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Key Violations often occur in real-life datasets, especially in those While general query evaluation on probabil_istic (_jatabase is known
integrated from different sources. Enforcing constraints strictly on to be #P-hard, even W'thOUt soft keys [9].' we identify t.WO cases that
these datasets is not feasible. In this paper we formalize the notion"’“e,traaah’_Ie an_d descn_be tYVO polynomial time algorithms for eyal-
of soft-key constraints on probabilistic databases, which allow for uating conjunctive queries in th_e presence of soft key confstralnt_s.
violation of key constraint by penalizing every violating world by a to our knowledge these are the f'r.St provably tractabl_e algorlth_ms in
guantity proportional to the violation. To represent our probabilis- the presence of_any soft c_onsFramts. Our first algorlt_hm applies to
tic database with constraints, we define a class of markov networks, dU€ries over asingle relation, in the presence of multiple soft keys.
where we can do query evaluation in PTIME. We also study the Our _second_ algorlt_hm applies to conjunctive queries over mul_tlple
evaluation of conjunctive queries on relations with soft keys and relations, with multiple soft keys. In both cases we also establish a

present a dichotomy that separates this set into those in PTIME anddicho_tomy: if our algorithms do not a_pply then we can show, under
the rest which are #P-Hard. certain assumptions, that the query is #P-hard.

Our analysis is similar in spirit to a previously known dichotomy
result for query evaluation on disjoint/independent probabilistic databases [9
1. INTRODUCTION which can be thought of as probabilistic databases with hard key
Soft constraints are emerging as a promising approach to CopeCOﬂStl’aintS. That result defines a syntactic condition on the query,
with various kinds of uncertainty in data, as found in many modern calledsafety then proves that every safe query can be evaluated in
applications. Soft constraints have been used to enhance the quality° TIME and that every unsafe query is #P-hard. In our work we also
of information extraction [25], of object reconciliation [26, 18], in  define a syntactisafetycondition for queries in the presence of soft
query optimization [16], and in data cleaning [1]. keys. Then we show that a query is safe in the presence of soft keys
While discovering soft constraints is possible today given ad- iff it remains safe after making every key either hard, or removing
vances in machine learning, using the soft constraints during queryit altogether, in all possible ways. The intuitive significance of this
processing over large volumes of data is much harder. Current ap-connection is the following: by varying the weight attached to a
proaches to probabilistic inference are based either on Monte Carlosoft key one can either make it hard or remove it completely, and
Markov Chain [22] or on message passing [7], and these do not therefore any PTIME algorithm that can handle soft keys needs to
scale to large volumes of data. The main problem that prevents usbe able to handle these extremes. However, the PTIME algorithm
from adopting soft constraints is the lack of scalable query process- that we describe in this paper in the presence of soft keys is signif-
ing techniques in the presence of soft constraints. icantly more difficult than the previous algorithm for safe queries.
In this paper we studgoft key constraintsor soft keysn short, This is by necessity: even one soft key makes query evaluation
and examine the query evaluation problem: evaluate a Booleanmuch more difficult, and the interaction between multiple soft keys
conjunctive query on a database given a set of soft keys. We in- 0n the same table adds even more complexity.
terpret soft keys using Markov Networks whose potential consists : :
of two parts, one that depends on individual tuples, and the other 11 Motlvatlng Example )
that depends only on the number of tuples that have the same key; To motivate our work, we illustrate with a concrete problem: du-
such potentials have been recently studied in [15]. Our soft keys arePlicate elimination in dirty data. This occurs frequently in data in-
in fact general cardinality constraints. We define query evaluation tegration because of different representation conventions, or simply
as computing the marginal probability of the query, which is the because of typos, and results in key violations: a person has mul-
common semantics in probabilistic databases [3, 12, 5, 9]: this is tiPle addresses, a company has multiple CEO’s, a scientific paper
different from computing the most likely world, a problem studied has multiple years of publication. Andritsos et al. [1] have pro-
posed a probabilistic approach to answer queries directly on the
dirty data. They assign to each duplicate tuple a probability, such
that the probabilities for the same key sum up to 1. For exam-
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Person:

Name City W

t1 | Joe Seattle wy =4
to Joe Whistler we =

t3 Frank Seattle ws =0
ta Frank Paris wy = —2
ts Frank Honolulu | ws =1
ts | Sue Portland | we =0
tr Sue Whistler wr = —1
ts Lisa Paris ws = 3
tg Lisa Milan wyg = —1
t10 | Lisa Saint Malo| wip = —1

Figure 1: A probabilistic relation given by weights

SOFT KEY x ON Person(x.y)
SIZE 2 WEIGHT -4;
SOFT KEY ON Person(Frank,y)
SIZE 2 WEIGHT 4
SIZE 3 WEIGHT -3;
SOFT KEY x WHERE Income(x,z), z > 1M
ON Person(x,y)
SIZE 2 WEIGHT 3
SIZE s WHERE s > 2 WEIGHT -2*s

Figure 2: Soft key constraints for Person

may be present.

With a soft key we can relax the constraint, by allowing a possi-
ble world to contain multiple occurrences of the same key, but by
assigning a certain penalty for multiple occurrences. There are two

reasons why we need such a relaxation. First is that constraints are

learned from training data, rather than stated by an administrator,
and these are always “soft”. For example, in the case of historical
data, a person’s address is not unique at all ! A machine learning
tool may infer, for example, that people over 50 years old typically

have 6 addresses, because they moved in the past, while peoplé&"

in [1], we can assign different weights to different tuples to indi-
cate our belief in the quality of the data that produced each tuple.
However, unlike [1] tuples with the same key are not disjoint: keys
are “soft”. In our approach the soft keys are specified separately,
using a declarative language that is illustrated in Fig 2. The first
constraint says that two cities for the same person should be penal-
ized with a weightv = —4. The second constraint defines two soft
keys. One says th&rank is allowed to have two cities: its weight

w = 4 cancels the weight of the first soft key. The second penal-
izes with a weight -3 if 3 tuples are found with the kEyank .

The next soft key says that wealthy people are actually more likely
to have two homes, then gives a formula on how to decrease their
weight as function of the number of homes. Together, these soft
keys capture our statistical knowledge about the data, and need to
be used during query evaluation. For example, the qyexigove

will return Whistler  with a much higher probability, because the
wealthy people that have vacation homes are no longer considered
errors by the system.

Organization We give the basic definitions and the background
on Markov Networks in Sec. 2, then study the query evaluation
problem on a single relation in Sec. 3. We show how to extend
it to conjunctive queries over multiple relations and establish the
dichotomy in Sec. 4.

2. DEFINITIONS AND NOTATIONS

We begin with a brief review of Markov networks (for a detailed
description, we refer to [17, 7]). Then, we define a particular kind
of a Markov Network to interpret the soft keys.

2.1 Markov Networks

A Markov Network is a concise presentation of a probability dis-
tribution of a set of random variablés = {t1,t2,...,t,}. Astate
is defined to be an assignment to the variableX inin this paper
we restrict to Boolean variables, and therefore we will assimilate a
state with a subséf’ C X, and call it aworld. The set of pos-
sible worlds isWw = 2%. Thus, a probability distribution on the
dom variablesX is a finite probability spacéWV, P), where

under 25 typically have 1 address. Such detailed statistical infor- W = 2% andP : W — [0,1] s.t. 3 ycyy P(W) = 1; the
mation about the data can be represented using our notion of softatomic, exclusive events of the probability space arepihesible

keys.
Second, by ignoring the “softness” of a key, we get wrong query

worldsW € W.
Typically, n is very large: in a probabilistic database each tuple

answers. For example, assume that most people have a single rescorresponds to a Boolean variatlghence we will refer td; as a
idence, but wealthy people may have a second vacation home, anduple) and a world corresponds to a subset of tuples. Thigsthe

perhaps a third small apartment in a big city. Consider a user who
integrate$erson(name, city) with Hobby(name, hobby)
searching for cities likely to host skiers:

q(y) :- Person(x,y), Hobby(x, 'Ski’)
Whistler is a popular ski resort in Canada, but very few people

actually live there. However, many wealthy people have a condo
or a vacation home iwhistler . With a hard key constraint, all

these entries appear to the system to be wrong, and it will decrease

their probabilities: other cities will rank higher thadhistler |
only because the system found fewer key violations for those cities.
In fact, a probabilistic database system that returns only the top k
most likely answers [19] may not retrieVghistler  at all.

Our approach is to use soft keys instead of hard keys; we illus-
trate it in Figure 1.Person is a probabilistic database [9], where
instead of probabilities we indicate the weight of each thpks

1The weightw and the probability are generally related through
w = log t£-, but see Examples 2.6 and 2.7.

number of tuples in the probabilistic database. It is not possible to
enumerate al”™ values ofP.

A Markov Network (MN) describes the functioR more con-
cisely. The MN is a triple( X, K, (®.)ccx ), WhereK is a set of
subsets of, calledcliques and for eackt € K, ®. : {0,1}° —

R™ is called apotential function The probability distributionP :
W — [0,1] defined by the MN isP(W) +®(W), where
d (W) is called the weight of the world” andZ is a normalization
factor, and are given by:

W) = J[@Wne
Z = > W)
wew

Thus, instead of having to enumeratevalues forP, we can just
enumerate2!®l values of each potentid.. The basic assumption
in Markov Networks is that each cliquss small.

An MN defines an undirected graph with nod&s and with
edges{(z,y) | 3c € K.x € ¢,y € ¢}. Then each set € K is



wherews, ..., ws € R are the weightsK' = {c1, c2} and:

a = {ti,t2} fea (D) =v1 fe,(2) =02
i E 2 = A{ts,tats} fer(1) =wr feu(2) =u2 fe,(3) =us
t2 t< t5 Herewvi, v2, u1, uz, uz € R. The probability function? (W) mul-
tiplies the potentials™? for all t; € W, then it examines the cardi-
nalities ofl’Nc;1 and of i N2 and multiplies with the correspond-
ing potential. For example, for the two world& = {t2,t3,t4}

andW’ = {t1,ts, 14, t5} we have:

Figure 3: A Markov Network.

indeed a clique in the graph, justifying the terminology: in this pa- 1

per we allow the cliques i to be non-maximal, which is a minor P(W) = —exp (w2 +ws+ws+ o1 +u2)
departure from the standard definition. The importance of the graph 1

is that edges correspond to correlations: an ddgg) means that PW') = ZeXp (w1 + w3 + wa + ws + v1 + u3z)
the variablese, y are correlated, while the lack of an edge means

that they are independent. 2.3 Soft Keys

An MN is often represented aslag-linear model, as follows:
each potential function is given bj.(W.) = exp (wef.(We)),
wherew. € R is aweightand f. is afeature function Thus, the
weight of a world is:

We now formalize the notion of soft keys and describe their se-
mantics using an SCMN.
Syntax We start by defining a probabilistic relational schema:

DEFINITION 2.3. Aprobabilistic relation is a relation schema
W) = exp | > wefe(Wne) R(Ai, ..., Ag, W) with a distinguished attributé?’, called the
ceK weight

2.2 Size-Constrained Markov Networks (SCMN) A probabilistic database schemaiis= (Ri,...,Rm), and a

Our goal is to use a Markov Network to model soft keys. A probabilistic instancés simply an instancé for R: the term “prob-
clique will correspond to a set of tuples violating the key constraint, abilistic” refers to how we will interpret the weights, as we show
and therefore can be large: the basic assumption in Markov Net- below. As usual, we denoi®! the relationR; of the instancd.
works that cliques are small no longer holds. On the other hand, Given a relation nam& we denoted¢tr(R) the set of attributes
to model soft keys, the clique’s potential needs to be a function without the weight attribute. We consider in this paper conjunctive
only of the number of tuples violating the key constraint, and not queries that refer only to attributes it¢r(R); thus, asubgoal
the actual set of tuples. For that purpose we introduce a restrictedg on R means a predicate (with variables and/or constants) over
form of Markov Networks, which we calbize Constrained/N, Attr(R), without the weight attribute. We denoters(g) the set
and represent as a log-linear model: of variables ing. For example, give a relatioR(A, B,C, D, W),

a subgoal iy = R(x, a,y, x), where ={z,y}.
DEFINITION 2.1. ASize-Constrainearkov Network (SCMN) g Y (@a,9,2) vars(g) = {z,y}

isM = (X, K, (wi)i=1,n, (fe)cex), where: DEFINITION 2.4. Let R be a relation name.
e X = {t1,...,t,} is a set of Boolean variables. We refer to e Asoft key scheméor R is a pairo = (z, g) wherez is a set
them aguples of variables andy is a subgoal orR, s.t. Z C vars(g). We

e K is a set of nonempty subsets¥fcalledcliques denoteK ey, (R) C Attr(R) the set of attributes iR that
have ing either a constant or &-variable.

e w; € Ris called theweightof the tuplet;. ) ) )
e Asoft keyfor R is a tripley = (o, s, w), wherec is a soft

e Forallce K, fo : {0,...,|c|} = R,s.t. f(0) = 0. key schemas € N1 is called thesizeandw € R is called
) . . ¢ theweight
An SCMN defines the following probability spaceloh= 2*: weld
1

P(W) = z®(W), where We write s = size (y) andw = weight (v) to indicate the
size and the weight of the soft key. We also use interchangeably

(W) = exp Z wi + Z F(W e and~ when clear from the context, e.g. wriféey- (R) instead of

t; €W ceK Keyg(R). . .

Informally, the soft key(o, s, w) says this. If there existstuples

Z = Y W) in R with the same values, then charge with a weight. If w < 0

Wew then that will penalizes occurrences of: otherwise it will reward

them.

Thus, like in [15], the potential in an SCMN has two parts: one
that depends only on the individual tuples, and one that depends

only on the number of tuples in each cliques. Example 2.5 The first, second, and last soft key in Figure 2 are

expressed as follows in our formalism:

Example 2.2 We iIIust.rate a Size-Constrained Markov Network ((z, Person (z,y)),2, —4)
over five Boolean variableX = {t1,...,ts}. The graph of the
MN is in Fig. 3 and says that the variablgsandt, are correlated, ((0,Person (Frank ,y)),2,4)
and so arés, t4, ts, but thatt,, t> are independent frony, ¢4, t5. (0, Person (a,y)), s, —2s)

Define now the following SCMN: The last line represents a set of soft keys: there is one for each

M= (X, K, (ws)iz1,5, (fe)ecx) a that satisfiedncome (a,2),z > 1M in the current database



instance, and for each numbebetween 1 and the cardinality of  For concreteness, suppose the soft key has size 3 and weight
Person . We will assume in this paper that the system performs i.e. v = (o,3,—5.0). This says that three or more occurrences
automatically the conversion from a use-friendly syntax as in Fig. 2 of the same value foAd should be penalized by-5.0. Suppose

to formal soft keys. a world W contains three tuplegs, b1), (a, b2), (a, b3): then the
. . . SCMN semantics penalize3(WW) by multiplying Eq.(1) bye ™.
SemanticsGiven an instancé and a set of soft keys, its se- Now suppose thalV’ containsn violations, (a,b:), ..., (a,bx):

mantics is given by the following SCMN: then Eq.(1) is multiplied withe =3(5): every three distinct occur-

M(T, 1) = (X, K, (wi)i=1,n, (fe)cek) rences ofa contribute with a weight of-5.0. This is a desirable

behavior: the user says that three occurrences should be penal-

ized by —5.0, and therefore she expects the penalty to increase

with n. Our particular choice of defining this penalty, by multi-

plying with (%), is somewhat arbitrary. Our choice was inspired

o w; = t;.W (the weight of the tuple; in I). by Markov Logic [22]: this is precisely the semantics obtained in
Markov Logic if one assigns weight5.0 to the formula:

e X = {t1,...,tn} is the set of tuples in all probabilistic re-
lations inI. Thatis, X = |J R}; we assume the union
to be disjoint.

j=1lm

e Lety € T be a soft key for a relatio®;, i.e.y = (o, s,w),
wheres = (%, g), and denotgj = vars(g) — Z. Leta,b Jy1.3y2.Fys. /\R(ayi) A /\ Yi 7 Yj
be tuples of constants with the same arityraandy respec- i i#j
tively. De_not_eg[t:z/f, b/_g] the ground tuple obtained by sub-  y5\vever, other choices are possible, for example one could mul-
stituting = with a andy with b in g. For anyy anda, we tiply with n — 3 instead of(’;). The results in this paper are not

define the following set: affected by the particular choice of the feature functigns

cya = {ti| 3b:gla/z,b/y) =t} Clearly, by adding the soft key, we introduced correlations
) between tuples that share the same valugl ofBut, in addition,
A set of the forme, 5 consists of a subsets of tuples itf the soft key changes the marginal probabilityeverytuple ¢; =

that are affected by the soft key. We define the set of (4 3), even if it does not violate the soft key, becaehanges.
cliques K to be all sets of this form, and the feature func- |n example 2.6 the marginal probability of a tuglewas simply
tions f. to c_omblne the weights of all soft keys that define P(t;) = p;. By adding a single soft key constraint it becomes
the same clique: unclear how to compute the marginal probability of any tuple, even
_ _ _ one that doesn’t violate the key constraint.
K {evaleva # 0}

Finally, we examine the impact of several keys.

Example 2.8 We add a second key to the previous example:

fols) = exp > <§|> weight (v) Y = (0,R(x,y),1000,+3.5)
AS I Now T = {v,~'}. Herey' rewards worlds that have at least 1000
(Ja.cya =c) tuples. In other words, whilg encourages us to remove tuples that
Asize (y)=s share the same key, penalizes us if we remove too many glob-

ally: more precisely by rewarding worlds with over 1000 tuples it

increasesZ and thus penalizes worlds with less than 1000 tuples.
This illustrates that multiple soft keys may interact and further com-
plicate the probability space: with this new soft key it seems even
more difficult to compute the marginal probability of a tuple.

We explain the definition through three examples. First, we ex-
amine a probabilistic instandewithout any soft keys: in this case
the probability defined b (@, I) is precisely a tuple-independent
probabilistic database [9].

Example 2.6 Let I be an instance of the probabilistic relational
schemakR(A, B,W): I = {t1,...,t,}. Denotew; = t;.W the
weight of tuplet; in I, and letp; = ¢®¢/(1 + e*¢). Consider the

PROPOSITION 2.9. The size oM (T, I) is bounded by a poly-
nomial in the size of and I.

SCMN M(0, T); then the probabilityP(1) of a possible world PROOF. (Sketch) Letn = |I| andm = |I'|. Consider a soft
W C I'is (see Def 2.1): key~ € I': the cliques it generates, s, are disjoint sets, hence

N generates at most cliques. Thus there are at mast cliques in

1 1 ; M, n. O
Pw) = exp | > wi| =5[] 7> @
tew tiew = P 2.4 Problem Definition
FromY,,, P(W) = 1, through direct calculation we obtaifi = We fix the probabilistic relational schenfaand a Boolean con-
Tl 1W(1 ~ i) Th;JS POV) =TI, e pi < I1 gw(l —pi) junctive queryg, and study the following problem: given a set of
i=1,n ) ’ - t; € v 123 i

This is precisely a tuple-independent probabilistic database: everySOft keysl“' and an instancé for R, compute the marginal proba-
tuplet; appears iV independently, and its marginal probability bility P(q):

is P(t7) = Pi. P(q) = Z P(W) (2)
Now we examine how soft keys affect the probability distribu- WCI:Wi=q
tion, by introducing correlations between tuples. whereP is the probability distribution defined By((T", T). We call

P(q) thevalue ofg on I given the soft keyE.

Notice that the soft keyF are part of the input; this is because
we insist on evaluating using an algorithm that is generic in the
o = (z,R(z,y)) sizes and weights if.

Example 2.7 Continuing the previous example, consider one soft
key with schema:



In this paper we restrict our discussion to conjunctive queries

DEFINITION 3.2. Let~;,~2 be two soft keys on a relatioR.

without self-joins, i.e. where every relation name occurs at most We say that they afgierarchicalf either (1) Key.,, (R) C Key,,(R)

once in the query. For example the two quer&s:, v), S(y, a, z)
andR(a,z,z),S(z,y,y,b), T(x, z) are without self-joins, while
the queryR(z,y), R(y, z) has a self-join. This restriction is sim-
ilar to other complexity results for the query evaluation on proba-

or (2) Key, (R) 2 Key.,(R) or (3) the subgoalg, g2 of v1
and~- are incompatible (i.e. non-unifiable): we wrige N g = 0
to indicate thaty, g> are incompatible.

LetI be a set of soft keys dR. We say that’ is hierarchical if

bilistic databases [10, 20, 9, 21]. Queries that have self-joins are Vv1,v2 € T, the pairyi, 2 is hierarchical.

significantly harder to analyze: the only case that has been stud-

ied is that of queries over tuple-independent databases [8], and that For example, consider the following soft keys on R(A,B,C,W)

turned out to be significantly harder.

3. SINGLE SUBGOAL QUERIES

We start our investigation by studying the complexity of queries
consisting of a single subgoal. Examples inclyde—R(z, a,y),
orq : —R(z,x,z) orq : —R(x,y,z). These are select-project
queries, and we call them in this sectidisjunctivequeries. In the
presence of soft keys, even such queries can be hard:

PrRoPOSITION 3.1. Consider a relationR(A, B, W) and the
queryq : —R(z,y) (which simply checks if R is non-empty). Con-
sider two key schemass = (z, R(z,y)) andoz = (y, R(z,y)).
Then the problem: for inputs, w1, w2, compute the value gfon
I given the soft key&r1, 2, w1) and (o2, 2, w2) is # P-hard.

PrRoOOFR We will first prove hardness fow, = wo —00,
then show how to extend the proofdq, w2 € R. We use a reduc-
tion from the IMPERFECT MATCHING (IPM) problem, which is:
given a bipartite grapty = (U, V, E), with E C U x V, compute
the number of matches (full or partial). A match is\a C FE s.t.
everyu € U occurs at most once, and everye V occurs at most
once inM. IPM is #P-hard as shown in [28]. Given a graph=
(U, V, E) for the IPM problem, we reduce it to an instantever
the schema?(A, B, W) as follows: I = {(u,v,0)|(u,v) € E}.
Thus, each tuple has weight 0. A wodll € W corresponds to
a subset of edged! C E. DenoteW; the set of worlds that are
matches, anthVo = W —Wi. If W € W; then® (W) = 1, and if
W € Wy then® (W) = 0 (because eithey, or~, are violated and
their weights are-oc). Denotem = |W;| the number of partial
matches irG. We have:

Z = > oW)=m
wew
P(q) = >, W) =2-1
WeW,Wi=q

because the only world iV that does not satisfy is @, which is
also a partial match. Itfollows th@(q) = ®(q)/Z = (m—1)/m,
hencem = 1/(1 — P(q)). This completes the reduction, and
shows that computing®(q) is #P-hard whenv; = we = —o0.
Now we prove hardness assuming that w, are inRR, and part
of the input. Definav; = w2 = w; we chooseaw later. Denoting
€= 2 wew, 2(W) we haveZ = m + e and®(q) = Z — 1,
hencem = 1/(1 — P(q)) — . We choosew small enough to
ensures < 1/2: this allows us to computer as|1/(1 — P(q))].
Namely, choosev s.t.e” < 1/2/F1+1 thusVYW € Wy, ®(W) <
1/2/E1+1 which impliess < 1/2 because there are orty”’! pos-
sible worlds. [

Thus, the interaction between soft keys on the same relation can

make even a disjunctive query hard. We show, however, that if
the soft keys are “hierarchical”, then any disjunctive query can be
computed in polynomial time.

(we show only the key schemas: the sizes and weights are not used
in the definition):

T (y1, R(1, a1,91))
Y2 = (y27 R(y27 az, .’L‘Q))
V3= ((y37y4)»R($37y37y4))

e 1,2 are hierarchical (assuming # a2). This is because
R(z1,a1,y1) andR(y2, a2, x2) are incompatible: in our no-
tation, R(x1, a1,y1) N R(y2, a2, x2) = 0.

e 72,73 are non-hierarchical ey, (R) = {A, B}, Key,,(R) =
{B, C}, and their subgoals are compatible.

e 71,73 are hierarchical becaud€ey.,(R) = {B,C} and
Key,, (R) = {B,C}.

We prove two results in this section:

THEOREM 3.3. If I' is hierarchical, then any disjunctive query
on R can be evaluated in tim@ (n!+e7itv(%)),

THEOREM 3.4. If T is non-hierarchical and contains no con-
stants, then every disjunctive query Bris #P-hard.

3.1 APTIME Algorithm for Hierarchical SCMN

We prove here Theorem 3.3. In fact, we will prove a more gen-
eral result. Fix any SCMM = (X, K, (w;)i=1,n, (fc)eex ), @and
assume w.l.o.g. thafc € K, |c| > 2.

DEFINITION 3.5. M is hierarchicalif Vc1, co € K eithercy N
co =fPorec; Ccyore D ca. Theheightof the hierarchy is the
largest number: s.t. there existé cliques inK s.t. ¢1 D ¢2 D

D # 0.

THEOREM 3.6. Let M be hierarchical SCMN of heigtit and
Q C X aset of tuples. Then the probabili(Q) defined as:

P(Q) >

WCW:QNW #£0

PW)

can be computed in tim@(n" ), wheren = | X|.

Theorem 3.6 proves Theorem 3.3: this is becauskeisf hierar-
chical then for every the SCMNM(T', I) is hierarchical and its
height is< arity(R). Moreover, on the probabilistic instanée
the queryg is equivalent to a fixed set of tuplés More precisely,
defining@ C I (note that hereX = I) to be the set of tuples that
match the subgoal, then we have for everyworld” C I: W = g
iff WnaQ #D0.

In the remainder of this section we prove Theorem 3.6.

The proof of the theorem is given by the Algorithm 3.1, which
computesP(Q) using dynamic programming. We first describe
the notations used by the algorithm and explain it, then prove its
correctness and running time.



Algorithm 3.1 ComputingP(Q) on a hierarchical SCMN

1: Inputs: SCMN (X, K, (w;)i=1,n, (f-)eek ), query@ C X. wo = {0}
2: QOutputs: P(Q).
3 Letz0=189=0 wo= [Jwe
4: for k =1,ndo §
5. forsi,...,sn, €{0,...,k}"* do The algorithm computes iterative((n + 1)" ') quantities:
6 Lets = (s1,...,5n,)
7 Leter D ... D cr the common ancestors bf— 1, k
8 it A", (s = 0) then Zi= Y @W) Si= > W)
9 LetU =3 00 —5, zZE ' andR = Dt =5, Skt wewk wegk
10: else ThenZ = 3. 72, and®(Q) = >_. SZ, which allows us to com-
11 U=R=0 pute P(Q) = ®(Q)/Z. We still need to introduce a few notation
12: end if used by the algorithm. Given= (s, s, . . ., s4) denote:
13: if Aixpyq(si =1)then
14: LetF" = exp (wi + 32,y ; (fe;(si) — fe; (s = 1))) 5—1 = (s1—Ls2—1,...,84—1)
15: V=FYg 1 2u " 5. = (s1,82,...,s0)for L <d
16: if £ € Q then Given two consecutive leaves_1, t;, in the forestT’, we denote
17: T=V with 1 D 2 O ... D ¢z, all their common ancestors.
18: else o1 We now prove the correctness of the algorithm.
19 T=F3 a5, 15 Consider a worldV € W¥. There are two cases. The first case
20: end if is whent,, ¢ W; thenW contains at most the tuples, ..., tx_1.
21: else Recall thatc; D ... D ¢y are the common ancestors#f_; and
22 LetT =V =0 te, thusW € WE™" for somes’ s.t. s = s1,...,s,, = sr. Let
23: end if cr+1 D ... D cn, bethe restof the path tq: in all these cliques,
24: LetZ¥ =U +VandS¥ =R+ T t is the smallest element, henldé cannot contain any tuples from
25:  end for these cliques. We therefor must havg,, = ... = sp, = 0.
26: end for This completes the analysis of the first case. The second case is
27: Letd(Q) =Y. SrandZ = . 77 whent, € W: then we must havél” — {t,} € W5 ', where
28: ReturnP(Q) = ®(Q)/Z. s = s1—1,...,87, = s — 1 (since we removed,), we can
argue similarly thats, 1 = ... = sp, = 1. This allows us to
derive a recursive formula fanX. We can derive a similar one for
We start by defining the following fore§t: QF: the only e>_<tra wrinI_<Ie here is that, when € W th_en we also
need to check if,, € Q: if not then we recur withQ”% ; if yes, then
Nodes(T) = KU{{t} |t X} we recur withZ% . We state the resulting recurrence formally. In
Edges(T) = {(c.¢)|edc A=3"(cD " D)} the lemma below we denoté U {t} the se{ W U {t} | W € A}

for a set of worlds4 C W and a tuple:
The leaves of this forest correspond precisely to the tuples. , ¢,,.
Fix any order on the forest: this defines both an order on the leaf LEMMA 3.8. W¥ = u¥ U V¥, where

nodes, ta, ..., t,, and of the internal nodes. The order ensures kel e x B
that all tuples belonging to a clique form a subsequence of the leaf ut = Ug':;/fgL Wa if /\i:L.Jrl si=0
nodes:t;, tit+1,...,t;. This was possible because the cliques are ] otherwise
hierarchical. o1 o
We now defined((n+1)"*!) subsets oW. Fork = {0, ..., n}, Ve = Ug/:g’ngL—1 Wom U{te} AL s =1
denote: 0 otherwise
o X; = {t1,...,tx} (the firstk tuples). If t, € QthenQf = REUVE andift, ¢ Q thenQf =

REUTF, where:
e hj = the number of cliques containirg (for £ = 0, we set

o . h
hi = 0). Note thathy, < h. rE = Usispos, Q070 AL si=0
° ) otherwise
® c1 De2 D... D e, D {tk} the longest path iff" to ¢y. ]
* TR _ Ug’:g’L:§L—1 Ql;'_l U {ty} if /\?ELJA si=1
DEFINITION 3.7. Letk € {0,...,n} ands = (s1,...,sn, ), ) 0 otherwise
wheresy, ..., sn, € {0,...,n}. Define:
~ We can now prove:
WE = (W |W CXpAVi€ ] |WnNeal=s}
Eo_ k PrRoPOSITION 3.9. Algorithm 3.1 correctly computes the prob-
%G = {WIWenwsAwnaQ#0} ability P(Q) of a disjunctive query) over a hierarchical SCMN.
In other words W% consists of all worlds that (a) use only the PROOF. We need to show that the quantiti€ and S% are
first k tuples, and (b) their intersection with the cliques. . ., cx,, computed correctly. This follows immediately from the previous
on the path from a root t¢y. have cardinalities, . .., sy, . Note lemma, observing that the values denotédV, R, T in the al-

that we have the following: gorithm are preciselyd(U4¥), ®(VE), ®(RE), ®(TF) The crux



of the correctness proof relies in examining the cgses W:
then® (W) = ®(W — {tx})F, where the factof’ is exp (wi +
> ic1.r fei(si) — fe,(si — 1)): this is becausél contributes in
addition toWW — {¢, } with the weightw;, for the tuplet,, and with
the weightf., (s;) for the cliquec;: on the other handV” — {¢x}
contributes with a weighf., (s; — 1) for that clique, which justifies
the formula forF’. [

3.2 Hardness of Non-hierarchical Keys

In this section we prove Theorem 3.4. For that we first extend
Proposition 3.1:

ProPOSITION 3.10. Consider the relatiorkR( A, B, W) and the
key schemas; = (z, R(z,y) ando2 = (y, R(z,y)) as in Propo-
sition 3.1. Consider the following four queries:

q1 - R(z,y)
@ - R(z,)
g3 :— R(a,y)
q4 — R(a,b)

wherea, b are constants. Then, for each of the querigs: =
1,2, 3,4, the problem: for inputd, w1, w2, compute the value of
g; onI given the soft key&1, 2, w1) and (o2, 2, ws) is # P-hard.

Note that this extends Proposition 3.1 frgmto g2, g3, andqa.

We refer the reader to the full version of this paper for the proof.

Now we can prove Theorem 3.4 by reduction from one of the
three queries in Proposition 3.10. Lletbe a set of soft keys with-
out constants. Since it is non-hierarchical there exists two soft
keys~i, 2 s.t. Key,, (R) and Key., (R) are incomparable sets.

y = (z, R(a, z,)). Then

Key(R(a,y,2)) = {y}
Key(R(b,y,2)) = {y,z}
Key(R(z,b,2)) = 0

Let ¢ be a conjunctive query. For a variahlec Vars(q) we
denoteSg(z) = {g | = € Key(g)}. Thus, Sg(z) contains all
subgoals in which: occurs in a key position.

DEFINITION 4.2 (SAFE QUERIES. Letq be a boolean con-
junctive query without self-joing; is safefor soft keyd" if one of
the following holds:

1. Base casey := g, where g is a single subgoal.

2. Disconnected componentsy = ¢1g2 WhereVars(qi) N
Vars(q2) = @, andg; andg. are both safe.

3. Projectable Variable: 3z € Vars(q), such that (a)vg €
Sg(q),z € Vars(g) (i.e. = appears in all subgoals), (b)
Yy € Vars(q), Sg(y) C Sg(x) and (c) for every constant
a, gla/x] is safe.

Thus, a variable: is aprojectable variablehena must occur in
all subgoals. It does not have to occur everywhere in key positions,
but the set of subgoals where it does not occur in a key position
should not have any other key variable either. Note that the safety
for gla/x] is independent of the choice of the constant

Example 4.3 We illustrate with two queries, and underline in each
subgoalg the variables inKey(g): thus,R(z,y) means that there
exists a soft key with schenta, R(z, y)), while S(y) means there

(Note that case (3) of Definition 3.2 cannot happen because thereexiSts a soft keyd, S(y)):

are no constants). Thus, there exists two attributeB s.t. A €
Key,, (R) — Keyy, (R) andB € Key,,(R) — Keyy, (R). We
examine now the query on these two attributes (recall thats a
single subgoal): it can have two distinct variables, the same vari-

(z,y
z,y

(77

)’
)’

)
v)

q1
q2

R S(
= R S(

able, a variable and a constant, or two constants. We then do aq; is safe:z occurs everywhere, arffyy(z) = { R} while Sg(y) =

reduction from the corresponding quepyin Proposition 3.10, by
setting the weights of all soft keys other than ~- to 0.

4. CONJUNCTIVE QUERIES

Consider a relational scherfawith probabilistic relations?;,
ooy R Letl’ = {y1U.. .Uy} be the set of soft keys s.t. the soft
key ~; applies toR;. Thus, each relatiofk; has exactly one soft
key: this includes the case when there is no soft keyifgibecause
in that case we can define the soft key ®rto be the no-op key,
whose schema i€z, R;(Z)), whereR;(Z) has a distinct variable
for each attribute:R;(z) = R;(x1,2,...) . In this section we

(. On the other hand. is unsafe:z does not occur everywhere.
While y does occur everywher€g(y) = 0, while Sg(z) = {R}.

Intuitively, projectable variablecondition states that there is a
variablez in all the sub-goals of and all other variableg in each
subgoalg are such thay <, . We callz the projectable variable.

THEOREM 4.4. LetT" be a set of soft keys, with one key per
relation. Letqg be a conjunctive query without self-joins. Ifg is
safe forT" then it can be evaluated in PTIME. If the query is unsafe
for T, then it is #P-hard.

impose a restriction on the soft keys. Their subgoals may have |n the remainder of this section we prove the theorem.

no repeated variables: e.g. we alléi, y), R(y, a, z, b, z)) but
not (z, R(x,z,y,y)). Also assume there are no trivial soft keys

4.1 Hardness of unsafe queries

i.e. they have non-zero weight otherwise it doesn't make sense t0  \we start by proving that every unsafe query is #P-hard. We use

consider them.

DEFINITION 4.1. Letg be a subgoal oveR whose soft key has
schemay = (7,g’). We define the sékey(g) C Vars(g), as
follows. First, ifgng’ = () (see Def. 3.2) theK ey(g) = Vars(g);
otherwise Key(g) consists of all variables iy that occur on a
position wherg;’ has a key variable.

For example, consider the relatidi{ A, B, C, W) with soft key

a result in [9] that establishes a dichotomy of conjunctive queries
without self-joins on disjoint-independent probabilistic databases.
We briefly review that result, using the terminology in our paper.

DEFINITION 4.5. A soft keyy = (o, s, w) on a relationR is
called ahard keyif s = 2 andw = —oo.

A hard key is called atandard keyf its subgoalg has no con-
stants.

A standard key is called @ivial key if z = Vars(g).



We illustrate with the three keys dR(A, B, C, W):

"= ((m,R(az,a,y))ﬂ,—oo)
2 = (= R(=,y,2)),2,—00)
Y3 = (((x,y,z%R(x,y,z)),?,—oo)

~1 is hard,v2 is standard (it says that is a key), andys is trivial
(it says thatd, B, C are a key, which is the same as not giving any
key for R).

DEFINITION 4.6. Adisjoint-independent probabilistic database
instance is an instanceétogether with a set of standard kelys

We now review the definition of safe queries over disjoint-indepen

probabilistic databases, which we call hireafegueries to distin-
guish them from ours, and review the dichotomy result on disjoint-
independent probabilistic databases. Recall fiaf/(g) denotes
the set of variables that appear in a key position; denbkey(g)

the set of variables that appear in a non-key position. iThese

DEFINITION 4.7. [9] A Boolean conjunctive query is-safefor
a set of key§' if:

1. Base caseg := g whereg is a single subgoal.

2. Disconnected componentg = gig2 WhereVars(q1) N
Vars(g2) = 0 andg, g» are both safe.

3. Independent project 3z € Vars(q) s.t. Vg € Sg(q), z €
Key(g), and for any constant, g[a/x] is safe. Thusy must
occur in a key position in every subgoal.

4. Disjoint project 3g € Sg(q) s.t. Key(g) = 0 and3Jy €
NKey(g) s.t. gqla/y] is safe. Thusy must occur in a non-
key position iry and g has no key variables.

The dichotomy for disjoint-independent databases is:

THEOREM 4.8. [9] Let T" be a set of hard keys. If a quegyis
h-safe forT", then it can be computed in PTIME. If it is not h-safe,
then it is #P-hard.

Now consider a set of soft keyswithout variables for the rela-
tions R. A hardeningof I is a set of keyd™" obtained by either
hardening or trivializing every soft key ifi: that is, for every key
(o,s,w) in T there is a key(, 2, w) in T wherew = —oo or
w = 0. We prove the following:

PROPOSITION 4.9. LetT" be a set of soft keys without variables
andq be a query. Thep is safe w.r.t.T" iff for every hardening™
of I ¢ is h-safe w.r.tI'.

PROOF We prove “only if” by induction on the structure of the

henceKey"(g) = Key(g). We prove that the resulting query is
h-unsafe. Indeed, a disjoint project is not possible, since we trivial-
ized all keys inG’; where such a project would have been possible.
Suppose an independent project is possible on some vatiable
We show thatc is a projectable variable by checking condition 3.
Clearly it occurs in all subgoals. In additiag(x) = G2. More-
over, for any variabley, sg(y) C G2, since no variables occur in
key positions inG;. Contradiction. ]

Recall the query; = R(z,y), S(x) in Example 4.3. There are
four ways to harden it: in each subgagéither keepKey(g) un-
changed, orinclude all variables. Each of these is h-safe. For exam-

cPé%?l is h-safe because we do a disjoint projecyo(z, v), S(z)

IS h-safe because we do an independent projeat dbn the other
handg: is not safe, because the hardenR®(, y), S(y) is h-unsafe.
We use this to prove:

COROLLARY 4.10. If a queryq is unsafe for a set of soft keys

NS 4 A“ thengq is #P-hard.
sets are not necessarily disjoint, because variables may be repeated.

For the proof, we first use Prop.4.9 to harden the keysgsis.
h-unsafe w.r.t.T". Next, we observe that we can remove the con-
stants in these hard keys by eliminating the corresponding attribute
in the relation: the new query (over a new schema) is still h-unsafe,
but now all keys are standard: thus the new query is #P-hard by
Theorem 4.8. Finally, use the same technique as in Proposition 3.1
to replace weights-oco with weightsw € R.

4.2 Algorithm for safe queries

We explain and prove the algorithm with the following sequence
of definitions and proofs.
Given a soft keyy = (_, g) we denotey by g.,.

DEFINITION 4.11. Homogenization : Consider a relationR
which has a soft key. Given a subgogj over R, the homogenized
instancenom(R, g, ) is defined ak’ = o 5_, R, whereA are the
attribute positions where,, has key attributes angl has constants
a.

Example 4.12hom(R(A, B, C), R(a,y, ), (z,y, R(z,y, 2)))
ca—a R

hom(R(A, B,C), R(z,y,a), (z,y, R(z,y,2))) = R
hom(R(A, B, C), R(a, b, a), (y, R(a,y,2))) = 0a=a,5=R

ConsideraCQ = g1 . . . g OVerR. Since the query has no self
join we can assume; is over R; with soft keyl'; = (_, G;). We
assume that the subgoals of the query have no repeated variables.
For e.g. R(x,z,y) is not allowed. This is just for the ease of
presentation; the algorithm can be made to work for that case as
well.

DEFINITION 4.13. Lets = (s1,...,5m) Withs;, € {NU{0}}.

query. The interesting case is given by condition 3: the others are Define:

straightforward. Letc occur in all subgoals. I occurs in each
subgoal in a key position, then tirelependent projectase applies
and we conclude thaf is h-safe. So suppose occurs in some
subgoalg only on non-key positions. Then no variable€an occur

in g on a key position, otherwisgy(y) Z sg(z). SoKey(g) =

@, hencer appears in a non-key position and we apply a disjoint
project onz, hencey is h-safe.

We now prove the “if” direction. Here also we consider con-
dition 3 of the safety definition, and assume that it fails. Then we
“harden” the key constraints as follows. @&t = {g | Key(g) = 0}
andG»2 = {g | Key(g) # 0}. For allg € G; we trivialize its key,
henceKey"(g) = Vars(g). For allg € G> we harden the key,

{W|W§R/\VZ|WQRZHG1|:51}
(W W € Wa AW = g}
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So Wp s is the set of all worlds of? s.t. V1 < i < mythe
number of tuples fromR; that are influenced by the soft key are
exactlys;. Qg s is the subset oWVy, ;, where query is trueZy ;



Algorithm 4.1 To computed :(q), Z7 5 PROOF (Sketch) Consider the SCMN corresponding/®, I';).
1: Inputs: CQgq, overR. s € {NU0}"™. It_is compqsed of in_dependent cliques aRH contains all those
2: Ooutputs: @5 <(q), Zn <(q) cliques Whlch contain tuple that. can magetrue, i.e. they can
3 ifqg=qige aﬁdVars(}}l) A Vars(gs) = 0 then have an influence on the ciuequmce these set of cliques |s_|tnde-
4: Calculate the components corresponding;tandg. sepa- pendent of those if; — R, Pt(Q) can be computed just ovét .
rately and then multiply them Now _c_onspleﬂv[ = SCM]_V(R,L-_, TI';) ; By our projectable varlable
condition either is a key in which case we sgy = 1. Otherwise

2 ﬁnqdiga single subgoal quetiien no other variab_le iny; is a key, which means our homogenization
7: Use Algorithm 3.1 ensures thaM is composed of at most one cliguewith feature

8: end if function sayf;. So to compute the probability of any world, we just
9: if 3 Projectable Variable then need_ to keep track of the number of tuples frenThe reader can
10:  if Jis.t.s; > |Ri| then convince themselves that(z, y) = fi(z+y)— fi(z)—fi(y). O
E en(?ﬁtum 0.0 Algorithm 4.1 first checks for Join or projectable variable con-

dition. The former is trivial. In the latter case, it proceeds by di-
viding possible worlds of?! into o 5_, R, whereA = | J A, and

a € Jdom(Ai;). After that the algorithm is similar in spirit to
Algorithm 3.1 and due to lack of space we refer the reader to the
full version of this paper which mentions the algorithm in detail
even for hierarchical constraints.

13: Letz?=1if5=0else0

14: LetS?=0Vs

15:  Letdom(|J Aiz) ={a1...an}
16: Letg=g1...9m

17: fork=1,ndo

18: Letq' = gax/z]
%g ‘;;_:% .We shou.ld mention that the algorithm can be made more effi-
21 LetR, = {t € Ri|t.Aw = ax} cient by using some |_ndependence properties. For example when
59 for j i 0™ 5 do gla/z] andg[b/x] are independen®r (gla/x]) Vv ¢b/z]) = (1 —
23: Letd — (7min(\R/ NG, 1) min (Rl O Goml, j ))Pr (q[a/a_:}))(l — Pr(g[b/z])). Butit doesn't affect the worst-case
oa- for i 0™ d A m L Sml Im)) complexity and so for the sake of brevity, we haven't written it here.
: ori=0",ddo
25: LetF' = exp (Zp:l,m (foUp) = fo(ip — ip))) 5. RELATED WORK
. /
g?: t::;llz ; glf’:f (¢) Query evaluation over probabilistic databases is a well studied
: kfl’l problem. Methods for query evaluation can broadly be classified
28: Letl/ = ZEJ Pk into two categories: Intensional ([4, 2, 13, 23]) and Extensional ([6,
29: LetV = Sjl“_‘;(Zk — Pk) 10, 20, 11]). Our approach belongs to the extensional category.
30: LetR = Zl_c_—gl 7k Intensional methods work by associating with each boolean query
31: 55 =SS j_ FU+V) a symbolic eventQuery evaluation is then performed by manipu-
32: 77 — 77+ FR lating expressions over these symbolic events. For example, in [4],
33: end for lineage is used for defining the symbolic events. In principle, in-
34 sk — g9 tensional methods can evaluate any given query over a probabilistic
35 ZJE _ 77 database with arbitrary correlations among tuples. However, as the
: i correlations and/or queries become complicated, the symbolic ex-
36: end for pressions become very large making query evaluation intractable.
g;j en((ejni? for On the other hand, extensional methods use efficient operators

over real numbers for query evaluation. They work for a restricted
set of correlations and queries. Prior work for extensional methods
assume very simple correlations like independence ([6, 10]) or ex-
. . clusions ([3, 20, 11]). As per our knowledge, this is the first paper
and®  ; are respectively the sum of potentials of all these worlds. 5+ ses extensional approach to handle more complicated corre-
Hence we have lations involving soft constraints.

_ 2s%as Query evaluation is closely connected to the inference problem
B > :Zns in Al. Many methods proposed in Al literature have been adapted
for query evaluation. Deshpande et. al. [24] proposed the use of
Markov Networks to represent tuple correlations. In particular,
Size-Constrained Markov Networks used in this paper are a sub-

39: ReturnS%, 27

Pr(q)

Let z be a projectable variable. Then the following proposition
establishes the intuition behind projectable variable and homoge-

nization. . . -
set of correlations they consider. However, they propose an in-
PROPOSITION 4.14. Let A,,, be the attribute oR?; wherex oc- tensional method of query evaluation that makes query evaluation
cursing;. If R = hom(R;, g;,T';), then intractable even for safe queries on Size-Constrained Markov Net-

_ ’ ’s Bt works. In[15], Gupta et. al. solve an inference problem for Markov
1. Pr(g) = Pr(q’) whereq' is same ag but over/” instead Networks that use cardinality based potential functions similar to

of R. Size-Constrained Markov Networks. However, they solve the sim-
2. For any two worldsV; € oa,,—oR: andWs € o4, RY, pler MAP problem that amounts to finding the most likely world
a # b € dom(z) among the set of all possible worlds. Query evaluation requires

finding the sum of the probabilities of all worlds for a given set of
C(Wr1AW2) = &(W1)@(W2)exp (hi([Wingr.[,IW2Ngr.l) \yords that satisfy a query. Intuitively, the latter is harder because
whereh; is a real-valued function that depends onlylon it has to deal with all possible worlds, while the former can make a



greedy choice in the selection of its worlds.
For a look at some more recent work on modeling probabilistic
databases with graphical models, we refer the reader to [14]. They

the twenty-sixth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systgrages 1-12,
New York, NY, USA, 2007. ACM Press.

describe how to represent relational data with Bayesian Networks [10] N. N. Dalvi and D. Suciu. Efficient query evaluation on

according to bottpossible-worldsand domain-frequencygeman-

probabilistic database¥LDB, 2004.

tics. Our way of representation is different though, as we do not [11] N. N. Dalvi and D. Suciu. Management of probabilistic data:

keep arandom variable for every attribute of every tuple. Our repre-

foundations and challenges. RODS 2007.

sentation closely resembles that of Markov Logic Networks(MLNS)[23] N. Fuhr and T. Roelleke. A probabilistic relational algebra

An MLN is just a collection of relations and a set of first-order for-

mulas over them with real weights. It gives semantics to these for-

for the integration of information retrieval and database
systemsACM Trans. Inf. Syst15(1):32—-66, 1997.

mulas by representing them as features in a markov network over[13] Fuhr, Norbert. A probabilistic relational model for the

the relations. Our model corresponds to MLNs with formulas like
key constraint. But MLNs are a very general model where infer-
ence can be very expensive, hence our work also helps to identify

some subsets where inference is tractable.

Finally [1] and [27] are some other works which propose han-
dling of constraints during query answering instead of cleaning data

apriori. While the former works in a probabilistic setting like us, it

enforceshardkeys. The latter offers a deterministic way of conflict

resolution using some form of user specification.
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