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ABSTRACT
Key Violations often occur in real-life datasets, especially in those
integrated from different sources. Enforcing constraints strictly on
these datasets is not feasible. In this paper we formalize the notion
of soft-key constraints on probabilistic databases, which allow for
violation of key constraint by penalizing every violating world by a
quantity proportional to the violation. To represent our probabilis-
tic database with constraints, we define a class of markov networks,
where we can do query evaluation in PTIME. We also study the
evaluation of conjunctive queries on relations with soft keys and
present a dichotomy that separates this set into those in PTIME and
the rest which are #P-Hard.

1. INTRODUCTION
Soft constraints are emerging as a promising approach to cope

with various kinds of uncertainty in data, as found in many modern
applications. Soft constraints have been used to enhance the quality
of information extraction [25], of object reconciliation [26, 18], in
query optimization [16], and in data cleaning [1].

While discovering soft constraints is possible today given ad-
vances in machine learning, using the soft constraints during query
processing over large volumes of data is much harder. Current ap-
proaches to probabilistic inference are based either on Monte Carlo
Markov Chain [22] or on message passing [7], and these do not
scale to large volumes of data. The main problem that prevents us
from adopting soft constraints is the lack of scalable query process-
ing techniques in the presence of soft constraints.

In this paper we studysoft key constraints, or soft keysin short,
and examine the query evaluation problem: evaluate a Boolean
conjunctive query on a database given a set of soft keys. We in-
terpret soft keys using Markov Networks whose potential consists
of two parts, one that depends on individual tuples, and the other
that depends only on the number of tuples that have the same key;
such potentials have been recently studied in [15]. Our soft keys are
in fact general cardinality constraints. We define query evaluation
as computing the marginal probability of the query, which is the
common semantics in probabilistic databases [3, 12, 5, 9]: this is
different from computing the most likely world, a problem studied
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in [15].
While general query evaluation on probabilistic database is known

to be #P-hard, even without soft keys [9], we identify two cases that
are tractable and describe two polynomial time algorithms for eval-
uating conjunctive queries in the presence of soft key constraints:
to our knowledge these are the first provably tractable algorithms in
the presence of any soft constraints. Our first algorithm applies to
queries over a single relation, in the presence of multiple soft keys.
Our second algorithm applies to conjunctive queries over multiple
relations, with multiple soft keys. In both cases we also establish a
dichotomy: if our algorithms do not apply then we can show, under
certain assumptions, that the query is #P-hard.

Our analysis is similar in spirit to a previously known dichotomy
result for query evaluation on disjoint/independent probabilistic databases [9],
which can be thought of as probabilistic databases with hard key
constraints. That result defines a syntactic condition on the query,
calledsafety, then proves that every safe query can be evaluated in
PTIME and that every unsafe query is #P-hard. In our work we also
define a syntacticsafetycondition for queries in the presence of soft
keys. Then we show that a query is safe in the presence of soft keys
iff it remains safe after making every key either hard, or removing
it altogether, in all possible ways. The intuitive significance of this
connection is the following: by varying the weight attached to a
soft key one can either make it hard or remove it completely, and
therefore any PTIME algorithm that can handle soft keys needs to
be able to handle these extremes. However, the PTIME algorithm
that we describe in this paper in the presence of soft keys is signif-
icantly more difficult than the previous algorithm for safe queries.
This is by necessity: even one soft key makes query evaluation
much more difficult, and the interaction between multiple soft keys
on the same table adds even more complexity.

1.1 Motivating Example
To motivate our work, we illustrate with a concrete problem: du-

plicate elimination in dirty data. This occurs frequently in data in-
tegration because of different representation conventions, or simply
because of typos, and results in key violations: a person has mul-
tiple addresses, a company has multiple CEO’s, a scientific paper
has multiple years of publication. Andritsos et al. [1] have pro-
posed a probabilistic approach to answer queries directly on the
dirty data. They assign to each duplicate tuple a probability, such
that the probabilities for the same key sum up to 1. For exam-
ple, consider a relationPerson(name, city) , where we de-
fine name to be a key. If we find two tuples with the samename,
say(Joe, Seattle) and(Joe, Whistler) then we have
a key violation: the approach in [1] is to assign to each tuple a prob-
ability, say 0.5, indicating that only one tuple may be present in a
clean instance. While this approach uses probabilities, the key con-
straint ishard: in each possible world only one of the two tuples



Person:
Name City W

t1 Joe Seattle w1 = 4
t2 Joe Whistler w2 = 3
t3 Frank Seattle w3 = 0
t4 Frank Paris w4 = −2
t5 Frank Honolulu w5 = 1
t6 Sue Portland w6 = 0
t7 Sue Whistler w7 = −1
t8 Lisa Paris w8 = 3
t9 Lisa Milan w9 = −1
t10 Lisa Saint Malo w10 = −1

Figure 1: A probabilistic relation given by weights

SOFT KEY x ON Person(x,y)
SIZE 2 WEIGHT -4;

SOFT KEY ON Person(Frank,y)
SIZE 2 WEIGHT 4
SIZE 3 WEIGHT -3;

SOFT KEY x WHERE Income(x,z), z > 1M
ON Person(x,y)
SIZE 2 WEIGHT 3
SIZE s WHERE s > 2 WEIGHT -2*s

Figure 2: Soft key constraints forPerson

may be present.
With asoft key, we can relax the constraint, by allowing a possi-

ble world to contain multiple occurrences of the same key, but by
assigning a certain penalty for multiple occurrences. There are two
reasons why we need such a relaxation. First is that constraints are
learned from training data, rather than stated by an administrator,
and these are always “soft”. For example, in the case of historical
data, a person’s address is not unique at all ! A machine learning
tool may infer, for example, that people over 50 years old typically
have 6 addresses, because they moved in the past, while people
under 25 typically have 1 address. Such detailed statistical infor-
mation about the data can be represented using our notion of soft
keys.

Second, by ignoring the “softness” of a key, we get wrong query
answers. For example, assume that most people have a single res-
idence, but wealthy people may have a second vacation home, and
perhaps a third small apartment in a big city. Consider a user who
integratesPerson(name, city) with Hobby(name, hobby) ,
searching for cities likely to host skiers:

q(y) :- Person(x,y), Hobby(x, ’Ski’)

Whistler is a popular ski resort in Canada, but very few people
actually live there. However, many wealthy people have a condo
or a vacation home inWhistler . With a hard key constraint, all
these entries appear to the system to be wrong, and it will decrease
their probabilities: other cities will rank higher thanWhistler ,
only because the system found fewer key violations for those cities.
In fact, a probabilistic database system that returns only the top k
most likely answers [19] may not retrieveWhistler at all.

Our approach is to use soft keys instead of hard keys; we illus-
trate it in Figure 1.Person is a probabilistic database [9], where
instead of probabilities we indicate the weight of each tuple1. As

1The weightw and the probabilityp are generally related through
w = log p

1−p
, but see Examples 2.6 and 2.7.

in [1], we can assign different weights to different tuples to indi-
cate our belief in the quality of the data that produced each tuple.
However, unlike [1] tuples with the same key are not disjoint: keys
are “soft”. In our approach the soft keys are specified separately,
using a declarative language that is illustrated in Fig 2. The first
constraint says that two cities for the same person should be penal-
ized with a weightw = −4. The second constraint defines two soft
keys. One says thatFrank is allowed to have two cities: its weight
w = 4 cancels the weight of the first soft key. The second penal-
izes with a weight -3 if 3 tuples are found with the keyFrank .
The next soft key says that wealthy people are actually more likely
to have two homes, then gives a formula on how to decrease their
weight as function of the number of homes. Together, these soft
keys capture our statistical knowledge about the data, and need to
be used during query evaluation. For example, the queryq above
will return Whistler with a much higher probability, because the
wealthy people that have vacation homes are no longer considered
errors by the system.

Organization We give the basic definitions and the background
on Markov Networks in Sec. 2, then study the query evaluation
problem on a single relation in Sec. 3. We show how to extend
it to conjunctive queries over multiple relations and establish the
dichotomy in Sec. 4.

2. DEFINITIONS AND NOTATIONS
We begin with a brief review of Markov networks (for a detailed

description, we refer to [17, 7]). Then, we define a particular kind
of a Markov Network to interpret the soft keys.

2.1 Markov Networks
A Markov Network is a concise presentation of a probability dis-

tribution of a set of random variables̄X = {t1, t2, . . . , tn}. A state
is defined to be an assignment to the variables inX̄. In this paper
we restrict to Boolean variables, and therefore we will assimilate a
state with a subsetW ⊆ X̄, and call it aworld. The set of pos-
sible worlds isW = 2X̄ . Thus, a probability distribution on the
random variablesX̄ is a finite probability space(W, P ), where
W = 2X̄ andP : W → [0, 1] s.t.

P
W∈W P (W ) = 1; the

atomic, exclusive events of the probability space are thepossible
worldsW ∈ W.

Typically, n is very large: in a probabilistic database each tuple
corresponds to a Boolean variableti (hence we will refer toti as a
tuple) and a world corresponds to a subset of tuples. Thus,n is the
number of tuples in the probabilistic database. It is not possible to
enumerate all2n values ofP .

A Markov Network (MN) describes the functionP more con-
cisely. The MN is a triple(X̄, K, (Φc)c∈K), whereK is a set of
subsets ofX̄, calledcliques, and for eachc ∈ K, Φc : {0, 1}c →
R+ is called apotential function. The probability distributionP :
W → [0, 1] defined by the MN isP (W ) = 1

Z
Φ(W ), where

Φ(W ) is called the weight of the worldW andZ is a normalization
factor, and are given by:

Φ(W ) =
Y
c∈K

Φc(W ∩ c)

Z =
X

W∈W

Φ(W )

Thus, instead of having to enumerate2n values forP , we can just
enumerate2|c| values of each potentialΦc. The basic assumption
in Markov Networks is that each cliquec is small.

An MN defines an undirected graph with nodes̄X, and with
edges{(x, y) | ∃c ∈ K.x ∈ c, y ∈ c}. Then each setc ∈ K is



Figure 3: A Markov Network.

indeed a clique in the graph, justifying the terminology: in this pa-
per we allow the cliques inK to be non-maximal, which is a minor
departure from the standard definition. The importance of the graph
is that edges correspond to correlations: an edge(x, y) means that
the variablesx, y are correlated, while the lack of an edge means
that they are independent.

An MN is often represented as alog-linear model, as follows:
each potential function is given byΦc(Wc) = exp (wcfc(Wc)),
wherewc ∈ R is aweightandfc is a feature function. Thus, the
weight of a world is:

Φ(W ) = exp

 X
c∈K

wcfc(W ∩ c)

!

2.2 Size-Constrained Markov Networks (SCMN)
Our goal is to use a Markov Network to model soft keys. A

clique will correspond to a set of tuples violating the key constraint,
and therefore can be large: the basic assumption in Markov Net-
works that cliques are small no longer holds. On the other hand,
to model soft keys, the clique’s potential needs to be a function
only of the number of tuples violating the key constraint, and not
the actual set of tuples. For that purpose we introduce a restricted
form of Markov Networks, which we callSize ConstrainedMN,
and represent as a log-linear model:

DEFINITION 2.1. ASize-ConstrainedMarkov Network (SCMN)
is M = (X̄, K, (wi)i=1,n, (fc)c∈K), where:

• X̄ = {t1, . . . , tn} is a set of Boolean variables. We refer to
them astuples.

• K is a set of nonempty subsets ofX̄ calledcliques.

• wi ∈ R is called theweightof the tupleti.

• For all c ∈ K, fc : {0, . . . , |c|} → R, s.t.fc(0) = 0.

An SCMN defines the following probability space onW = 2X̄ :
P (W ) = 1

Z
Φ(W ), where

Φ(W ) = exp

0@X
ti∈W

wi +
X
c∈K

fc(|W ∩ c|)

1A
Z =

X
W∈W

Φ(W )

Thus, like in [15], the potential in an SCMN has two parts: one
that depends only on the individual tuples, and one that depends
only on the number of tuples in each cliques.

Example 2.2 We illustrate a Size-Constrained Markov Network
over five Boolean variables̄X = {t1, . . . , t5}. The graph of the
MN is in Fig. 3 and says that the variablest1 andt2 are correlated,
and so aret3, t4, t5, but thatt1, t2 are independent fromt3, t4, t5.
Define now the following SCMN:

M = (X̄, K, (wi)i=1,5, (fc)c∈K)

wherew1, . . . , w5 ∈ R are the weights,K = {c1, c2} and:

c1 = {t1, t2} fc1(1) = v1 fc1(2) = v2

c2 = {t3, t4, t5} fc2(1) = u1 fc2(2) = u2 fc2(3) = u3

Herev1, v2, u1, u2, u3 ∈ R. The probability functionP (W ) mul-
tiplies the potentialsewi for all ti ∈ W , then it examines the cardi-
nalities ofW∩c1 and ofW∩c2 and multiplies with the correspond-
ing potential. For example, for the two worldsW = {t2, t3, t4}
andW ′ = {t1, t3, t4, t5} we have:

P (W ) =
1

Z
exp (w2 + w3 + w4 + v1 + u2)

P (W ′) =
1

Z
exp (w1 + w3 + w4 + w5 + v1 + u3)

2.3 Soft Keys
We now formalize the notion of soft keys and describe their se-

mantics using an SCMN.
SyntaxWe start by defining a probabilistic relational schema:

DEFINITION 2.3. A probabilistic relation is a relation schema
R(A1, . . . , Ak, W ) with a distinguished attributeW , called the
weight.

A probabilistic database schema is̄R = (R1, . . . , Rm), and a
probabilistic instanceis simply an instanceI for R̄: the term “prob-
abilistic” refers to how we will interpret the weights, as we show
below. As usual, we denoteRI

i the relationRi of the instanceI.
Given a relation nameR we denoteAttr(R) the set of attributes

without the weight attribute. We consider in this paper conjunctive
queries that refer only to attributes inAttr(R); thus, asubgoal
g on R means a predicate (with variables and/or constants) over
Attr(R), without the weight attribute. We denotevars(g) the set
of variables ing. For example, give a relationR(A, B, C, D, W ),
a subgoal isg = R(x, a, y, x), wherevars(g) = {x, y}.

DEFINITION 2.4. LetR be a relation name.

• A soft key schemafor R is a pairσ = (x̄, g) wherex̄ is a set
of variables andg is a subgoal onR, s.t. x̄ ⊆ vars(g). We
denoteKeyσ(R) ⊆ Attr(R) the set of attributes inR that
have ing either a constant or āx-variable.

• A soft keyfor R is a triple γ = (σ, s, w), whereσ is a soft
key schema,s ∈ N+ is called thesizeandw ∈ R is called
theweight.

We write s = size (γ) andw = weight (γ) to indicate the
size and the weight of the soft key. We also use interchangeablyσ
andγ when clear from the context, e.g. writeKeyγ(R) instead of
Keyσ(R).

Informally, the soft key(σ, s, w) says this. If there existss tuples
in R with the same values̄x, then charge with a weightw. If w < 0
then that will penalizes occurrences ofx otherwise it will reward
them.

Example 2.5 The first, second, and last soft key in Figure 2 are
expressed as follows in our formalism:

((x, Person (x, y)), 2,−4)

((∅, Person (Frank , y)), 2, 4)

((∅, Person (a, y)), s,−2s)

The last line represents a set of soft keys: there is one for each
a that satisfiesIncome (a, z), z > 1M in the current database



instance, and for each numbers between 1 and the cardinality of
Person . We will assume in this paper that the system performs
automatically the conversion from a use-friendly syntax as in Fig. 2
to formal soft keys.

SemanticsGiven an instanceI and a set of soft keysΓ, its se-
mantics is given by the following SCMN:

M(Γ, I) = (X̄, K, (wi)i=1,n, (fc)c∈K)

• X̄ = {t1, . . . , tn} is the set of tuples in all probabilistic re-
lations inI. That is,X̄ =

S
j=1,m RI

j ; we assume the union
to be disjoint.

• wi = ti.W (the weight of the tupleti in I).

• Let γ ∈ Γ be a soft key for a relationRj , i.e. γ = (σ, s, w),
whereσ = (x̄, g), and denotēy = vars(g) − x̄. Let ā, b̄
be tuples of constants with the same arity asx̄ andȳ respec-
tively. Denoteg[ā/x̄, b̄/ȳ] the ground tuple obtained by sub-
stituting x̄ with ā and ȳ with b̄ in g. For anyγ and ā, we
define the following set:

cγ,ā = {ti | ∃b̄ : g[ā/x̄, b̄/ȳ] = ti}

A set of the formcγ,ā consists of a subsets of tuples inRI
j

that are affected by the soft keyγ. We define the set of
cliquesK to be all sets of this form, and the feature func-
tions fc to combine the weights of all soft keys that define
the same cliquec:

K = {cγ,ā | cγ,ā 6= ∅}

fc(s) = exp

0BBBBBBBBB@
X

γ ∈ Γ :
(∃ā.cγ,ā = c)
∧size (γ) = s

 
|c|
s

!
weight (γ)

1CCCCCCCCCA
We explain the definition through three examples. First, we ex-

amine a probabilistic instanceI without any soft keys: in this case
the probability defined byM(∅, I) is precisely a tuple-independent
probabilistic database [9].

Example 2.6 Let I be an instance of the probabilistic relational
schemaR(A, B, W ): I = {t1, . . . , tn}. Denotewi = ti.W the
weight of tupleti in I, and letpi = ewi/(1 + ewi). Consider the
SCMN M(∅, I); then the probabilityP (W ) of a possible world
W ⊆ I is (see Def 2.1):

P (W ) =
1

Z
exp

0@X
ti∈W

wi

1A =
1

Z

Y
ti∈W

pi

1− pi
(1)

From
P

W P (W ) = 1, through direct calculation we obtainZ =
1/
Q

i=1,n(1−pi). Thus,P (W ) =
Q

ti∈W pi×
Q

ti 6∈W (1−pi).
This is precisely a tuple-independent probabilistic database: every
tuple ti appears inW independently, and its marginal probability
is P (ti) = pi.

Now we examine how soft keys affect the probability distribu-
tion, by introducing correlations between tuples.

Example 2.7 Continuing the previous example, consider one soft
key with schema:

σ = (x, R(x, y))

For concreteness, suppose the soft key has size 3 and weight−5.0,
i.e. γ = (σ, 3,−5.0). This says that three or more occurrences
of the same value forA should be penalized by−5.0. Suppose
a world W contains three tuples(a, b1), (a, b2), (a, b3): then the
SCMN semantics penalizesP (W ) by multiplying Eq.(1) bye−5.
Now suppose thatW containsn violations, (a, b1), . . . , (a, bn):

then Eq.(1) is multiplied withe−5(n
3): every three distinct occur-

rences ofa contribute with a weight of−5.0. This is a desirable
behavior: the user says that three occurrences should be penal-
ized by−5.0, and therefore she expects the penalty to increase
with n. Our particular choice of defining this penalty, by multi-
plying with

`
n
3

´
, is somewhat arbitrary. Our choice was inspired

by Markov Logic [22]: this is precisely the semantics obtained in
Markov Logic if one assigns weight−5.0 to the formula:

∃y1.∃y2.∃y3.
^
i

R(x, yi) ∧
^
i6=j

yi 6= yj

However, other choices are possible, for example one could mul-
tiply with n − 3 instead of̀ n

3

´
. The results in this paper are not

affected by the particular choice of the feature functionsfc.
Clearly, by adding the soft keyγ, we introduced correlations

between tuples that share the same value ofA. But, in addition,
the soft key changes the marginal probability ofeverytuple ti =
R(a, b), even if it does not violate the soft key, becauseZ changes.
In example 2.6 the marginal probability of a tupleti was simply
P (ti) = pi. By adding a single soft key constraint it becomes
unclear how to compute the marginal probability of any tuple, even
one that doesn’t violate the key constraint.

Finally, we examine the impact of several keys.

Example 2.8 We add a second key to the previous example:

γ′ = (∅, R(x, y), 1000, +3.5)

Now Γ = {γ, γ′}. Hereγ′ rewards worlds that have at least 1000
tuples. In other words, whileγ encourages us to remove tuples that
share the same key,γ′ penalizes us if we remove too many glob-
ally: more precisely by rewarding worlds with over 1000 tuples it
increasesZ and thus penalizes worlds with less than 1000 tuples.
This illustrates that multiple soft keys may interact and further com-
plicate the probability space: with this new soft key it seems even
more difficult to compute the marginal probability of a tuple.

PROPOSITION 2.9. The size ofM(Γ, I) is bounded by a poly-
nomial in the size ofΓ andI.

PROOF. (Sketch) Letn = |I| andm = |Γ|. Consider a soft
keyγ ∈ Γ: the cliques it generates,cγ,ā, are disjoint sets, henceγ
generates at mostn cliques. Thus there are at mostmn cliques in
M(Γ, I).

2.4 Problem Definition
We fix the probabilistic relational schemāR and a Boolean con-

junctive queryq, and study the following problem: given a set of
soft keysΓ and an instanceI for R̄, compute the marginal proba-
bility P (q):

P (q) =
X

W⊆I:W |=q

P (W ) (2)

whereP is the probability distribution defined byM(Γ, I). We call
P (q) thevalue ofq on I given the soft keysΓ.

Notice that the soft keysΓ are part of the input; this is because
we insist on evaluatingq using an algorithm that is generic in the
sizes and weights inΓ.



In this paper we restrict our discussion to conjunctive queries
without self-joins, i.e. where every relation name occurs at most
once in the query. For example the two queriesR(x, y), S(y, a, z)
andR(a, x, x), S(x, y, y, b), T (x, z) are without self-joins, while
the queryR(x, y), R(y, z) has a self-join. This restriction is sim-
ilar to other complexity results for the query evaluation on proba-
bilistic databases [10, 20, 9, 21]. Queries that have self-joins are
significantly harder to analyze: the only case that has been stud-
ied is that of queries over tuple-independent databases [8], and that
turned out to be significantly harder.

3. SINGLE SUBGOAL QUERIES
We start our investigation by studying the complexity of queries

consisting of a single subgoal. Examples includeq : −R(x, a, y),
or q : −R(x, x, x) or q : −R(x, y, z). These are select-project
queries, and we call them in this sectiondisjunctivequeries. In the
presence of soft keys, even such queries can be hard:

PROPOSITION 3.1. Consider a relationR(A, B, W ) and the
queryq : −R(x, y) (which simply checks if R is non-empty). Con-
sider two key schemas:σ1 = (x, R(x, y)) andσ2 = (y, R(x, y)).
Then the problem: for inputsI, w1, w2, compute the value ofq on
I given the soft keys(σ1, 2, w1) and(σ2, 2, w2) is #P -hard.

PROOF. We will first prove hardness forw1 = w2 = −∞,
then show how to extend the proof tow1, w2 ∈ R. We use a reduc-
tion from the IMPERFECT MATCHING (IPM) problem, which is:
given a bipartite graphG = (U, V, E), with E ⊆ U × V , compute
the number of matches (full or partial). A match is aM ⊆ E s.t.
everyu ∈ U occurs at most once, and everyv ∈ V occurs at most
once inM . IPM is #P-hard as shown in [28]. Given a graphG =
(U, V, E) for the IPM problem, we reduce it to an instanceI over
the schemaR(A, B, W ) as follows:I = {(u, v, 0)|(u, v) ∈ E}.
Thus, each tuple has weight 0. A worldW ∈ W corresponds to
a subset of edgesM ⊆ E. DenoteW1 the set of worlds that are
matches, andW0 = W−W1. If W ∈ W1 thenΦ(W ) = 1, and if
W ∈ W0 thenΦ(W ) = 0 (because eitherγ1 orγ2 are violated and
their weights are−∞). Denotem = |W1| the number of partial
matches inG. We have:

Z =
X

W∈W

Φ(W ) = m

Φ(q) =
X

W∈W,W |=q

Φ(W ) = Z − 1

because the only world inW that does not satisfyq is ∅, which is
also a partial match. It follows thatP (q) = Φ(q)/Z = (m−1)/m,
hencem = 1/(1 − P (q)). This completes the reduction, and
shows that computingP (q) is #P-hard whenw1 = w2 = −∞.
Now we prove hardness assuming thatw1, w2 are inR, and part
of the input. Definew1 = w2 = w; we choosew later. Denoting
ε =

P
W∈W0

Φ(W ) we haveZ = m + ε andΦ(q) = Z − 1,
hencem = 1/(1 − P (q)) − ε. We choosew small enough to
ensureε ≤ 1/2: this allows us to computem asb1/(1 − P (q))c.
Namely, choosew s.t. ew ≤ 1/2|E|+1, thus∀W ∈ W0, Φ(W ) ≤
1/2|E|+1, which impliesε ≤ 1/2 because there are only2|E| pos-
sible worlds.

Thus, the interaction between soft keys on the same relation can
make even a disjunctive query hard. We show, however, that if
the soft keys are “hierarchical”, then any disjunctive query can be
computed in polynomial time.

DEFINITION 3.2. Let γ1, γ2 be two soft keys on a relationR.
We say that they arehierarchicalif either (1)Keyγ1(R) ⊆ Keyγ2(R)
or (2) Keyγ1(R) ⊇ Keyγ2(R) or (3) the subgoalsg1, g2 of γ1

andγ2 are incompatible (i.e. non-unifiable): we writeg1 ∩ g2 = ∅
to indicate thatg1, g2 are incompatible.

Let Γ be a set of soft keys onR. We say thatΓ is hierarchical if
∀γ1, γ2 ∈ Γ, the pairγ1, γ2 is hierarchical.

For example, consider the following soft keys on R(A,B,C,W)
(we show only the key schemas: the sizes and weights are not used
in the definition):

γ1 = (y1, R(x1, a1, y1))

γ2 = (y2, R(y2, a2, x2))

γ3 = ((y3, y4), R(x3, y3, y4))

• γ1, γ2 are hierarchical (assuminga1 6= a2). This is because
R(x1, a1, y1) andR(y2, a2, x2) are incompatible: in our no-
tation,R(x1, a1, y1) ∩R(y2, a2, x2) = ∅.

• γ2, γ3 are non-hierarchical:Keyγ2(R) = {A, B}, Keyγ3(R) =
{B, C}, and their subgoals are compatible.

• γ1, γ3 are hierarchical becauseKeyγ3(R) = {B, C} and
Keyγ1(R) = {B, C}.

We prove two results in this section:

THEOREM 3.3. If Γ is hierarchical, then any disjunctive query
onR can be evaluated in timeO(n1+arity(R)).

THEOREM 3.4. If Γ is non-hierarchical and contains no con-
stants, then every disjunctive query onR is #P-hard.

3.1 A PTIME Algorithm for Hierarchical SCMN
We prove here Theorem 3.3. In fact, we will prove a more gen-

eral result. Fix any SCMNM = (X̄, K, (wi)i=1,n, (fc)c∈K), and
assume w.l.o.g. that∀c ∈ K, |c| ≥ 2.

DEFINITION 3.5. M is hierarchicalif ∀c1, c2 ∈ K eitherc1 ∩
c2 = ∅ or c1 ⊆ c2 or c1 ⊇ c2. Theheightof the hierarchy is the
largest numberh s.t. there existsh cliques inK s.t. c1 ⊃ c2 ⊃
. . . ⊃ ch 6= ∅.

THEOREM 3.6. Let M be hierarchical SCMN of heighth and
Q ⊆ X̄ a set of tuples. Then the probabilityP (Q) defined as:

P (Q) =
X

W⊆W:Q∩W 6=∅

P (W )

can be computed in timeO(nh+1), wheren = |X̄|.

Theorem 3.6 proves Theorem 3.3: this is because ifΓ is hierar-
chical then for everyI the SCMNM(Γ, I) is hierarchical and its
height is≤ arity(R). Moreover, on the probabilistic instanceI,
the queryq is equivalent to a fixed set of tuplesQ. More precisely,
definingQ ⊆ I (note that herēX = I) to be the set of tuples that
match the subgoalq, then we have for every worldW ⊆ I: W |= q
iff W ∩Q 6= ∅.

In the remainder of this section we prove Theorem 3.6.
The proof of the theorem is given by the Algorithm 3.1, which

computesP (Q) using dynamic programming. We first describe
the notations used by the algorithm and explain it, then prove its
correctness and running time.



Algorithm 3.1 ComputingP (Q) on a hierarchical SCMN

1: Inputs: SCMN (X̄, K, (wi)i=1,n, (fc)c∈K), queryQ ⊆ X̄.
2: Outputs: P (Q).
3: LetZ0

ε = 1 S0
ε = 0

4: for k = 1, n do
5: for s1, . . . , shk ∈ {0, . . . , k}hk do
6: Let s̄ = (s1, . . . , shk )
7: Let c1 ⊃ . . . ⊃ cL the common ancestors ofk − 1, k
8: if

Vhk
i=L+1(si = 0) then

9: LetU =
P

s̄′:s̄′
L

=s̄L
Zk−1

s̄′ andR =
P

s̄′:s̄′
L

=s̄L
Sk−1

s̄′

10: else
11: U = R = 0
12: end if
13: if

Vhk
i=L+1(si = 1) then

14: LetF = exp (wk +
P

i=1,L (fci(si)− fci(si − 1)))

15: V = F
P

s̄′:s̄′
L

=s̄L−1 Zk−1
s̄′

16: if tk ∈ Q then
17: T = V
18: else
19: T = F

P
s̄′:s̄′

L
=s̄L−1 Sk−1

s̄′

20: end if
21: else
22: LetT = V = 0
23: end if
24: LetZk

s̄ = U + V andSk
s̄ = R + T

25: end for
26: end for
27: LetΦ(Q) =

P
s̄ Sn

s̄ andZ =
P

s̄ Zn
s̄

28: ReturnP (Q) = Φ(Q)/Z.

We start by defining the following forestT :

Nodes(T ) = K ∪ {{ti} | ti ∈ X̄}
Edges (T ) = {(c, c′) | c ⊃ c′ ∧ ¬∃c′′.(c ⊃ c′′ ⊃ c′)}

The leaves of this forest correspond precisely to the tuplest1, . . . , tn.
Fix any order on the forest: this defines both an order on the leaf
nodes,t1, t2, . . . , tn, and of the internal nodes. The order ensures
that all tuples belonging to a clique form a subsequence of the leaf
nodes:ti, ti+1, . . . , tj . This was possible because the cliques are
hierarchical.

We now defineO((n+1)h+1) subsets ofW. Fork = {0, . . . , n},
denote:

• X̄k = {t1, . . . , tk} (the firstk tuples).

• hk = the number of cliques containingtk (for k = 0, we set
hk = 0). Note thathk ≤ h.

• c1 ⊃ c2 ⊃ . . . ⊃ chk ⊃ {tk} the longest path inT to tk.

DEFINITION 3.7. Let k ∈ {0, . . . , n} and s̄ = (s1, . . . , shk ),
wheres1, . . . , shk ∈ {0, . . . , n}. Define:

Wk
s̄ = {W | W ⊆ X̄k ∧ ∀i ∈ [hk].|W ∩ ci| = si}

Qk
s̄ = {W | W ∈ Wk

s̄ ∧W ∩Q 6= ∅}

In other words,Wk
s̄ consists of all worlds that (a) use only the

first k tuples, and (b) their intersection with the cliquesc1, . . . , chk

on the path from a root totk have cardinalitiess1, . . . , shk . Note
that we have the following:

W 0
ε = {∅}

W =
[
s̄

W n
s̄

The algorithm computes iterativelyO((n + 1)h+1) quantities:

Zk
s̄ =

X
W∈Wk

s̄

Φ(W ) Sk
s̄ =

X
W∈Qk

s̄

Φ(W )

ThenZ =
P

s̄ Zn
S̄ , andΦ(Q) =

P
s̄ Sn

s̄ , which allows us to com-
puteP (Q) = Φ(Q)/Z. We still need to introduce a few notation
used by the algorithm. Given̄s = (s1, s2, . . . , sd) denote:

s̄− 1 = (s1 − 1, s2 − 1, . . . , sd − 1)

s̄L = (s1, s2, . . . , sL) for L ≤ d

Given two consecutive leavestk−1, tk in the forestT , we denote
with c1 ⊃ c2 ⊃ . . . ⊃ cL all their common ancestors.

We now prove the correctness of the algorithm.
Consider a worldW ∈ Wk

s̄ . There are two cases. The first case
is whentk 6∈ W ; thenW contains at most the tuplest1, . . . , tk−1.
Recall thatc1 ⊃ . . . ⊃ cL are the common ancestors oftk−1 and
tk, thusW ∈ Wk−1

s̄′ for somes̄′ s.t. s′1 = s1, . . . , s
′
L = sL. Let

cL+1 ⊃ . . . ⊃ chk be the rest of the path totk: in all these cliques,
tk is the smallest element, henceW cannot contain any tuples from
these cliques. We therefor must havesL+1 = . . . = shk = 0.
This completes the analysis of the first case. The second case is
when tk ∈ W : then we must haveW − {tk} ∈ Wk−1

s̄′ , where
s′1 = s1 − 1, . . . , s′L = sL − 1 (since we removedtk), we can
argue similarly thatsL+1 = . . . = shk = 1. This allows us to
derive a recursive formula forWk

s̄ . We can derive a similar one for
Qk

s̄ : the only extra wrinkle here is that, whentk ∈ W then we also
need to check iftk ∈ Q: if not then we recur withQk

s̄′ ; if yes, then
we recur withZk

s̄′ . We state the resulting recurrence formally. In
the lemma below we denoteA ∪ {t} the set{W ∪ {t} | W ∈ A}
for a set of worldsA ⊆ W and a tuplet:

LEMMA 3.8. Wk
s̄ = Uk

s̄ ∪ Vk
s̄ , where

Uk
s̄ =

( S
s̄′:s̄′

L
=s̄L

Wk−1
s̄′ if

Vhk
i=L+1 si = 0

∅ otherwise

Vk
s̄ =

( S
s̄′:s̄′

L
=s̄L−1W

k−1
s̄′ ∪ {tk} if

Vhk
i=L+1 si = 1

∅ otherwise

If tk ∈ Q thenQk
s̄ = Rk

s̄ ∪ Vk
s̄ and if tk 6∈ Q thenQk

s̄ =
Rk

s̄ ∪ T k
s̄ , where:

Rk
s̄ =

( S
s̄′:s̄′

L
=s̄L

Qk−1
s̄′ if

Vhk
i=L+1 si = 0

∅ otherwise

T k
s̄ =

( S
s̄′:s̄′

L
=s̄L−1Q

k−1
s̄′ ∪ {tk} if

Vhk
i=L+1 si = 1

∅ otherwise

We can now prove:

PROPOSITION 3.9. Algorithm 3.1 correctly computes the prob-
ability P (Q) of a disjunctive queryQ over a hierarchical SCMN.

PROOF. We need to show that the quantitiesZk
s̄ and Sk

s̄ are
computed correctly. This follows immediately from the previous
lemma, observing that the values denotedU , V , R, T in the al-
gorithm are preciselyΦ(Uk

s̄ ), Φ(Vk
s̄ ), Φ(Rk

s̄ ), Φ(T k
s̄ ) The crux



of the correctness proof relies in examining the casetk ∈ W :
thenΦ(W ) = Φ(W − {tk})F , where the factorF is exp (wk +P

i=1,L fci(si) − fci(si − 1)): this is becauseW contributes in
addition toW − {tk} with the weightwk for the tupletk and with
the weightfci(si) for the cliqueci: on the other handW − {tk}
contributes with a weightfci(si−1) for that clique, which justifies
the formula forF .

3.2 Hardness of Non-hierarchical Keys
In this section we prove Theorem 3.4. For that we first extend

Proposition 3.1:

PROPOSITION 3.10. Consider the relationR(A, B, W ) and the
key schemasσ1 = (x, R(x, y) andσ2 = (y, R(x, y)) as in Propo-
sition 3.1. Consider the following four queries:

q1 : − R(x, y)

q2 : − R(x, x)

q3 : − R(a, y)

q4 : − R(a, b)

wherea, b are constants. Then, for each of the queriesqi, i =
1, 2, 3, 4, the problem: for inputsI, w1, w2, compute the value of
qi onI given the soft keys(σ1, 2, w1) and(σ2, 2, w2) is #P -hard.

Note that this extends Proposition 3.1 fromq1 to q2, q3, andq4.
We refer the reader to the full version of this paper for the proof.
Now we can prove Theorem 3.4 by reduction from one of the

three queries in Proposition 3.10. LetΓ be a set of soft keys with-
out constants. Since it is non-hierarchical there exists two soft
keysγ1, γ2 s.t. Keyγ1(R) andKeyγ2(R) are incomparable sets.
(Note that case (3) of Definition 3.2 cannot happen because there
are no constants). Thus, there exists two attributesA, B s.t. A ∈
Keyγ1(R) − Keyγ2(R) andB ∈ Keyγ2(R) − Keyγ1(R). We
examine now the queryq on these two attributes (recall thatq is a
single subgoal): it can have two distinct variables, the same vari-
able, a variable and a constant, or two constants. We then do a
reduction from the corresponding queryqi in Proposition 3.10, by
setting the weights of all soft keys other thanγ1, γ2 to 0.

4. CONJUNCTIVE QUERIES
Consider a relational schemāR with probabilistic relationsR1,

. . . ,Rm. LetΓ = {γ1∪. . .∪γm} be the set of soft keys s.t. the soft
key γi applies toRi. Thus, each relationRi has exactly one soft
key: this includes the case when there is no soft key forRi, because
in that case we can define the soft key forRi to be the no-op key,
whose schema is(x̄, Ri(x̄)), whereRi(x̄) has a distinct variable
for each attribute:Ri(x̄) = Ri(x1, x2, . . .) . In this section we
impose a restriction on the soft keys. Their subgoals may have
no repeated variables: e.g. we allow((x, y), R(y, a, z, b, x)) but
not (x, R(x, x, y, y)). Also assume there are no trivial soft keys
i.e. they have non-zero weight otherwise it doesn’t make sense to
consider them.

DEFINITION 4.1. Letg be a subgoal overR whose soft key has
schemaγ = (x̄, g′). We define the setKey(g) ⊆ V ars(g), as
follows. First, ifg∩g′ = ∅ (see Def. 3.2) thenKey(g) = V ars(g);
otherwiseKey(g) consists of all variables ing that occur on a
position whereg′ has a key variable.

For example, consider the relationR(A, B, C, W ) with soft key

γ = (x, R(a, x, y)). Then

Key(R(a, y, z)) = {y}
Key(R(b, y, z)) = {y, z}
Key(R(x, b, z)) = ∅

Let q be a conjunctive query. For a variablex ∈ V ars(q) we
denoteSg(x) = {g | x ∈ Key(g)}. Thus,Sg(x) contains all
subgoals in whichx occurs in a key position.

DEFINITION 4.2 (SAFE QUERIES). Let q be a boolean con-
junctive query without self-joins.q is safefor soft keysΓ if one of
the following holds:

1. Base case:q := g, where g is a single subgoal.

2. Disconnected components:q = q1q2 whereV ars(q1) ∩
V ars(q2) = ∅, andq1 andq2 are both safe.

3. Projectable Variable: ∃x ∈ V ars(q), such that (a)∀g ∈
Sg(q), x ∈ V ars(g) (i.e. x appears in all subgoals), (b)
∀y ∈ V ars(q), Sg(y) ⊆ Sg(x) and (c) for every constant
a, q[a/x] is safe.

Thus, a variablex is aprojectable variablethenx must occur in
all subgoals. It does not have to occur everywhere in key positions,
but the set of subgoals where it does not occur in a key position
should not have any other key variable either. Note that the safety
for q[a/x] is independent of the choice of the constanta.

Example 4.3 We illustrate with two queries, and underline in each
subgoalg the variables inKey(g): thus,R(x, y) means that there
exists a soft key with schema(x, R(x, y)), whileS(y) means there
exists a soft key(∅, S(y)):

q1 = R(x, y), S(x)

q2 = R(x, y), S(y)

q1 is safe:x occurs everywhere, andSg(x) = {R} while Sg(y) =
∅. On the other handq2 is unsafe:x does not occur everywhere.
While y does occur everywhere,Sg(y) = ∅, while Sg(x) = {R}.

Intuitively, projectable variablecondition states that there is a
variablex in all the sub-goals ofq and all other variablesy in each
subgoalg are such thaty ≤g x. We callx the projectable variable.

THEOREM 4.4. Let Γ be a set of soft keys, with one key per
relation. Letq be a conjunctive queryq without self-joins. Ifq is
safe forΓ then it can be evaluated in PTIME. If the query is unsafe
for Γ, then it is #P-hard.

In the remainder of this section we prove the theorem.

4.1 Hardness of unsafe queries
We start by proving that every unsafe query is #P-hard. We use

a result in [9] that establishes a dichotomy of conjunctive queries
without self-joins on disjoint-independent probabilistic databases.
We briefly review that result, using the terminology in our paper.

DEFINITION 4.5. A soft keyγ = (σ, s, w) on a relationR is
called ahard keyif s = 2 andw = −∞.

A hard key is called astandard keyif its subgoalg has no con-
stants.

A standard key is called atrivial key if x̄ = V ars(g).



We illustrate with the three keys onR(A, B, C, W ):

γ1 = ((x, R(x, a, y)), 2,−∞)

γ2 = ((x, R(x, y, z)), 2,−∞)

γ3 = (((x, y, z), R(x, y, z)), 2,−∞)

γ1 is hard,γ2 is standard (it says thatA is a key), andγ3 is trivial
(it says thatA, B, C are a key, which is the same as not giving any
key forR).

DEFINITION 4.6. A disjoint-independent probabilistic database
instance is an instanceI together with a set of standard keysΓ.

We now review the definition of safe queries over disjoint-independent
probabilistic databases, which we call hereh-safequeries to distin-
guish them from ours, and review the dichotomy result on disjoint-
independent probabilistic databases. Recall thatKey(g) denotes
the set of variables that appear in a key position; denoteNKey(g)
the set of variables that appear in a non-key position ing. These
sets are not necessarily disjoint, because variables may be repeated.

DEFINITION 4.7. [9] A Boolean conjunctive query ish-safefor
a set of keysΓ if:

1. Base caseq := g whereg is a single subgoal.

2. Disconnected componentsq = q1q2 whereV ars(q1) ∩
V ars(q2) = ∅ andq1, q2 are both safe.

3. Independent project∃x ∈ V ars(q) s.t. ∀g ∈ Sg(q), x ∈
Key(g), and for any constanta, q[a/x] is safe. Thus,x must
occur in a key position in every subgoal.

4. Disjoint project ∃g ∈ Sg(q) s.t. Key(g) = ∅ and∃y ∈
NKey(g) s.t. q[a/y] is safe. Thus,y must occur in a non-
key position ing andg has no key variables.

The dichotomy for disjoint-independent databases is:

THEOREM 4.8. [9] Let Γ be a set of hard keys. If a queryq is
h-safe forΓ, then it can be computed in PTIME. If it is not h-safe,
then it is #P-hard.

Now consider a set of soft keysΓ without variables for the rela-
tions R̄. A hardeningof Γ is a set of keysΓh obtained by either
hardening or trivializing every soft key inΓ: that is, for every key
(σ, s, w) in Γ there is a key(σ, 2, w) in Γh wherew = −∞ or
w = 0. We prove the following:

PROPOSITION 4.9. LetΓ be a set of soft keys without variables
andq be a query. Thenq is safe w.r.t.Γ iff for every hardeningΓh

of Γ q is h-safe w.r.t.Γh.

PROOF. We prove “only if” by induction on the structure of the
query. The interesting case is given by condition 3: the others are
straightforward. Letx occur in all subgoals. Ifx occurs in each
subgoal in a key position, then theindependent projectcase applies
and we conclude thatq is h-safe. So supposex occurs in some
subgoalg only on non-key positions. Then no variabley can occur
in g on a key position, otherwisesg(y) 6⊆ sg(x). SoKey(g) =
∅, hencex appears in a non-key position and we apply a disjoint
project onx, henceq is h-safe.

We now prove the “if” direction. Here also we consider con-
dition 3 of the safety definition, and assume that it fails. Then we
“harden” the key constraints as follows. LetG1 = {g | Key(g) = ∅}
andG2 = {g | Key(g) 6= ∅}. For allg ∈ G1 we trivialize its key,
henceKeyh(g) = V ars(g). For all g ∈ G2 we harden the key,

henceKeyh(g) = Key(g). We prove that the resulting query is
h-unsafe. Indeed, a disjoint project is not possible, since we trivial-
ized all keys inG1 where such a project would have been possible.
Suppose an independent project is possible on some variablex.
We show thatx is a projectable variable by checking condition 3.
Clearly it occurs in all subgoals. In additionsg(x) = G2. More-
over, for any variabley, sg(y) ⊆ G2, since no variables occur in
key positions inG1. Contradiction.

Recall the queryq1 = R(x, y), S(x) in Example 4.3. There are
four ways to harden it: in each subgoalg either keepKey(g) un-
changed, or include all variables. Each of these is h-safe. For exam-
pleq1 is h-safe because we do a disjoint project ony; R(x, y), S(x)
is h-safe because we do an independent project onx. On the other
handq2 is not safe, because the hardeningR(x, y), S(y) is h-unsafe.

We use this to prove:

COROLLARY 4.10. If a queryq is unsafe for a set of soft keys
Γ thenq is #P-hard.

For the proof, we first use Prop.4.9 to harden the keys s.t.q is
h-unsafe w.r.t.Γ. Next, we observe that we can remove the con-
stants in these hard keys by eliminating the corresponding attribute
in the relation: the new query (over a new schema) is still h-unsafe,
but now all keys are standard: thus the new query is #P-hard by
Theorem 4.8. Finally, use the same technique as in Proposition 3.1
to replace weights−∞ with weightsw ∈ R.

4.2 Algorithm for safe queries
We explain and prove the algorithm with the following sequence

of definitions and proofs.
Given a soft keyγ = (_, g) we denoteg by gγ .

DEFINITION 4.11. Homogenization : Consider a relationR
which has a soft keyγ. Given a subgoalg overR, the homogenized
instancehom(R, g, γ) is defined asRt = σĀ=āR, whereĀ are the
attribute positions wheregγ has key attributes andg has constants
ā.

Example 4.12 hom(R(A, B, C), R(a, y, z), (x, y, R(x, y, z))) =
σA=aR
hom(R(A, B, C), R(x, y, a), (x, y, R(x, y, z))) = R
hom(R(A, B, C), R(a, b, a), (y, R(a, y, z))) = σA=a,B=bR

Consider a CQq = g1 . . . gm overR̄. Since the query has no self
join we can assumegi is overRi with soft keyΓi = (_, Gi). We
assume that the subgoals of the query have no repeated variables.
For e.g. R(x, x, y) is not allowed. This is just for the ease of
presentation; the algorithm can be made to work for that case as
well.

DEFINITION 4.13. Let s̄ = (s1, . . . , sm) with si ∈ {N∪{0}}.
Define:

WR̄,s̄ = {W | W ⊆ R̄ ∧ ∀i|W ∩Ri ∩Gi| = si}
QR̄,s̄ = {W | W ∈ WR̄,s̄ ∧W |= q}

ZR̄,s̄ =
X

W∈WR̄,s̄

Φ(W )

ΦR̄,s̄ =
X

W∈QR̄,s̄

Φ(W )

SoWR̄,s̄ is the set of all worlds ofR̄ s.t. ∀1 ≤ i ≤ m,the
number of tuples fromRi that are influenced by the soft key are
exactlysi. QR̄,s̄ is the subset ofWR̄,s̄, where query is true.ZR̄,s̄



Algorithm 4.1 To computeΦR̄,s̄(q), ZR̄,s̄

1: Inputs: CQ q, overR̄. s̄ ∈ {N ∪ 0}m.
2: Outputs: ΦR̄,s̄(q), ZR̄,s̄(q)
3: if q = q1q2 andV ars(q1) ∩ V ars(q2) = ∅ then
4: Calculate the components corresponding toq1 andq2 sepa-

rately and then multiply them
5: end if
6: if q is a single subgoal querythen
7: Use Algorithm 3.1
8: end if
9: if ∃ Projectable Variablex then

10: if ∃is.t.si > |Ri| then
11: Return 0,0
12: end if
13: LetZ0

s̄ = 1 if s̄ = 0̄ else 0
14: LetS0

s̄ = 0 ∀s̄
15: Letdom(

S
Aix) = {a1 . . . an}

16: Letq = g1 . . . gm

17: for k = 1, n do
18: Letq′ = q[ak/x]
19: SS = 0
20: ZZ = 0
21: LetR′

i = {t ∈ Ri|t.Aix = ak}
22: for j̄ = 0m, s̄ do
23: Letd̄ = (min (|R′

1 ∩G1|, j1) , . . . , min (|R′
m ∩Gm|, jm))

24: for ī = 0m, d̄ do

25: LetF = exp
“P

p=1,m (fp(jp)− fp(jp − ip))
”

26: LetPk = ΦR̄′ ,̄i(q
′)

27: LetZk = ZR̄′ ,̄i

28: LetU = Zk−1
j̄−ī

Pk

29: LetV = Sk−1
j̄−ī

(Zk − Pk)

30: LetR = Zk−1
j̄−ī

Zk

31: SS = SS + F (U + V )
32: ZZ = ZZ + FR
33: end for
34: Sk

j̄ = SS

35: Zk
j̄ = ZZ

36: end for
37: end for
38: end if
39: ReturnSn

s̄ , Zn
s̄

andΦR̄,s̄ are respectively the sum of potentials of all these worlds.
Hence we have

Pr (q) =

P
s̄ ΦR̄,s̄P
s̄ ZR̄,s̄

Let x be a projectable variable. Then the following proposition
establishes the intuition behind projectable variable and homoge-
nization.

PROPOSITION 4.14. LetAix be the attribute ofRi wherex oc-
curs ingi. If Rt

i = hom(Ri, gi, Γi), then

1. Pr (q) = Pr (q′) whereq′ is same asq but overR̄t instead
of R̄.

2. For any two worldsW1 ∈ σAix=aRt
i andW2 ∈ σAix=bR

t
i,

a 6= b ∈ dom(x)

Φ(W1∧W2) = Φ(W1)Φ(W2)exp (hi(|W1 ∩ gΓi |, |W2 ∩ gΓi |)

wherehi is a real-valued function that depends only onΓi.

PROOF. (Sketch) Consider the SCMN corresponding to(Ri, Γi).
It is composed of independent cliques andRt

i contains all those
cliques which contain tuple that can makegi true, i.e. they can
have an influence on the queryq. Since these set of cliques is inde-
pendent of those inRi − Rt

i, P (q) can be computed just over̄Rt.
Now considerM = SCMN(Rt

i, Γi) ; By our projectable variable
condition eitherx is a key in which case we sayfi = 1. Otherwise
no other variable ingi is a key, which means our homogenization
ensures thatM is composed of at most one cliquec, with feature
function sayfi. So to compute the probability of any world, we just
need to keep track of the number of tuples fromc. The reader can
convince themselves thathi(x, y) = fi(x+y)−fi(x)−fi(y).

Algorithm 4.1 first checks for Join or projectable variable con-
dition. The former is trivial. In the latter case, it proceeds by di-
viding possible worlds of̄Rt into σĀ=aR̄t, whereĀ =

S
Aix and

a ∈
S

dom(Aix). After that the algorithm is similar in spirit to
Algorithm 3.1 and due to lack of space we refer the reader to the
full version of this paper which mentions the algorithm in detail
even for hierarchical constraints.

We should mention that the algorithm can be made more effi-
cient by using some independence properties. For example when
q[a/x] andq[b/x] are independent,Pr (q[a/x] ∨ q[b/x]) = (1 −
Pr (q[a/x]))(1− Pr (q[b/x])). But it doesn’t affect the worst-case
complexity and so for the sake of brevity, we haven’t written it here.

5. RELATED WORK
Query evaluation over probabilistic databases is a well studied

problem. Methods for query evaluation can broadly be classified
into two categories: Intensional ([4, 2, 13, 23]) and Extensional ([6,
10, 20, 11]). Our approach belongs to the extensional category.

Intensional methods work by associating with each boolean query
a symbolic event. Query evaluation is then performed by manipu-
lating expressions over these symbolic events. For example, in [4],
lineage is used for defining the symbolic events. In principle, in-
tensional methods can evaluate any given query over a probabilistic
database with arbitrary correlations among tuples. However, as the
correlations and/or queries become complicated, the symbolic ex-
pressions become very large making query evaluation intractable.

On the other hand, extensional methods use efficient operators
over real numbers for query evaluation. They work for a restricted
set of correlations and queries. Prior work for extensional methods
assume very simple correlations like independence ([6, 10]) or ex-
clusions ([3, 20, 11]). As per our knowledge, this is the first paper
that uses extensional approach to handle more complicated corre-
lations involving soft constraints.

Query evaluation is closely connected to the inference problem
in AI. Many methods proposed in AI literature have been adapted
for query evaluation. Deshpande et. al. [24] proposed the use of
Markov Networks to represent tuple correlations. In particular,
Size-Constrained Markov Networks used in this paper are a sub-
set of correlations they consider. However, they propose an in-
tensional method of query evaluation that makes query evaluation
intractable even for safe queries on Size-Constrained Markov Net-
works. In [15], Gupta et. al. solve an inference problem for Markov
Networks that use cardinality based potential functions similar to
Size-Constrained Markov Networks. However, they solve the sim-
pler MAP problem that amounts to finding the most likely world
among the set of all possible worlds. Query evaluation requires
finding the sum of the probabilities of all worlds for a given set of
worlds that satisfy a query. Intuitively, the latter is harder because
it has to deal with all possible worlds, while the former can make a



greedy choice in the selection of its worlds.
For a look at some more recent work on modeling probabilistic

databases with graphical models, we refer the reader to [14]. They
describe how to represent relational data with Bayesian Networks
according to bothpossible-worldsand domain-frequencyseman-
tics. Our way of representation is different though, as we do not
keep a random variable for every attribute of every tuple. Our repre-
sentation closely resembles that of Markov Logic Networks(MLNs)[22].
An MLN is just a collection of relations and a set of first-order for-
mulas over them with real weights. It gives semantics to these for-
mulas by representing them as features in a markov network over
the relations. Our model corresponds to MLNs with formulas like
key constraint. But MLNs are a very general model where infer-
ence can be very expensive, hence our work also helps to identify
some subsets where inference is tractable.

Finally [1] and [27] are some other works which propose han-
dling of constraints during query answering instead of cleaning data
apriori. While the former works in a probabilistic setting like us, it
enforceshardkeys. The latter offers a deterministic way of conflict
resolution using some form of user specification.
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