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Goals

= Multiple hypothesis testing
= Controlling positive FDR

= Permutation tests
= Paired tests
= Linear regression

= Rinstruction
= Performing permutation tests

Review: Controlling False Positives

= When we say “adjusting p-values for the number of hypothesis
tests performed”, what we mean is controlling Type | error rate

Review: False Discovery Rate

Null True Alternative Total
True
Not Called U T m-R
Significant
Called 4 S R
Significant
m, m-m, m

s V=4#Type | errors [false positives]
= Many procedures have been developed to control the Family-
Wise Error Rate (the probability of at least one Type | error):
P(V=1)
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= V=#Type lerrors [false positives]

= False discovery rate (FDR) is designed to control the

proportion of false positives among the set of
rejected hypotheses (R) - V/R




WhatIfR=0"7

= Benjamini & Hochberg:

FDR = E{% |R > O}P(R >0)

= “the rate that false discoveries occur”
= Story:

PFDR :E[%lR >o}

= “the rate that discoveries are false”

Storey’s Positive FDR (pFDR)
BH:  FDR =E{%|R>0}P(R >0)
Storey: pFDR = E[% | R > 0}

= Since P(R>0) is ~1 in most genomics experiments FDR
and pFDR are very similar

= Omitting P(R>0) facilitates development of a measure
of significance in terms of the FDR for each hypothesis

FDR in Bayesian terms

= Theorem: m identical hypothesis tests are performed
with independent statistics 7, ..., T, and rejection
area C. A null hypothesis is true with a priori
probability 7, = P(H, is true). Then

PpFDR(C)=P(H,istrue|T € C)
_ m,P(T e C|H,istrue)
P(T €C)

What is a g-value?

= Definition: For an observed statistic T = ¢, define the g-value of t
to be

q —value(?) = {g}ig}pFDR(C)

= minimum FDR that can be attained when calling that “feature” significant

= i.e., expected proportion of false positives incurred when calling that
feature significant

= The estimated g-value is a function of the p-value for that test
and the distribution of the entire set of p-values from the family
of tests being considered (Storey and Tibshiriani 2003)

= Thus, in an array study testing for differential expression, if gene
X has a g-value of 0.013 it means that 1.3% of genes that show
pvalues at least as small as gene X are false positives




Estimating The Proportion of Truly
Null Tests

= Under the null hypothesis p-values are expected to be
uniformly distributed between 0 and 1

]
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Estimating The Proportion of Truly
Null Tests

= Under the alternative hypothesis p-values are skewed
towards 0

Estimating The Proportion of Truly
Null Tests

m Combined distribution is a mixture of p-values from the
null and alternative hypotheses
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Estimating The Proportion of Truly
Null Tests

m For p-values greater than say 0.5, we can assume they
mostly represent observations from the null hypothesis




Definition of m,

= The proportion of truly null tests:

#p,>Ai=12,..m}
m(l— A

() =
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Digression: p-Values

= Implicit in all multiple testing procedures is the
assumption that the distribution of p-values is
“correct”

= This assumption often is not valid for genomics data
where p-values are obtained by asymptotic theory

= Thus, resampling methods are often used to calculate
p-values

Permutation Tests
= Consider a set of data points in two samples (groups)

Xy KXoy Xzy ey Xy, Yo Vo Var oo Yy

= Under the null hypothesis, any of the (m+n) points
could have been in any of the samples

= So, all permutations of the points (shuffling them
among samples) are equally likely

X1s V111 Var Xgsees Xy 31 Xy, YirXay Vosees V3 Yy

= Does our sample show more difference than
expected, among all these shuffles?
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Permutation Tests

Xy Xpy Xzy ey Xy, Yir Yor Var vy Yy

= Here is how we test:

= Compare the difference of means (or some other
reasonable statistic) between the two groups

= Make a large number of random shutfflings of the points
= For each, compute this statistic (means)
= See whether, out of say 9,999 shuffles, when the true value
is added in, it is in the top 5% of these 10,000.
= Note that this test does not assume normality, just
that the points are drawn from the same (unknown)
distribution, independently




Permutation Tests: Paired Tests

= There are many variations on permutation tests
= If the test is a paired test, to see whether the mean
difference is zero, shuffle within each pair (i.e. flip each pair
the other way with probability 50%)

X1 Xoy Xay ey X, Before drug treatment
YVir YVor Var ey YV, After drug treatment
d. d d After drug treatment
T2 T Difference d;=X;-Y;
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Permutation Tests: Paired Tests

= There are many variations on permutation tests

= If the test is a paired test, to see whether the mean
difference is zero, shuffle within each pair (i.e. flip each pair
the other way with probability 50%)

Xy Xpy X3y ey X, Before drug treatment
Vit Vaor V7y -y Vo Afterdrug treatment (shuffled)
j Call them z’s

fl! fzv ey fn Difference f;=X;-z;

Permutation Tests: Linear Regression

= There are many variations on permutation tests
» If itis a regression, and if the Y points are randomly associated with
the X points under the null hypothesis, so that the true slope is
zero, we can shuffle Ys, associating them with the Xs at random.
Each time, we compute the slope
Xy Xoy Xgy Xyy Xg

Yo Vor Var YVar Vs

Y=8,+p X
Y .
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Permutation Tests: Linear Regression

= There are many variations on permutation tests

= Ifitis aregression, and if the Y points are randomly associated with
the X points under the null hypothesis, so that the true slope is
zero, we can shuffle Ys, associating them with the Xs at random.
Each time, we compute the slope

X;, Xpy Xgy Xy, Xg
Y3r Var V1o Vsr Vo

Y=4y+p,X

Shuffling




How To Do Permutation Tests in R

= Let’s try something simple first
= Given two samples called @ and b

a <- rnorm(100, mean=0, sd = 1)\
b <- rnorm(100, mean=-1, sd =2)
mean(a) — mean(b)

m <- length(a)

n <- length(b)

d <-c(a,b)

e <- sample(d)

a2<-e[1:m]

b2 <- e[ (m+1) : (m+n) ]
mean(a2) — mean(b2)

EEEEEEEE
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J

Note that sample defaults to replace=FALSE and to a number of
samples equal to the length(d)

= Actually, you might want to try shuffling many times
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Gene Expression Data

= Let’s revisit the gene expression data that we saw on
Tuesday with 5194 genes and 32 samples

Replicates from an = i
individual CEU_1 CEU individuals YRI individuals

AA 32 samples ad 7
1

16 samples from 8 16 samples from 8

5419
probesets
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