipski [22]. We illustrate
this property on the database in Fig. 1, where each tuple
has a very simple lineage. Consider now the SQL query
in Figure 3(a), which finds the affiliations of all people who
performed some service for the VLDB conference. The answer
to this query is precisely the c-table in Figure 2.

2.2 Facet 2: Query Evaluation
Query evaluation is the hardest technical challenge in a

ProbDMS. One approach is to separate the query and lin-
eage evaluation from the probabilistic inference on the lin-
eage expression. Various algorithms have been used for the
latter, such as Monte Carlo approximation algorithms [11,
31]. Recently, a much more general Monte Carlo framework
has been proposed by Jampani et al. [23]. Variable Elimi-
nation [9] was used by Sen and Deshpande [36].

Another approach is to integrate the probabilistic infer-
ence with the query computation step. With this approach,
one can leverage standard data management techniques to
speed up the probabilistic inference, such as static analysis
on the query or using materialized views. This has led to
safe queries and to partial representations of materialized
views, which we discuss next.

2.2.1 Safety
Two of the current authors showed that certain SQL queries

can be evaluated on a probabilistic database by pushing the
probabilistic inference completely inside the query plan [11].
Thus, for these queries there is no need for a separate proba-
bilistic inference step: the output probabilities are computed
inside the database engine, during normal query processing.
The performance improvements can be large, e.g., Ré et
al. [31] observed two orders of magnitude improvements over
a Monte Carlo simulation. Queries for which this is possible
are called safe queries, and the relational plan that computes
the output probabilities correctly is called a safe plan. To
understand the context of this result we review a fundamen-
tal principle in relational query processing: the separation
between what and how.

In a relational query the user specifies what she wants:
relational query languages like SQL are declarative. The
system translates the query into relational algebra, using
operators like join 1, selection σ, projection-with-duplicate-
elimination Π. The resulting expression is called a relational
plan and represents how the query will be evaluated. The
separation between what and how was first articulated by
Codd when he introduced the relational data model [8], and
is at the core of any modern relational database system.
A safe plan allows probabilities to be computed in the re-
lational algebra, by extending its operators to manipulate
probabilities [12]. There are multiple ways to extend them,
the simplest is to assume all tuples to be independent: a
join 1 that combines two tuples computes the new proba-
bility as p1p2, and a duplicate elimination that replaces n
tuples with one tuple computes the output probability as
1− (1− p1) · · · (1− pn). A safe plan is by definition a plan
in which all these operations are provably correct. The cor-
rectness proof (or safety property) needs to be done by the
query optimizer, through a static analysis on the plan. Im-
portantly, safety does not depend on the actual instance of
the database, instead, once a plan has been proven to be
safe, it can be executed on any database instance.

We illustrate with the query in Figure3(a). Any modern
relational database engine will translate it into the logical
plan shown in (b). However, this plan is not safe, because
the operation ΠAffiliation (projection-with-duplicate elimina-
tion) combines tuples that are not independent, and there-
fore the output probabilities are incorrect. The figure illus-
trates this for the output value Y! Research, by tracing its
computation through the query plan: the output probabil-
ity is 1 − (1 − p1

3q1)(1 − p1
3q2). However, the lineage of Y!

Research is (X1 = 3 ∧ Y1 = 1) ∨ (X1 = 3 ∧ Y2 = 1), hence
the correct probability is p1

3(1− (1− q1)(1− q2)).
Alternatively, consider the plan shown in (c). This plan

performs an early projection and duplicate elimination on
Services. It is logically equivalent to the plan in (b), i.e.,
the extra duplicate elimination is harmless. However, the
new plan computes the output probability correctly: the fig-
ure illustrates this for the same output value, Y! Research.
Note that although plans (b) and (c) are logically equivalent
over conventional databases, they are no longer equivalent
in their treatment of probabilities: one is safe, the other not.

Safety is a central concept in query processing on proba-
bilistic databases. A query optimizer needs to search not just
for a plan with lowest cost, but for one that is safe as well,
and this may affect the search strategy and the outcome: in
a conventional database there is no reason to favor the plan
in (c) over that in (b) (and in fact modern optimizers will
not choose plan (c) because the extra duplication elimina-

Location

U. Washington (X1 = 1) ∧ (Y1 = 1) ∨ (X1 = 1) ∧ (Y2 = 1) ∨ (X3 = 2) ∧ (Y4 = 1)

U. Wisconsin (X1 = 2) ∧ (Y1 = 1) ∨ (X1 = 2) ∧ (Y2 = 1) ∨ (X3 = 1) ∧ (X4 = 1)

Y! Research (X1 = 3) ∧ (Y1 = 1) ∨ (X1 = 3) ∧ (Y2 = 1)

Figure 2: An example of a c-table.

SELECT x.Affiliation, confidence()

FROM Researchers x, Services y

WHERE x.Name = y.Name

and y.Conference = ’VLDB’

GROUP BY x.Affiliation

(a)

SELECT x.Affiliation, 1-prod(1-x.P*y.P)

FROM Researchers x, (SELECT Name, 1-(1-prod(P))

FROM Services

WHERE Conference = ’VLDB’

GROUP BY Name) y

WHERE x.Name = y.Name

GROUP BY x.Affiliation

(d)

⋈Name

Researchers Services

∏Affiliation

σConference

(b)

⋈Name

Researchers Services

∏Affiliation

σConference

∏Name

(c)

Figure 3: A SQL query on the data in Figure 1(a) returning the affiliations of all researchers who performed
some service for VLDB. The query follows the syntax of MayBMS, where confidence() is an aggregate operator
returning the output probability. The figure shows an unsafe plan in (b) and a safe plan in (c), and also traces
the computation of the output probability of Y! Research: it assumes there is a single researcher Fred with
that affiliation, and that Fred performed two services for VLDB. The safe plan re-written in SQL is shown
in (d): the aggregate function prod is not supported by most relational engines, and needs to be rewritten in
terms of sum, logarithms, and exponentiation.

tion increases the cost), but in a probabilistic database plan
(c) is safe while (b) is unsafe. A safe plan can be executed
directly by a database engine with only small changes to the
implementation of its relational operators. Alternatively, a
safe plan can be executed by expressing it in regular SQL
and executing it on a conventional database engine, without
any changes: Figure 3(d) illustrates how the safe plan can
be converted back into SQL.

Safe plans have been described for databases with inde-
pendent tuples [11], for BID databases [12], for queries whose
predicates have aggregate operators [32], and for Markov
Chain databases [34]. While conceptually a safe plan ties the
probabilistic inference to the query plan, Olteanu et al. [29]
have shown that is it possible to separate them at runtime:
the optimizer is free to choose any query plan (not neces-
sarily safe), then the probabilistic inference is guided by the
information collected from the safe plan. This results in
significant execution speedup for typical SQL queries.

2.2.2 Dichotomy of Query Evaluation
Unfortunately, not all queries admit safe plans. In gen-

eral, query evaluation on a probabilistic database is no easier

than general probabilistic inference. The latter is known to
be a hard problem [35]. In databases, however, one can ap-
proach the query evaluation problem differently, in a way
that is best explained by recalling an important distinction
made by Vardi in a landmark paper in 1982 [38]. He pro-
posed that the query expression (which is small) and the
database (which is large) be treated as two different inputs
to the query evaluation problem, leading to three different
complexity measures: the data complexity (when the query
is fixed), the expression complexity (when the database is
fixed), and the combined complexity (when both are part
of the input). For example, in conventional databases, all
queries have data complexity in PTIME, while the combined
complexity is PSPACE complete.

We apply the same distinction to query evaluation on
probabilistic databases. Here the data complexity offers a
more striking picture: some queries are in PTIME (e.g.,
all safe queries), while others have #P-hard data complex-
ity. In fact, for certain query languages or under certain as-
sumptions it is possible to prove a complete dichotomy, i.e.
each query belongs to one of these two classes [10,12,32,34].
Figure 4 describes the simplest dichotomy theorem, for con-

junctive queries without self-joins over databases with in-
dependent tuples, first proven in [11]. Safe queries are by
definition in the first class; under the dichotomy property,
any unsafe query has #P-hard data complexity. For unsafe
queries we really have no choice but to resort to a proba-
bilistic inference algorithm that solves, or approximates a
#P-hard problem. The abrupt change in complexity from
PTIME to #P-hard is unique to probabilistic databases, and
it means that query optimizers need to make special efforts
to identify and use safe queries.

An active line of research develops query evaluation tech-
niques that soften the transition from safe to unsafe queries.
One approach extends the reach of safe plans: for example
safe sub-plans can be used to speed up processing unsafe
queries [33], functional dependencies on the data, or know-
ing that some relations are deterministic can be used to find
more safe plans [11,29], and safe plans have been described
for query languages for streams of events [34].

Another approach is to optimize the general-purpose prob-
abilistic inference on the lineage expressions [36]. A new di-
rection is taken by a recent project at IBM Almaden [23],
which builds a database system where Monte Carlo simula-
tions are pushed deep inside the engine, thus being able
to evaluate any query, safe or unsafe. What is particu-
larly promising about this approach is that through clever
query optimization techniques, such as tuple bundles, the
cost of sampling operations can be drastically reduced. A
complementary approach, explored by Olteanu et al. [29]
is to rewrite queries into ordered binary decision diagrams
(OBDD). They have observed that safe plans lead to linear-
sized OBDD’s. This raises the possibility that other tractable
cases of OBDDs can be inferred, perhaps by analyzing both
the query expression and the database statistics.

2.2.3 Materialized Views
The use of materialized views to answer queries is a very

powerful tool in data management [21]. In its most simple
formulation, there are a number of materialized views, e.g.,
answers to previous queries, and the query is rewritten in
terms of these views, to improve performance.

In the case of probabilistic databases, materialized views
have been studied in [33]. Because of the dichotomy of the
query complexity, materialized views can have a dramatic
impact on query evaluation: a query may be unsafe, hence
#P-hard, but after rewriting it in terms of views it may
become a safe query, and thus is in PTIME. There is no
magic here, we don’t avoid the #P-hard problem, we simply
take advantage of the fact that the main cost has already
been paid when the view was materialized.

The major challenge in using materialized views over prob-
abilistic data is that we need to represent the view’s out-
put. We can always compute the lineage of all the tuples
in the view, and this provides a complete representation of
the view, but it also defeats our purpose, since using these
lineage expressions during query evaluation does not sim-
plify the probabilistic inference problem. Instead, we would
like to use only the marginal tuple probabilities that have
been computed for the materialized view, not their lineage.
For example, it may happen that all tuples are indepen-
dent probabilistic events, and in this case we only need the
marginal probabilities; we say in this case the view is fully
representable. In general, not all tuples in the view are in-
dependent, but it is always possible to partition the tuples

into blocks such that tuples from different blocks are inde-
pendent, and, moreover, there exists a “best” such parti-
tion [33]; within a block, the correlations between the tuples
remain unspecified. The blocks are described at the schema
level, by specific a set of attributes: grouping by those at-
tributes gives the blocks. This is called a partial represen-
tation, and can be used to evaluate some queries over the
views. Note that the problem of finding a good partial rep-
resentation of the view is done by a static analysis that is
orthogonal to the analysis whether the view is safe or unsafe:
there are examples for all four combinations of safe/unsafe
representable/unrepresentable views.

2.3 Facet 3: User Interface
The semantics of query Q on a probabilistic database with

possible worlds W is, in theory, quite simple, and is given by
the image probability space over the set of possible answers,
{Q(I) | I ∈ W}. In practice, it is impossible, and perhaps
useless, to return all possible sets of answers. An important
problem in probabilistic databases is how to best present
the set of possible query answers to the user. To date, two
practical approaches have been considered: ranking tuples,
and aggregation over imprecise values.

2.3.1 Ranking and Top-k Query Answering
In this approach the system returns all possible answer

tuples and their probabilities: P(t1 ∈ Q), P(t2 ∈ Q), . . . in
Sec. 2.1.1; the correlations between the tuples are thus lost.
The emphasis in this approach is to rank these tuples, and
restrict them to the top k.

One way to rank tuples is in decreasing order of their
output probabilities [31]: P(t1 ∈ Q) ≥ P(t2 ∈ Q) ≥
Often, however, there may be a user-specified order criteria,
and then the system needs to combine the user’s ranking
scores with the output probability [37]. A separate question
is whether we can use ranking to our advantage to speed up
query performance by returning only the k highest ranked
tuples: this problem is called top-k query answering. One
can go a step further and drop the output probabilities alto-
gether: Ré et al. [31] argue that ranking the output tuples is
the only meaningful semantics for the user, and proposes to
focus the query processor on computing the ranking, instead
of the output probabilities.

The power of top-k query answering in speeding up query
processing has been illustrated in a seminal paper by Fa-
gin, Lotem, and Naor [16]. When applied to probabilistic
databases that principle leads to a technique called multi-
simulation [31]. It assumes that a tuple’s probability P(t ∈
Q) is approximated by an iterative algorithm, like a Monte
Carlo simulation: after some number steps n, the probabil-
ity P(t ∈ Q) is known to be, with high probability, in an
interval (p−εn, p+εn), where εn decreases with n. The idea
in the multisimulation algorithm is to control carefully how
to allocate the simulation steps among all candidate tuples
in the query’s answer, in order to identify the top k tuples
without wasting iterations on the other tuples. Multisimu-
lation reduces the computation effort roughly by a factor of
N/k, where N is the number of all possible answers, and k
is the number of top tuples returned to the user.

2.3.2 Aggregates over Imprecise Data
In SQL, aggregates come in two forms: value aggregates,

as in for each company return the sum of the profits in all its

Hierarchical Queries
In the case of tuple-independent databases (where all tuples are independent) safe queries are precisely the
hierarchical queries; we define hierarchical queries here.
A conjunctive query is:

q(z̄) : − body

where body consists of a set of subgoals g1, g2, . . . , gk, and z̄ are called the head variables. Denote V ars(gi) the set of
variables occurring in gi and V ars(q) = ∪i=1,kV ars(gi). For each x ∈ V ars(q) denote sg(x) = {gi | x ∈ V ars(gi)}.

Definition 2.1. Let q be a conjunctive query and z̄ its head variables. q is called hierarchical if for all x, y ∈
V ars(q)− z̄, one of the following holds: (a) sg(x) ⊆ sg(y), or (b) sg(x) ⊇ sg(y), or (c) sg(x) ∩ sg(y) = ∅.

A conjunctive query is without self-joins if any two distinct subgoals refer to distinct relation symbols.

Theorem 2.2 (Dichotomy). [11,12] Let q be a conjunctive query without self-joins. (1) If q is hierarchical
then its data complexity over tuple-independent databases is in PTIME. (2) If q is not hierarchical then its data
complexity over tuple-independent databases is #P-hard.

To illustrate the theorem, consider the two queries:

q1(z) : − R(x, z), S(x, y), T (x, z)

q2(z) : − R(x, z), S(x, y), T (y, z)

In q1 we have sg(x) = {R, S, T}, sg(y) = {S}; hence it is hierarchical and can be evaluated in PTIME.
In q2 we have sg(x) = {R, S}, sg(y) = {S, T}; hence it is non-hierarchical and is #P-hard.

Figure 4: The dichotomy of conjunctive queries without selfjoins on tuple-independent probabilistic databases
is captured by Hierarchical Queries.

units, and predicate aggregates, as in return those compa-
nies having the sum of profits greater than 1M. Both types of
aggregates are needed in probabilistic databases. The first
type is interpreted as expected value, and most aggregate
functions can be computed easily using the linearity of ex-
pectation. For instance, the complexities of computing sum

and count aggregates over a column are same as the com-
plexities of answering the same query without the aggregate,
i.e., where all possible values of the column are returned
along with their probabilities [11]. Complexities of comput-
ing min and max are same as those of computing the un-
derlying queries with the aggregates replaced by projections
removing the columns [11]. One aggregate whose expected
value is more difficult to compute is average, which is an
important aggregate function for OLAP over imprecise data.
One can compute the expected values of sum and count(*),
but the expected value of average is not their ratio. A
surprising result was shown by Jayram, Kale, and Vee [24]
who proved that average can be computed efficiently. They
give an exact algorithm to compute average on a single table
in time O(n log2 n). They also give efficient algorithms to
compute various aggregates when the data is streaming.

The second type of aggregates, those occurring in the HAV-
ING clause of a SQL query, have also been considered [32]. In
this case, one needs to compute the entire density function of
the random variable represented by the aggregate, and this
is more difficult than computing the expected value. Sim-
ilar to safe queries, the density function can sometimes be
computed efficiently and exactly, but it is hard in general.
Worse, in contrast to safe queries, which can always be effi-
ciently approximated, there exists HAVING queries that do
not admit efficient approximations.

3. A LITTLE HISTORY OF THE (POSSI-
BLE) WORLDS

There is a rich literature on probabilistic databases, and
we do not aim here to be complete; rather, as in Gombrich’s
classic A Little History of the World, we aim to “catch a
glimpse”. Early extensions of databases with probabilities
date back to Wong [40] and Cavallo and Pittarelli [6]. In an
influential paper Barbara et al. [3] described a probabilis-
tic data model that is quite close to the BID data model,
and showed that SQL queries without duplicate elimination
or other aggregations can be evaluated efficiently. Prob-
View [27] removed the restriction on queries, but returned
confidence intervals instead of probabilities. At about the
same time, Fuhr and Roelleke [18] started to use c-tables
and lineage for probabilistic databases and showed that ev-
ery query can be computed this way.

Probabilities in databases have also been studied in the
context of “reliability of queries”, which quantifies the prob-
ability of a query being correct assuming that tuples in the
database have some probability of being wrong. Grädel,
Gurevich and Hirsch [19] were the first to prove that a sim-
ple query can have data complexity that is #P-hard.

Andritsos, Fuxman and Miller [1] have applied probabilis-
tic databases to the problem of consistent query answering
over inconsistent databases. They observed that the “cer-
tain tuples” [21] to a query over an inconsistent databases
are precisely the tuples with probability 1 under probabilis-
tic semantics.

The intense interest in probabilistic databases seen today
is due to a number of influential projects: applications to
sensor data [7, 15], data cleaning [1], and information ex-
traction [20], the safe plans of [11], the Trio system [4] that

introduced ULDBs, and the advanced representation sys-
tems described in [2, 36].

4. CONCLUSIONS
Many applications benefit from finding valuable facts in

imprecise data, the diamonds in the dirt, without having to
clean the data first. The goal of probabilistic databases is
to make uncertainty a first class citizen, and to reduce the
cost of using such data, or (more likely) to enable appli-
cations that were otherwise prohibitively expensive. This
paper described some of the recent advances for large scale
query processing on probabilistic databases and their roots
in classical data management concepts.

Acknowledgments We thank the anonymous reviewers
for their helpful comments, and Abhay Jha for discussions
on the paper.

5. REFERENCES
[1] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers

over dirty databases. In ICDE, 2006.
[2] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and

simple relational processing of uncertain data. In ICDE,
2008.

[3] D. Barbara, H. Garcia-Molina, and D. Porter. The
management of probabilistic data. IEEE Trans. Knowl.
Data Eng., 4(5):487–502, 1992.

[4] O. Benjelloun, A. D. Sarma, A. Halevy, M. Theobald, and
J. Widom. Databases with uncertainty and lineage.
VLDBJ, 17(2):243–264, 2008.

[5] D. Burdick, P. Deshpande, T. S. Jayram, R. Ramakrishnan,
and S. Vaithyanathan. Efficient allocation algorithms for
olap over imprecise data. In VLDB, pages 391–402, 2006.

[6] R. Cavallo and M. Pittarelli. The theory of probabilistic
databases. In Proceedings of VLDB, pages 71–81, 1987.

[7] R. Cheng, D. Kalashnikov, and S. Prabhakar. Evaluating
probabilistic queries over imprecise data. In SIGMOD,
pages 551–562, 2003.

[8] E. F. Codd. Relational completeness of data base
sublanguages. In Database Systems, pages 65–98.
Prentice-Hall, 1972.

[9] R. Cowell, P. Dawid, S. Lauritzen, and D. Spiegelhalter,
editors. Probabilistic Networks and Expert Systems.
Springer, 1999.

[10] N. Dalvi and D. Suciu. The dichotomy of conjunctive
queries on probabilistic structures. In PODS, pages
293–302, 2007.

[11] N. Dalvi and D. Suciu. Efficient query evaluation on
probabilistic databases. The VLDB Journal, 16(4):523–544,
2007.

[12] N. Dalvi and D. Suciu. Management of probabilistic data:
Foundations and challenges. In PODS, pages 1–12, Beijing,
China, 2007. (invited talk).

[13] A. Darwiche. A differential approach to inference in
bayesian networks. Journal of the ACM, 50(3):280–305,
2003.

[14] P. DeRose, W. Shen, F. Chen, Y. Lee, D. Burdick,
A. Doan, and R. Ramakrishnan. Dblife: A community
information management platform for the database
research community. In CIDR, pages 169–172, 2007.

[15] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor
networks. In VLDB, pages 588–599, 2004.

[16] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In Proceedings of the twentieth
ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 102–113. ACM Press,
2001.

[17] N. Friedman, L. .Getoor, D. Koller, and A. Pfeffer.
Learning probabilistic relational models. In IJCAI, pages
1300–1309, 1999.

[18] N. Fuhr and T. Roelleke. A probabilistic relational algebra
for the integration of information retrieval and database
systems. ACM Trans. Inf. Syst., 15(1):32–66, 1997.

[19] E. Grädel, Y. Gurevich, and C. Hirsch. The complexity of
query reliability. In PODS, pages 227–234, 1998.

[20] R. Gupta and S. Sarawagi. Creating probabilistic databases
from information extraction models. In VLDB, pages
965–976, 2006.

[21] A. Halevy. Answering queries using views: A survey. VLDB
Journal, 10(4):270–294, 2001.

[22] T. Imielinski and W. Lipski. Incomplete information in
relational databases. Journal of the ACM, 31:761–791,
October 1984.

[23] R. Jampani, F. Xu, M. Wu, L. Perez, C. Jermaine, and
P. Haas. MCDB: a Monte Carlo approach to managing
uncertain data. In SIGMOD, pages 687–700, 2008.

[24] T. Jayram, S. Kale, and E. Vee. Efficient aggregation
algorithms for probabilistic data. In SODA, 2007.

[25] B. Kanagal and A. Deshpande. Online filtering, smoothing
and probabilistic modeling of streaming data. In ICDE,
pages 1160–1169, 2008.

[26] J. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic models for segmenting and
labeling sequence data. In ICML, 2001.

[27] L. Lakshmanan, N. Leone, R. Ross, and V. Subrahmanian.
Probview: A flexible probabilistic database system. ACM
Trans. Database Syst., 22(3), 1997.

[28] A. Nierman and H. Jagadish. ProTDB: Probabilistic data
in XML. In VLDB, pages 646–657, 2002.

[29] D. Olteanu, J. Huang, and C. Koch. SPROUT: Lazy vs.
eager query plans for tuple independent probabilistic
databases. In ICDE, 2009.

[30] V. Rastogi, D. Suciu, and S. Hong. The boundary between
privacy and utility in data publishing. In VLDB, 2007.

[31] C. Ré, N. Dalvi, and D. Suciu. Efficient Top-k query
evaluation on probabilistic data. In ICDE, 2007.

[32] C. Ré and D.Suciu. Efficient evaluation of having queries
on a probabilistic database. In Proceedings of DBPL, 2007.

[33] C. Ré and D.Suciu. Materialized views in probabilistic
databases for information exchange and query
optimization. In Proceedings of VLDB, 2007.

[34] C. Ré, J. Letchner, M. Balazinska, and D. Suciu. Event
queries on correlated probabilistic streams. In SIGMOD,
Vancouver, Canada, 2008.

[35] D. Roth. On the hardness of approximate reasoning.
Artificial Intelligence, 82(1-2):273–302, 1996.

[36] P. Sen and A. Deshpande. Representing and querying
correlated tuples in probabilistic databases. In ICDE, 2007.

[37] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang.
Probabilistic top- and ranking-aggregate queries. ACM
Trans. Database Syst., 33(3), 2008.

[38] M. Y. Vardi. The complexity of relational query languages.
In Proceedings of 14th ACM SIGACT Symposium on the
Theory of Computing, pages 137–146, San Francisco,
California, 1982.

[39] T. Verma and J. Pearl. Causal networks: Semantics and
expressiveness. Uncertainty in Artificial Intelligence,
4:69–76, 1990.

[40] E. Wong. A statistical approach to incomplete information
in database systems. ACM Trans. Database Syst.,
7(3):470–488, 1982.

