Lecture 9: Multiple Hypothesis Testing

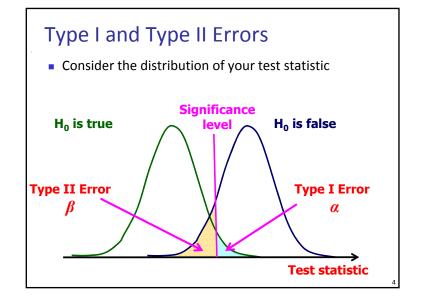
May 29, 2012 GENOME 560, Spring 2012

Su-In Lee, CSE & GS suinlee@uw.edu

Goals

- Define the multiple testing problem and related concepts
- Methods for addressing multiple testing (FWER and FDR)
- Correcting for multiple testing in R
- Final course evaluation (15 minutes)

Type I and II Errors			
	Actual Situation "Truth"		
Decision	H _o True	H₀ False	
Don Not Reject H ₀	Correct Decision (True Negative) 1-α	Incorrect Decision (False Negative) Type II Error β	
Reject H ₀	Incorrect Decision (False Positive) Type I Error α	Correct Decision (True Positive) 1-β	
α = P(Type I Error) β = P(Type II Error) Power = 1 - β			
		F.	



Why Multiple Testing Matters

- Genomics: Lots of data, Lots of hypothesis tests
- A typical microarray experiment might result in performing 10,000 separate hypothesis tests.
- If we use a standard p-value cut-off of α = 0.05, we'd expect **500** genes to be deemed "significant" by chance.
- Why 500?

Why Multiple Testing Matters

- In general, if we perform *m* hypothesis tests, what is the probability of at least 1 false positive?
 - Assume that all the null hypotheses are true

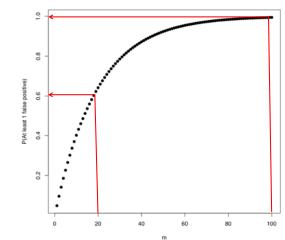
P(Making an error) = α

P(Not making an error) = $1 - \alpha$

P(Not making an error in *m* tests) = $(1 - \alpha)^m$

P(Making at least 1 error in *m* tests) = 1 - $(1 - \alpha)^m$

Probability of At Least 1 False Positive



Counting Errors

- Assume that we are testing m hypotheses: H^1 , ..., H^m
 - m_0 = # of **true** null hypotheses
 - R = # of rejected null hypotheses

	Null True	Alternative True	Total
Not Called Significant	U	τ	m-R
Called Significant	V	S	R
	m _o	m - m ₀	m

■ V = # Type I errors [false positives]

Correcting for Multiple Testing?

- When we say <u>"adjusting p-values for the number of hypothesis tests performed"</u>, what we mean is controlling the Type I error rate
- Very active area of statistics many different methods have been described
- Although these varied approaches have the same goal, they go about it in fundamentally different ways

9

Different Approaches to Control Type I Errors

 Per comparison error rate (PCER): the expected value of the number of Type I errors over the number of hypotheses

PCER = E(V)/m

Per-family error rate (PFER): the expected number of Type I errors

PFE = E(V)

 Family-wise error rate (FWER): the probability of at least one Type I error

FWER = P(V≥1)

 False discovery rate (FDR): the expected proportion of Type I errors among the rejected hypotheses

 $FDR = E(V/R \mid R>0) P(R>0)$

 Positive false discovery rate (pFDR): the rate that discoveries are false

 $pFDR = E(V/R \mid R>0)$

10

Family-Wise Error Rate (FWER)

 Many procedures have been developed to control the Family-Wise Error Rate (the probability of at least one Type I error):

P(V≥1)

- Two general types of FWER corrections:
 - Single step: equivalent adjustments made to each p-value
 - Sequential: adaptive adjustment made to each p-value

11

Single Step Approach: Bonferroni

- Very simple method for ensuring that the overall Type I error of α is maintained when performing m independent hypothesis tests
- Rejects any hypothesis with p-value $\leq \alpha/m$:

$$\widetilde{p}_i = \min[mp_i,1]$$

For example, if we want to have an experiment wide Type I error rate of α = 0.05 when we perform 10,000 hypothesis tests, we'd need a p-value of 0.05/10,000 = 5 x 10⁻⁶ to declare significance

12

Philosophical Objections to Bonferroni Corrections

- "Bonferroni adjustments are, at best, unnecessary and, at worst, deleterious to sound statistical inference" Perneger (1998)
- Counter-intuitive: interpretation of finding depends on the number of other tests performed
- The general null hypothesis (that all the null hypotheses are true) is rarely of interest
- High probability of Type II errors, i.e., of not rejecting the general null hypothesis when important effects exist

FWER: Sequential Adjustments

- Simplest sequential method is Holm's Method
 - Order the unadjusted p-values such that p₁ ≤p₂ ≤...≤p_m
 - For control of the FWER at level α, the step-down Holm adjusted p-values are

$$\widetilde{p}_j = \min[(m-j+1) \cdot p_j, 1]$$

- The point here is that we don't multiple every p_i by the same factor m
- For example, when m = 10,000:

$$\widetilde{p}_1 = 10000 \cdot p_1, \quad \widetilde{p}_2 = 9999 \cdot p_2, \dots, \widetilde{p}_m = 1 \cdot p_m$$

14

Who Cares About Not Making ANY Type I Errors?

- FWER is appropriate when you want to guard against ANY false positives
- However, in many cases (particularly in genomics) we can live with a certain number of false positives
- In these cases, the more relevant quantity to control is the false discovery rate (FDR)

False Discovery Rate

	Null True	Alternative True	Total
Not Called Significant	U	τ	m-R
Called Significant	V	S	R
	m_o	m - m ₀	m

- **V** = # Type I errors [false positives]
- False discovery rate (FDR) is designed to control the proportion of false positives among the set of rejected hypotheses (R) -- V/R

16

FDR vs FPR (False Positive Rate)

	Null True	Alternative True	Total
Not Called Significant	U	τ	m-R
Called Significant	V	S	R
	m ₀	m - m ₀	m

■ V = # Type I errors [false positives]

$$FDR = \frac{FP}{FP + TP} = \frac{V}{R}$$

$$FDR = \frac{FP}{FP + TP} = \frac{V}{R}$$
 $FPR = \frac{FP}{FP + TN} = \frac{V}{m_0}$

What If R = 0?

■ Benjamini & Hochberg:

$$FDR = E \left[\frac{V}{R} \mid R > 0 \right] P(R > 0)$$

- The rate that false discoveries occur
- Story:

$$pFDR = E\left[\frac{V}{R} \mid R > 0\right]$$

■ The rate that discoveries false

Benjamini and Hochberg FDR

- To control FDR at level δ:
 - 1. Order the unadjusted p-values: $p_1 \le p_2 \le ... \le p_m$
 - 2. Then find the test with the highest rank, j, for which the p-value, p_i , is less than or equal to (j/m) x δ
 - 3. Declare the tests of rank 1, 2, ..., j as significant

$$p(j) \le \delta \frac{j}{m}$$

B&H FDR Example

• Controlling the FDR at $\delta = 0.05$

Rank (j)	P-value	(j/m) x δ	Reject H ₀ ?
1	0.0008	0.005	1
2	0.009	0.010	1
3	0.165	0.015	0
4	0.205	0.020	0
5	0.396	0.025	0
6	0.450	0.030	0
7	0.641	0.035	0
8	0.781	0.040	0
9	0.900	0.045	0
10	0.993	0.050	0

Storey's Positive FDR (pFDR)

BH:
$$FDR = E\left[\frac{V}{R} | R > 0\right] P(R > 0)$$

Storey: $pFDR = E\left[\frac{V}{R} | R > 0\right]$

Storey:
$$pFDR = E \left\lceil \frac{V}{R} \mid R > 0 \right\rceil$$

- Since P(R>0) is ~1 in most genomics experiments FDR and pFDR are very similar
- Omitting P(R>0) facilitates development of a measure of significance in terms of the FDR for each hypothesis

Input Data • Expression levels of 5419 genes in 32 samples from 16 human individuals There are 2 replicates per individual (e.g. CEU_1_1 & CEU_1_2) • 16 individuals are from two populations: CEU (Europe) and YRI (African) 16 samples from 8 16 samples from 8 Replicates from an CEU individuals individual CEU_1 32 samples probesets