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Goals

= Develop basic concepts of linear regression from a
probabilistic framework

m Estimating parameters and hypothesis testing with
linear models

m Linearregressionin R

Regression

m Technique used for the modeling and analysis of
numerical data

m Exploits the relationship between two or more
variables so that we can gain information about one
of them through knowing values of the other

= Regression can be used for prediction, estimation,
hypothesis testing, and modeling causal relationships

Why Linear Regression?
= Suppose we want to model the outcome variable Y in
terms of three predictors, X;, X,, X,
Y = £ (Xy, X5 X)

= Typically will not have enough data to try and directly
estimate f

m Therefore, we usually have to assume that it has
some restricted form, such as linear

Y=X;+X,+X;




Regression Terminology

Y=X,+X,+X;
Dependent Variable Independent Variable
| Outcome Variable Predictor Variable |
Response Variable Explanatory Variable
Lung cancer risk Genetic factor, smoking,
diet, etc
Expression level Expression levels of X's TFs
of gene X A,BandC

Linear Regression is a Probabilistic Model

= Much of mathematics is devoted to studying variables
that are deterministically related to one another

Y=03+B,X
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= But we’re interested in understanding the relationship
between variables related in a nondeterministic fashion

A Linear Probabilistic Model

= Definition: There exists parameters /3, , and o2, such that
for any fixed value of the predictor variable X, the outcome
variable Yis related to X through the model equation

Y=p,+p,X+e,

where ¢ is a RV assumed to be N(0, ¢?)
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Implications

= The expected value of Y is a linear function of X, but
for fixed value x, the variable Y differs from its
expected value by a random amount

Variables & Symbols: How is x different from X ? \

Capital letter X: a random variable
Lower case letter x: corresponding values
(i.e. the real numbers the RV X map into)

For example,
X: Genotype of a certain locus
x:0, 1 or 2 (meaning AA, AG and GG, respectively)
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Implications

= The expected value of Y is a linear function of X, but
for fixed value x, the variable Y differs from its
expected value by a random amount

= Formally, let x* denote a particular value of the
predictor variable X, then our linear probabilistic
model says:

E(Y | x*) = gy, = mean valueof ¥ when X is x *

V(Y |x*) = ai‘x* = variance of Y when X is x*

Graphical Interpretation
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E(Y | x*) = py,» = mean valueof ¥ when X is x*

V(Y |x*)= aﬁ‘x* = variance of ¥ when X is x*

Graphical Interpretation

Weight y
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2 Height
= Say that X = height and Y = weight

= Then uy,_¢, is the average weight for all individuals
60 inches tall in the population

4 v o= fy + P
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One More Example

= Suppose the relationship between the predictor variable
height (X) and outcome variable weight () is described by a
simple linear regression model with true regression line

Y=75+05X &N(@©,0)ando=3

= Q1: What is the interpretation of §, = 0.5?

The expected change in weight (1) associated with a 1-unit
increase in height (X)

m Q2: If x = 20, what is the expected value of ¥?
Hypeao =7.5+0.5(20)=17.5




One More Example

= Q3:I1f x =20, whatis P(Y>22)?
Y=22 , | Y= Bo + Byx

Hypn=29 =17.5
Y~N(u=175,6=3)
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» X
x=20 c=3
= GivenY ~N(u=17.5,6=23), . o
P(Y >22|x=20)= 1—¢(22 7317'5) =1-¢(1.5)=0.067
where ¢ means the CDF of Normal dist. N(0,1) u :317 5

Estimating Model Parameters

= Where are the parameters S, and , from?

m Predicted, or fitted, values are values of y =0+ px
predicted by plugging x;, x,, ... , x, intothe  $, =4+ 8x,

estimated regression line:y = f, + f,x Py =B+ B,
m Residuals are the deviations of observed e=y-J
(red dots) and predicted values (red line) €=y,
e =y;—J,
s Gl y=pythx
N e, €,
Y=
X; X, X3 x 14

Residuals Are Useful!

= The error sum of squares (SSE) can tell us how well the
line fits to the data

SSE = Z(ei)z = Z(yi _J;i)z
i=1 i=1

y =B+ Bx

=B+ Bx,

Vs = By + B

Y =B+ P

m Least squares
= Find f,and f, that minimizes SSE

B =2 =B+ )l

= Denote the solutions by [;’0 and ﬁl
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Least Squares

m Least squares
= Find f,and f; that minimizes SSE

S B = 2L~ (By+ e}




Least Squares
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m Least squares
= Find §,and 8, that minimizes SSE

S =2 LBy pix)T
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Least Squares

m Least squares
= Find B, and f, that minimizes SSE

S(By, )= i[yi -5 +ﬁ1x[)]2

Least Squares -
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m Least squares
= Find f,and f, that minimizes SSE

B =2~y + )l
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Coefficient of Determination

= Important statistic referred to as the coefficient of
determination (R?):

n n Error Sum
SSE = Z(ei)z = Z(J’i _yi)2 4Squares ]
i=1

i=1

Error Sum Squares,

when B,=avg(y)

SST=2(y,-¥)
= and B,=0

y
of y=PFytpBx

¢ 2 y =averagey

X
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Multiple Linear Regression

= Extension of the simple linear regression model to
two or more independent variables

y=pBtBix; tprx, o FBx, e

Expression = Baseline + Age + Tissue + Sex + Error

= Partial Regression Coefficients:

B; = effect on the outcome variable when increasing the i#
predictor variable by 1 unit, holding all other predictors
constant
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Categorical Independent Variables

= Previous coding would result in collinearity

= Solution is to set up a series of dummy variable. In
general for k levels you need (k-1) dummy variables

1if AA 1if AG
X, = ) X, =
0 otherwise

0 otherwise

. Xl Xz
0 ,if AA AA 1 0
X, =Y if AG AG 0 1
2 Nf GG GG o0 0
23

Categorical Independent Variables

= Qualitative variables are easily incorporated in
regression framework through dummy variables

= Simple example: sex can be coded as 0/1

= What if my categorical variable contains three levels:

0 if AA
X, ={1 if AG

2 if GG
= NO!
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Hypothesis Testing: Model Utility Test

= The first thing we want to know after fitting a model
is whether any of the predictor variables (X’s) are
significantly related to the outcome variable (Y):

Hy: pi=py=--=p=0
H, : Atleastone 5, # 0

m Let’s frame this in our ANOVE framework

= In ANOVA, we partitioned total variance (SST) into
two components:

= SSE (unexplained variation)

= SSR (variation explained by linear model)




Model Utility Test

= Partition total variance (SST) into two components:
= SSE (unexplained variation)
=SSR (variation explained by linear model)

= Let’s consider n (=3) data points and & (=1) predictor model

y ssr:é;x—yf

y=PBy+ B ()J
AbY __]{)l l(’g y =averagey SSE = Z(ei)z = le(yi _)A/i)z

i=1

SSR=Y"(5, -7’

i=1
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ANOVA Formulation of Model Utility Test

= Partition total variance (SST) into two components:
= SSE (unexplained variation)
= SSR (variation explained by linear model)

Source of df Sum of Squares MS F
Variation
. o - 2 SSR MS,
Regression k SSR = E(_\-r -)? h e
n-(k+1 o a2 SSE
Error (;v ) |SSE = 2(_\ =) k)
Total / n-1 SST = 2(_\-‘. -y

# data points — (# parameters in the model) Rejection Region - F
+ Lo kan—(k+1)
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ANOVA Formulation of Model Utility Test

= F-test statistic

o MSy _ SSR/ k _ R n—(k+1)
MS, SSE/[n—(k+1)] 1-R? k
Rejection Region: F, .

S ] = Pick the distribution function,
© based on k and n-(k+1).
o | — g::;:ggj = Choose the critical value based
- T Gioro0 ze1 on ¢ (Fi i)
@ - ,\\\ d1=100, d2=100 = Say that o =0.05
o F ~$""-_____ = Prob(F>F,; , 1)) = 0.05
c T T T T T T

0 1 2 3 4 5
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F Test For Subsets of Independent Variables

= A powerful tool in multiple regression analysis is the
ability to compare two models

= For instance say we want to compare
FullModel: y = B, + f,x, + B,x, + fyx; + Bx, + &
Reduced Model: y = g, + fx, + f,x, + €
= Again, another example of ANOVA
SSE = error sum of squares for

_ (SSE, —SSE)/(k—1)
~ SSE./[n—(k+1)]

reduced model with / predictors F

SSE; = error sum of squares for
full model with k& predictors
28




Example of Model Comparison

= We have a quantitative trait and want to test the
effects at two markers, M1 and M2.

Full Model: Trait = Mean+MI1+M2+ (M1xX2)+¢
Reduced Model: Trait = Mean+MI1+M2+¢&

- (SSEy —=SSE,) (k1) _ (SSE, ~SSE,)/(3-2)
SSE, /[n—(k +1)] SSE, /[100—(3+1)]
_ (SSE, —SSE,)
SSE, /96

Rejection Region : F,, | 4
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How To Do In R

= You can fit a least-squares regression using the function
= mm <- Isfit(x,y)

= The coefficients of the fit are then given by
= mmScoef

= The residuals are
= mméSresiduals

= And to print out the tests for zero slope just do
= Is.print (mm)
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Input Data

= http://www.cs.washington.edu/homes/suinlee/geno
me560/data/cats.txt

= Data on fluctuating proportions of marked cells in
marrow from heterozygous Safari cats

= Proportions of cells of one cell type in samples from
cats (taken in our department many years ago).
Column 1 is the ID number of the particular cat. You
will want to plot the data from one cat.

= For example cat 40004 is rows 1:17, 40005a is 18:31,
40005b is 32:47, 40006 is 48:65, 40665 is 66:83 and so on.
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Input Data

= 2" column: Time, in weeks from
the start of monitoring, that the 20004 11 33 72
. 40004 13 49 &7
measurement from marrow is 20004 19 45 56
40004 25 42 19
recorded. 10004 31 % 68
Cat #1 20004 33 38 61
= 3" column: Percent of socoe 35 23 73
N ) 40004 41 32 1:.’0
domestic-type progenitor cells foooe 33 a1
observed in a sample of cells at ey B o,
. 40004 54 30 56
that tlme- 40004 56 32 78
h 40004 58 18 74
t . H 20004 €2 36 =81
= 4" column: Sample size at that Sonee 1t 20 e
time, i.e. the number of Cat#2 | e n
. 40005a 26 11 72
progenitor cells analyzed. 20005a 23 13 77
40005%a 31 20 70
40005a 34 13 56
4000%a 37 17 &5




