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Abstract

Many applications today need to manage large data sets with uncer-
tainties. In this paper we describe the foundations of managing data where
the uncertainties are quantified as probabilities. We review the basic def-
initions of the probabilistic data model and present some fundamental
theoretical results for query evaluation on probabilistic databases.

1 The Quest for Probabilistic Databases

Commercial databases today are deterministic. Relational databases are rooted
in First Order Logic and Finite Model Theory, as initially envisioned by Codd [10],
and were originally motivated by applications like banking, payroll, accounting,
inventory, all of which require a precise semantics of the data. Subsequently,
databases and data management techniques have been extended to handle richer
data models, such as Nested Relations [44], Object-relational data [21], tempo-
ral data [45], spatial data [36], and semistructured data and XML [46]. All these
extensions rely on a deterministic semantics for both data and queries.

Today, the database community needs to manage large volumes of data that
is imprecise, or uncertain, and that contains an explicit representation of the un-
certainty. Uncertain data occurs in large scale data integration [29], integration
of life-science databases [39], in information extraction systems [24, 22, 33], in
sensor data [8, 23, 19, 20], in activity recognition data [37, 9, 35]. Modeling and
managing data where uncertainties are explicitly represented and numerically
quantified requires a new paradigm whose foundation are based on probability
theory, probabilistic inference [12], probability logic [2], and degrees of belief [6],
in addition to Finite Model Theory. This paper presents the basic definitions of
the probabilistic data model and some fundamental theoretical results for query
evaluation on probabilistic databases. A precursor to probabilistic databases,
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incomplete databases [32, 27], allowed the explicit representation of uncertain-
ties, but no numerical quantification.

A Paradigm for Managing Uncertainties

The AI community has considered several approaches to representing uncer-
tainties, e.g. rule-based systems, Dempster-Shafer, fuzzy sets, but over the past
twenty years or so the probability model has been dominant [30]. Probabilistic
databases adopt the same model. Thus, the data is probabilistic, where the
probabilities are internal measures of the imprecision in the data. Users formu-
late queries using a standard query language, as if the data were precise. The
system computes the answers, and for each answer computes a probability score
representing its confidence in that answer.

The central problem in probabilistic databases is query evaluation. Given
a Boolean query q and a probabilistic database, compute the answer of q on
the database. On a deterministic database the answer is a Boolean value, true
or false, but on a probabilistic database the answer to q is a probability, in
notation P(q). We consider only Boolean queries, i.e. closed First Order Logic
formulas, because a non-Boolean query q(x) can be answered by evaluating
repeatedly Boolean queries q[a/x] obtained by substituting some constant a for
x. Our interest is in studying the data complexity [49]: fix q and examine
the complexity of computing P(q) as a function of the size of the probabilistic
database.

The query evaluation problem can be reduced to a special case of inference
in a probabilistic network, which is a problem extensively studied in the Knowl-
edge Representation community, and which is known to be hard: both exact
inference [11] and approximate inference [13] are NP-hard. The key distinction
is that in probabilistic databases we refine the complexity analysis by separating
the query from the data, since the size of the data is by far dominant. In light
of this distinction, approximate inference is tractable [25], and, as we explain
here, even precise inference is tractable for an important class of queries.

This paper, based on [14, 16], reviews the definition of probabilistic databases,
defines the query evaluation problem and shows special cases when it is tractable.

2 The Possible Worlds Data Model

A probabilistic database is defined in terms of possible worlds, which extends
incomplete databases [27]. Throughout this paper we restrict our discussion to
relational data over a finite domain: extensions to continuous domains [19] and
to XML [31, 1, 48] have also been considered.

We fix a relational schema R = (R1, . . . , Rk), where each Ri is a relation
name and has a set of attributes Attr(Ri). We also fix a set of key attributes,
Key(Ri) ⊆ Attr(Ri); we explain below why we include keys in our data model.
Fixing a finite domain of atomic values, D, denote, for i = 1, . . . , k, by Tupi

the set of typed tuples of the form Ri(a1, . . . , ak) where a1, . . . , ak ∈ D and
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I1

A B C D

a1 b1 c1 d1

a2 b1 c3 d1

a2 b2 c4 d2

P(I1) = 0.06
(= p1p3p6)

I2

A B C D

a1 b1 c2 c2

a2 b1 c2 c1

a2 b2 c4 c2

P(I2) = 0.12
(= p2p5p6)

I3

A B C D

a1 b1 c1 d1

a2 b2 c4 d2

P(I3) = 0.04
(= p1(1-p3-p4-p5)p6)

Figure 1: A probabilistic database PDB = ({I1, I2, I3, . . .},P) with schema
R(A,B,C, D); we show only three possible worlds.

A B C D P
a1 b1 c1 d1 p1 = 0.25

c2 d2 p2 = 0.75
a2 b1 c3 d1 p3 = 0.3

c1 d3 p4 = 0.3
c2 d1 p5 = 0.2

a2 b2 c4 d2 p6 = 0.8
c5 d2 p7 = 0.2

Figure 2: Representation of a disjoint-independent probabilistic database.
There are seven possible tuples, which are here grouped by their keys, for read-
ability. There are 16 possible worlds; three are shown in Fig. 1.

k = |Attr(Ri)| is the arity of Ri. Also, denote Tup =
⋃

i Tupi the disjoint union
of all typed tuples. A database instance is any subset I ⊆ Tup that satisfies all
key constraints. We write Key(t) for a typed tuple of arity |Key(Ri)| consisting
of the key attributes of a tuple t ∈ Tupi.

The main idea in a probabilistic database is that the state of the database,
i.e. the instance I is not known. Instead the database can be in any one of a
finite number of possible states I1, I2, . . ., called possible worlds, each with some
probability.

Definition 2.1 A probabilistic database is a probability space PDB = (W,P)
where the set of outcomes is a set of possible worlds W = {I1, . . . , In}. In other
words, it is a function P : W → [0, 1] s.t.

∑
I∈W P(I) = 1.

Fig. 1 illustrates three possible worlds of a probabilistic database. There are
more than three worlds in this probabilistic database, and their probabilities
must sum up to 1. The intuition is that we have a database with schema
R(A,B,C, D) (underlined attributes are key attributes), but we are not sure
about the content of the database: there are several possible contents, each
with a probability.
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A Boolean query q (i.e. a closed First Order Logic sentence) defines the
event {I | I |= q} over a probabilistic database, and its marginal probability is
P(q) =

∑
I∈W :I|=q P(I). To any tuple t we associate the Boolean query t ∈ I

and denote its marginal probability P(t) =
∑

I∈W :t∈I P(I). Note that t 6= t′

and Key(t) = Key(t′) implies P(t, t′) = 0, i.e. t, t′ are disjoint events.
Disjoint-Independent Databases In practice we cannot enumerate all

possible worlds, since there are usually too many. Instead, we need to find some
concise way to represent the probabilistic database. The representation problem
for probabilistic database is an active research topic [17, 7, 27, 5, 4, 27]. In our
discussion we restrict to a simple, yet popular representation formalism that
can represent all disjoint-independent databases.

Any tuple that occurs in some possible world is called a possible tuple for
the probabilistic database, and we denote T the set of possible tuples. The
representation formalism is simply this: for each relation name Ri we store the
set of all possible tuples of type Ri together with their marginal probabilities.
If the probabilistic database is disjoint-independent, then one can recover the
entire probability space from these marginal tuple probabilities. More precisely,
call a probabilistic database disjoint-independent if any set of possible tuples
with distinct keys is independent: ∀t1, . . . , tn ∈ T , Key(ti) 6= Key(tj) for i 6= j
implies P(t1, . . . , tn) = P(t1) · · ·P(tn). It suffices to consider only sets of tuples
with distinct keys because if any two tuples have the same key then they are
disjoint events, and then P(t1, . . . , tn) = 0. Thus, in a disjoint-independent
database all tuples are independent, except for the tuples that have conflicting
keys (which are disjoint). If, in addition, for every relation Ri in the schema,
Key(Ri) = Attr(Ri), then there are no disjoint tuples, and we say that the
probabilistic database is independent.

Let K = {Key(t) | t ∈ T} and let I ⊆ T be an instance. For every key
value k ∈ K denote pI

k = P(t) if there exists a (necessarily unique) tuple t ∈ I
s.t. Key(t) = k, and pI

k = 1 −
∑

t∈T :Key(t)=k P(t) if there is no tuple t ∈ I

s.t. Key(t) = k. Then one can check that P(I) =
∏

k∈K pI
k. In other words,

for a disjoint-independent database the probability distribution P(−) can be
recovered completely from the marginal probabilities P(t) for all possible tuples
t ∈ T .

3 Query Evaluation

We study the query evaluation problem: given a query q and a disjoint-independent
database PDB, compute the probability P(q). We first describe the connection
between this problem and the probability of Boolean formulas, which has been
studied in the literature; in particular it follows that for any fixed q (i.e. any
First Order sentence), computing P(q) is in #P in the size of PDB. We then
analyze the data complexity of P(q) for a fixed query, and establish a dichotomy
for conjunctive queries without self-joins: every query is either #P-hard or in
PTIME. A conjunctive query is an FO sentence consisting of positive literals, ∧
and ∃, while a conjunctive query without selfjoins is one in which each relation
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symbol occurs at most once.

From Queries to Boolean Formulas

Consider n Boolean variables X̄ = {X1, . . . , Xn}. A disjoint-independent prob-
ability space with outcomes 2X̄ (the set of truth assignments) is given by a
partition X̄ = X̄1 ∪ . . . ∪ X̄m and a probability function P : X̄ → [0, 1] s.t.
∀j = 1,m,

∑
X∈X̄j

P(X) ≤ 1. A truth assignment is chosen at random by
independently choosing in each set X̄j at most one variable Xi that will be set
to true, while all others are set to false: namely Xi is chosen with probability
P(Xi). We will assume that all probabilities are given as rational numbers,
P(Xi) = pi/qi, i = 1, n, where pi, qi are integers.

We call this probability space independent if ∀j, |X̄j | = 1 (i.e. there are no
disjoint variables), and uniform if it is independent and ∀i,P(Xi) = 1/2.

Let Φ be a Boolean formula over X1, . . . , Xn; the goal is to compute its
probability, P(Φ) =

∑
θ∈2X̄ :θ(Φ) P(θ).

The complexity class #P consists of problems of the following form: given
an NP machine, compute the number of accepting computations [38]. Let #Φ
denote the number of satisfying assignments for Φ. Valiant [47] has shown that
the problem: given Φ, compute #Φ, is #P-complete.

A statement like “computing P(Φ) is in #P” is technically non-sense, be-
cause computing P(Φ) is not a counting problem. However, one can show that
for any partition of X̄ into m sets X̄1, . . . , X̄m, there exists a polynomial-time
computable, numerical function F (p1, q1, . . . , pn, qn) s.t. for every formula Φ,
the number F ·P(Φ) is an integer, and computing F ·P(Φ) is in #P. For exam-
ple, in the case of a uniform distribution, the function F is F = 2n, because in
this case 2n ·P(Φ) = #Φ, and computing #Φ is in #P. In this sense:

Theorem 3.1 [25, 16] Computing P(Φ) is in #P.

While computing P(Φ) for a DNF Φ is still #P-hard, Luby and Karp [34]
have shown that it has a FPTRAS (fully poly-time randomized approximation
scheme). More precisely: there exists a randomized algorithm A with inputs
Φ, ε, δ, which runs in polynomial time in |Φ|, 1/ε, and 1/δ, and returns a
value p̃ s.t. PA(|p̃/p − 1| > ε) < δ. Here PA denotes the probability over the
random choices of the algorithm. Grädel et al. [25] show how to extend this
to independent probabilities, and we have extended it to disjoint-independent
probabilities [16]:

Theorem 3.2 Computing P(Φ) for a disjoint-independent probability space P
and a DNF formula Φ has a FPTRAS.

We now establish the connection between the probability of Boolean expres-
sions and the probability of a query on a disjoint-independent database. Let
PDB = (T,P) be a database with possible tuples T = {t1, . . . , tn}. Associate a
Boolean variable Xi to each tuple ti and define a disjoint-independent probabil-
ity space on their truth assignments by partitioning the variables Xi according
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to their keys (Xi, Xj are in the same partition iff Key(ti) = Key(tj)), and by
defining P(Xi) = P(ti). This creates a one-to-one correspondence between the
possible worlds of PDB and the truth assignments 2X̄ , which preserves the
probabilities.

Consider a Boolean query, q, expressed in First Order Logic (FO) over the
vocabulary R. The intensional formula associated to q and database PDB is
a Boolean formula ΦPDB

q , or simply Φq when PDB is understood from the
context, defined inductively as follows:

ΦR(ā) =
{

Xi if R(ā) = ti ∈ T
false if R(ā) 6∈ T

Φtrue = true Φfalse = false Φ¬q = ¬(Φq)
Φq1∧q2 = Φq1 ∧ Φq2 Φq1∨q2 = Φq1 ∨ Φq2

Φ∃x.q(x) =
∨

a∈D

Φq[a/x] Φ∀x.q(x) =
∧

a∈D

Φq[a/x]

Here D represents the active domain of PDB (i.e. all constants occurring
in any possible tuple in T ), q[a/x] denotes the formula q where the variable x
is substituted with a, and interpreted predicates over constants (e.g. a < b or
a = b) are replaced by true or false respectively. If q has v variables, then
the size of Φq is O(|q| · |D|v). The connection between Boolean formulas and
Boolean queries is:

Proposition 3.3 For every query q and any database PDB = (T,P), P(q) =
P(Φq).

A Boolean conjunctive query is a formula of the form q = ∃x̄.g1 ∧ . . . ∧ gk,
where each gi is a positive atomic literal Rj(. . .), called a subgoal. We write q
as:

q = g1, g2, . . . , gk (1)

Obviously, in this case Φq is a positive DNF expression. For a simple illustration,
suppose q = R(x), S(x, y) and that we have five possible tuples: t1 = R(a),
t2 = R(b), t3 = S(a, c), t4 = S(a, d), t5 = S(b, d) to which we associate the
Boolean variables X1, X2, Y1, Y2, Y3, then Φq = X1Y1 ∨ X1Y2 ∨ X2Y3. Our
discussion implies:

Theorem 3.4 For a fixed a Boolean query q, computing P(q) on a disjoint-
independent database (1) is in #P, (2) admits a FPTRAS when q if conjunc-
tive [25].

A Dichotomy for Queries without Self-joins

We now establish the following dichotomy for queries without self-joins: com-
puting P(q) is either #P-hard or is in PTIME in the size of the database
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PDB = (T,P). A query conjunctive q is said to be without self-joins if each
relational symbol occurs at most once in the query body [15, 14]. For example
R(x, y), R(y, z) has self-joins, R(x, y), S(y, z) does not.

Theorem 3.5 For each of the queries below (where k, m ≥ 1), computing P(q)
is #P-hard in the size of the database:

h1 = R(x), S(x, y), T (y)

h+
2 = R1(x, y), . . . , Rk(x, y), S(y)

h+
3 = R1(x, y), . . . , Rk(x, y), S1(x, y), . . . , Sm(x, y)

The underlined positions represent the key attributes, thus, in h1 the database
is tuple independent, while in h+

2 , h+
3 it is disjoint-independent. When k = m =

1 then we omit the + superscript and write:

h2 = R(x, y), S(y)
h3 = R(x, y), S(x, y)

The significance of these three (classes of) queries is that the hardness of
any other conjunctive query without self-joins follows from a simple reduction
from one of these three (Lemma 3.7). By contrast, the hardness of these three
queries is shown directly [16] (by reducing Positive Partitioned 2DNF [40] to
h1, and PERMANENT [47] to h+

2 , h+
3 ) and these proofs are more involved.

Previously, the complexity has been studied only for independent probabilis-
tic databases. De Rougemont [18] claimed that it is is in PTIME. Grädel at
al. [18, 25] corrected this and proved that the query R(x), R(y), S1(x, z), S2(y, z)
is #P-hard, by reduction from regular (non-partitioned) 2DNF: note that this
query has a self-join (R occurs twice); h1 does not have a self-join, and was
first shown to be #P-hard in [15]. The hardness of h+

2 and h+
3 was discussed

in [14, 16].
A PTIME Algorithm We describe here an algorithm that evaluates P(q)

in polynomial time in the size of the database, which works for some queries,
and fails for others. We need some notations. V ars(q) and Sg(q) are the set
of variables, and the set of subgoals respectively. If g ∈ Sg(q) then V ars(g)
and KV ars(g) denote all variables in g, and all variables in the key positions
in g: e.g. for g = R(x, a, y, x, z), V ars(g) = {x, y, z}, KV ars(g) = {x, y}. For
x ∈ V ars(q), let sg(x) = {g | g ∈ Sg(q), x ∈ KV ars(g)}. Given a database
PDB = (T,P), D is its active domain (i.e. the set of all constants that occur
in any of the tuples in T ).

Algorithm 3.1 computes P(q) by recursion on the structure of q. If q
consists of two connected components q1, q2, then it returns P(q1)P(q2), e.g.
P(R(x), S(y, z), T (y)) = P(R(x))P(S(y, z), T (y)). If some variable x occurs in
a key position in all subgoals, then it applies the independent-project rule:
e.g. P(R(x)) = 1 −

∏
a∈D(1 − P(R(a))) (this is the probability that R is

nonempty). For another example, we apply an independent project on x in
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Algorithm 3.1 Safe-Eval
Input: query q and database PDB = (T,P)
Output: P(q)
1: Base Case: if q = R(ā)

return if R(ā) ∈ T then P(R(ā)) else 0
2: Join: if q = q1, q2 and V ars(q1) ∩ V ars(q2) = ∅

return P(q1)P(q2)
3: Independent project: if sg(x) = Sg(q)

return 1−
∏

a∈D(1−P(q[a/x]))
4: Disjoint project: if ∃g(x ∈ V ars(g),KV ars(g) = ∅)

return
∑

a∈D P(q[a/x])
5: Otherwise: FAIL

q = R(x, y), S(x, y): this is correct because q[a/x] and q[b/x] are independent
events whenever a 6= b. If there exists a subgoal g whose key positions are con-
stants, then it applies a disjoint project on any variable in g: e.g. x is such a
variable in q = R(x, y), S(c, d, x), and any two events q[a/x], q[b/x] are disjoint
because of the S subgoal.

We call a query safe if algorithm Safe-Eval terminates successfully; other-
wise we call it unsafe. Safety is a property that depends only on the query q,
not on the database PDB, and it can be checked in PTIME in the size of q by
simply running the algorithm over a domain of size 1, D = {a}.

Proposition 3.6 [16] For any safe query q, the algorithm computes correctly
P(q) and runs in time O(|q| · |D||V ars(q)|).

We first described Safe-Eval in [14], in a format more suitable for an im-
plementation, by translating q into an algebra plan using joins, independent
projects, and disjoint projects. Andritsos et al. [3] describe a query evaluation
algorithm similar in spirit but for a more restricted class of queries.

The Dichotomy Property We define below a rewrite rule q ⇒ q′ between
two queries, where g, g′ denote subgoals. The intuition is that if q ⇒ q′ then
evaluating P(q′) can be reduced in polynomial time to evaluating P(q).

(R1) q ⇒ q[a/x] if x ∈ V ars(q), a ∈ D
(R2) q ⇒ q1 if q = q1, q2, V ars(q1) ∩ V ars(q2) = ∅
(R3) q ⇒ q[y/x] if ∃g ∈ Sg(q), x, y ∈ V ars(g)
(R4) q, g ⇒ q if KV ars(g) = V ars(g)
(R5) q, g ⇒ q, g′ if KV ars(g′) = KV ars(g),

V ars(g′) = V ars(g), arity(g′) < arity(g)

The rules are designed such that whenever q ⇒ q′ then the evaluation of q′ on
a disjoint-independent database PDB′ can be easily reduced to the evaluation
of q on some other disjoint-independent database PDB. For example, rule (R4)
allows us to drop a subgoal g: to evaluate q′ on PDB′ simply add a relation for
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g and make it deterministic by setting all tuple probabilities P(t) = 1. This is
possible because KV ar(g) = V ar(g), i.e. all variables occur some key position,
like in R(x, y, z, x, a): for every key value we need only one possible tuple with
that key value, hence we can set its probability = 1. Similarly, rule (R5) allows
us to replace a subgoal g with another subgoal g′ by dropping some variables
and/or constants, provided that g′ has the same set of variables in key positions,
and the same set of variables (in key and non-key positions).

Lemma 3.7 If q ⇒∗ q′ and q′ is #P-hard, then q is #P-hard.

Thus, ⇒ gives us a convenient tool for checking if a query is hard, by trying
to rewrite it to one of the known hard queries. For example, consider the queries
q and q′ below: Safe-Eval fails immediately on both queries, i.e. none of its
cases apply. We show that both are hard by rewriting them to h1 and h+

3

respectively. By abuse of notations we reuse the same relation name for g and
g′ when applying rule (R5) (e.g. S in the second line and S in the third line
should strictly speaking be different relation symbols):

q = R(x), R′(x), S(x, y, y), T (y, z, b)
(R4) ⇒ R(x), S(x, y, y), T (y, z, b)
(R5) ⇒∗ R(x), S(x, y), T (y) = h1

q′ = R(x, y), S(y, z), T (z, x), U(y, x)
(R3) ⇒ R(x, y), S(y, x), T (x, x), U(y, x)
(R4) ⇒ R(x, y), S(y, x), U(y, x) = h+

3

Call a query q final if it is unsafe, and ∀q′, if q ⇒ q′ then q′ is safe. Clearly
every unsafe query rewrites to a final query: simply apply ⇒ repeatedly until
all rewritings are to safe queries. One can prove:

Lemma 3.8 h1, h
+
2 , h+

3 are the only final queries.

This implies immediately the dichotomy property:

Theorem 3.9 Let q be a query without self-joins. Then one of the following
holds:

• q is unsafe and q rewrites to one of h1, h
+
2 , h+

3 . In particular, q is #P-hard.

• q is safe. In particular, it is in PTIME.

Proof: We need to show that q is unsafe iff it rewrites to one of h1, h+
2 , or h+

3 .
The important direction results from Lemma 3.8 and our discussion above: if q is
unsafe, then it rewrites to one of these three queries. For other direction we need
to show that if q is safe, then q does not rewrite to any of the queries h1, h+

2 , or
h+

3 . Note that this follows trivially if one assumes PTIME 6= #P. A direct proof
proceeds by induction on the number of recursion steps taken by Algorithm
Safe-Eval on the query q. The Base Case in the algorithm (q = R(ā)) is
obvious: q does not rewrite to anything. For the Join case, q = q1, q2, we

9



note that if q rewrites to one of the three h-queries then so must either q1 or
q2. For the Independent project case, there is some variable x occurring in key
positions in all subgoals of q. If q ⇒∗ hi, for some i = 1, 2, 3 then that variable
must be removed somehow, and the only rule that can eliminate it is (R1),
which substitutes x with a constant. But then one can prove that q[a/x] ⇒∗ hi,
contradicting the induction hypothesis. For the Disjoint Project case, we note
that the subgoal g has no variables in key positions, hence it must be eliminated
by rule (R2) (If rule (R4) ever applies to g, then Rule (R2) also applies, since
KV ar(g) = ∅ implies V ar(g) = ∅, hence g is disconnected from the rest of the
query.) In other words, x belongs to a connected component that is eliminated
during the rewriting q ⇒∗ hi, hence we also have q[a/x] ⇒∗ hi, contradiction. 2

The Complexity of the Complexity We complete our analysis by study-
ing the following problem: given a relational schema R and conjunctive query
q without self-joins over R, decide whether q is safe1. We have seen that this
problem is in PTIME; here we establish tighter bounds:

Proposition 3.10 [16] (1) The problem: “given an independent schema R (i.e.
Key(Ri) = Attr(Ri) for all Ri ∈ R) and a query q, decide whether q is safe”
is in AC0. (2) The problem: “given a disjoint-independent schema R (i.e.
Key(Ri) ⊆ Attr(Ri) for all Ri ∈ R) and a query q, decide whether q is safe”
is PTIME complete.

4 Conclusions and Future Challenges

In many applications today it is becoming prohibitively expensive, and even
impossible, to enforce a precise semantics, by completely cleaning the data and
removing all types of uncertainties. Probabilistic databases manage data with an
explicit representation and quantification of uncertainties, and query evaluation
becomes a special form of probabilistic inference.

Probabilistic databases need to scale both in the size of the data, and in the
complexity of the probabilistic model. Scaling in any of these two dimensions is
a challenging problem. Consider the size of the data. Most often the data does
not fit in main memory, but instead needs to be read from disk, sequentially
or using some index. One approach to scale query processing is to restrict the
query evaluation on only the top k answers: that is, the answers to a (non-
Boolean) query are ranked in decreasing order of their probability score, and
only the top k are returned to the user, where k is a small number, typically
10 or 20. While there may be many (e.g. thousands) of possible answers, the
systems computes only the top k, and thus needs to do far fewer probabilistic
inferences. But this creates a chicken and egg problem: we do not know which
tuples are the top k until we have evaluated all probabilities [41].

In addition, probabilistic databases need to handle more complex proba-
bilistic models than the disjoint-independent databases discussed in this paper.

1For a fixed R there are only finitely many queries without self-joins: this is the reason
why R is part of the input.
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Correlations between tuples or attribute values occur naturally in practice: for
example in information extraction, the extraction of one data item may depend
on the extraction of a previous item, hence the two items are correlated prob-
abilistic events [28]. The explicit representation of such correlations in prob-
abilistic databases is called lineage, or provenance [7, 26], and it complicates
significantly the query evaluation problem. Some simple database optimization
techniques, such as predicate pushdown or semijoin reduction, still help, but
they are limited in scope. More powerful optimization techniques currently used
in database systems, such as using materialized views during query processing,
become difficult to use because of the extra cost of the lineage information. A
new line of research seeks to simplify the lineage information by either finding
an equivalent but simpler lineage [42], or by using Fourier approximations of
Boolean expressions to approximate the lineage [43].
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