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5:2 W. Enck et al.

1. INTRODUCTION

A key feature of modern smartphone platforms is a centralized service for download-
ing third-party applications. The convenience to users and developers of such “app
stores” has made mobile devices more fun and useful, and has led to an explosion of
development. Apple’s App Store alone served 40 billion application downloads since
its launch [Apple, Inc. 2013]. Many of these applications combine data from remote
cloud services with information from local sensors such as a GPS receiver, camera, mi-
crophone, and accelerometer. Applications often have legitimate reasons for accessing
this privacy-sensitive data, but users would also like assurances that their data is used
properly. Incidents of developers relaying private information back to the cloud [Moren
2009; Davies 2009] and the privacy risks posed by seemingly innocent sensors like
accelerometers [Fitzpatrick 2010] illustrate the danger.

Resolving the tension between the fun and utility of running third-party mobile ap-
plications and the privacy risks they pose is a critical challenge for smartphone plat-
forms. Mobile-phone operating systems currently provide only coarse-grained controls
for regulating whether an application can access private information, but provide lit-
tle insight into how private information is actually used. For example, if a user allows
an application to access her location information, she has no way of knowing if the
application will send her location to a location-based service, to advertisers, to the ap-
plication developer, or to any other entity. As a result, users must blindly trust that
applications will properly handle their private data.

This article describes TaintDroid, an extension to the Android mobile-phone plat-
form that tracks the flow of privacy-sensitive data through third-party applications.
TaintDroid assumes that downloaded, third-party applications are not trusted, and
monitors—in realtime—how these applications access and manipulate users’ personal
data. Our primary goals are to detect when sensitive data leaves the system via
untrusted applications and to facilitate analysis of applications by phone users or ex-
ternal security services [Lookout 2010; WhatApp 2010].

Analysis of applications’ behavior requires sufficient contextual information about
what data leaves a device and where it is sent. Thus, TaintDroid automatically
labels data from privacy-sensitive sources and transitively applies labels as sensi-
tive data propagates through program variables, files, and interprocess messages.
When tainted data is transmitted over the network or otherwise leaves the system,
TaintDroid logs the data’s labels, the application responsible for transmitting the data,
and the data’s destination. Such realtime feedback gives users and security services
greater insight into what mobile applications are doing and can potentially identify
misbehaving applications.

To be practical, the performance overhead of the TaintDroid runtime must be
minimal. Unlike existing solutions that rely on heavyweight whole-system emula-
tion [Chow et al. 2004; Yin et al. 2007], we leveraged Android’s virtualized architec-
ture to integrate four granularities of taint propagation: variable-level, method-level,
message-level, and file-level. Though the individual techniques are not new, our con-
tributions lie in the integration of these techniques and in identifying an appropriate
trade-off between performance and precision for resource-constrained smartphones.
Experiments with our prototype for Android with JIT show that tracking incurs a
runtime overhead of less than 32% for a CPU-bound microbenchmark. More impor-
tantly, interactive third-party applications can be monitored with negligible perceived
latency.

We evaluated the precision of TaintDroid using 30 randomly selected, popular
Android applications that use location, camera, or microphone data in April 2010. To
provide a longitudinal perspective, in September 2012, we analyzed updated versions
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TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring 5:3

of these same applications, of which only 20 still existed. In the 2010 study, TaintDroid
revealed that 15 of the 30 applications reported users’ locations to remote advertising
servers. Seven applications collected the device ID and, in some cases, the phone num-
ber and the SIM card serial number. In all, two-thirds of the applications in our 2010
study used sensitive data suspiciously; so did a similar fraction of the tested appli-
cations in our 2012 study. Our findings demonstrate that TaintDroid can help expose
potential misbehavior by third-party applications.

Like similar information-flow tracking systems [Chow et al. 2004; Yin et al. 2007],
a fundamental limitation of TaintDroid is that it can be circumvented through leaks
via implicit flows. The use of implicit flows to avoid taint detection is, in and of itself,
an indicator of malicious intent, and may well be detectable through other techniques
such as automated static code analysis [Denning and Denning 1977; Sabelfeld and
Myers 2003] as we discuss in Section 8.

The rest of this article is organized as follows: Section 2 provides a high-level
overview of TaintDroid, Section 3 describes background information on the Android
platform, Section 4 describes the design of TaintDroid, Section 5 describes the taint
sources tracked by TaintDroid, Section 6 presents results from our Android applica-
tion study, Section 7 characterizes the performance of our prototype implementation,
Section 8 discusses the limitations of our approach, Section 9 describes related work,
and Section 10 summarizes our conclusions.

2. APPROACH OVERVIEW

We seek to design a framework that allows users to monitor how third-party smart-
phone applications handle their private data in realtime. Many smartphone applica-
tions are closed source and obfusticated, making static analysis infeasible. Even if
source code is available (e.g., via decompilation [Enck et al. 2011]), runtime events
and configuration often dictate information use—realtime monitoring can handle these
environment-specific dependencies.

Monitoring network disclosure of privacy-sensitive information on smartphones
presents several challenges.

— Smartphones are resource constrained. Resource limitations preclude the use of
heavyweight information tracking systems like Panorama [Yin et al. 2007].

— Third-party applications are entrusted with several types of privacy-sensitive infor-
mation. The monitoring system must distinguish multiple information types, which
requires additional computation and storage.

— Context-based privacy-sensitive information is dynamic and can be difficult to iden-
tify even when sent in the clear. For example, geographic locations are pairs of float-
ing point numbers that frequently change and are hard to predict.

— Applications can share information. Limiting the monitoring system to a single ap-
plication does not account for flows via files and IPC between applications, including
core system applications designed to disseminate privacy-sensitive information.

We use dynamic taint analysis [Clause et al. 2007; Nair et al. 2007; Qin et al. 2006; Yin
et al. 2007] (also called “taint tracking”) to monitor privacy-sensitive information on
smartphones. Sensitive information is first identified at a taint source, where a taint
marking indicating the information type is assigned. Dynamic taint analysis tracks
how labeled data impacts other data in a way that might leak the original sensitive
information. This tracking is often performed at the instruction level. Finally, the af-
fected data is identified before it leaves the system at a taint sink (usually the network
interface).

ACM Transactions on Computer Systems, Vol. 32, No. 2, Article 5, Publication date: June 2014.
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5:4 W. Enck et al.

Fig. 1. Multilevel approach for performance-efficient taint tracking within a common smartphone
architecture.

Existing taint tracking approaches have several limitations. First and foremost, ap-
proaches that rely on instruction-level dynamic taint analysis using whole-system em-
ulation [Chow et al. 2004; Ho et al. 2006; Yin et al. 2007] incur high performance
penalties. Instruction-level instrumentation incurs 2–20 times slowdown [Chow et al.
2004; Yin et al. 2007] in addition to the slowdown introduced by emulation, making it
unsuitable for realtime analysis. Second, developing accurate taint propagation logic
has proven challenging for the x86 instruction set [Newsome et al. 2009; Schwartz
et al. 2010]. Implementations of instruction-level tracking can experience taint explo-
sion if the stack pointer becomes falsely tainted [Slowinska and Bos 2009] and taint
loss if complicated instructions such as CMPXCHG, REP MOV are not instrumented
properly [Zhu et al. 2009]. While most smartphones use the ARM instruction set,
similar false positives and false negatives could arise.

Figure 1 presents our approach to taint tracking on smartphones. We leverage
architectural features of virtual-machine-based smartphones (e.g., Android, Windows
Phone, and BlackBerry) to enable efficient, system-wide taint tracking using fine-
grained labels with clear semantics. First, we instrument the VM interpreter to
provide variable-level tracking within third-party application code. Using variable se-
mantics provided by the interpreter provides valuable context for avoiding the taint
explosion observed in the x86 instruction set. Additionally, by tracking variables, we
maintain taint markings only for data and not code. Second, we use message-level
tracking between applications. Tracking taint on messages instead of data within mes-
sages minimizes IPC overhead while extending the analysis system-wide. Third, for
system-provided native libraries, we use method-level tracking. Here, we run native
code without instrumentation and patch the taint propagation on return. These meth-
ods accompany the system and have known information-flow semantics. Finally, we
use file-level tracking to ensure persistent information conservatively retains its taint
markings.

To assign labels, we take advantage of the well-defined interfaces through which
applications access sensitive data. For example, all information retrieved from GPS
hardware is location sensitive, and all information retrieved from an address-book
database is contact sensitive. This avoids relying on heuristics [Cox and Gilbert 2009]
or manual specification [Zhu et al. 2009] for labels. We expand on information sources
in Section 5.

In order to achieve this tracking at multiple granularities, our approach relies on
the firmware’s integrity. The taint tracking system’s trusted computing base includes
the virtual machine executing in userspace and any native system libraries loaded
by the interpreted third-party application. However, this code is part of the firmware

ACM Transactions on Computer Systems, Vol. 32, No. 2, Article 5, Publication date: June 2014.
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and is therefore trusted. Applications can only escape the virtual machine by executing
native methods. In our target platform (Android), we modified the native library loader
to ensure that applications can only load native libraries from the firmware and not
those downloaded by the application. To assess the impact of this design choice, we
scanned the top 50 free applications in each category of the Android Market in mid-
2010 and found less than 5% included a .so library file. A later study of over 200,000
Android applications had similar findings [Zhou et al. 2012]. Therefore, the number of
applications affected by this design choice is relatively small. We leave dealing with
third-party native libraries as future work.

In summary, we provide a novel, efficient, system-wide, multiple-marking taint
tracking design by combining multiple granularities. While some techniques such as
variable tracking within an interpreter have been previously proposed (see Section 9),
to our knowledge, our approach is the first to extend such tracking system-wide. By
choosing a multiple-granularity approach, we balance performance and precision.

3. BACKGROUND: ANDROID

Android is a Linux-based, open-source mobile-phone platform. Most core phone func-
tionality is implemented as applications running on top of a customized middleware.
Applications are written in Java and compiled to a custom bytecode format known
as Dalvik EXecutable (DEX). Each application executes within its own Dalvik VM
interpreter instance. Each instance executes as a unique UNIX user identity to iso-
late applications within the Linux platform. Applications communicate via the Binder
IPC subsystem. The following discusses topics necessary to understand our tracking
system.

Dalvik VM Interpreter. DEX is a register-based machine language, as opposed to
Java bytecode, which is stack based. Each DEX method has its own predefined num-
ber of virtual registers (which we frequently refer to as simply “registers”). The Dalvik
VM interpreter manages method registers with an internal execution-state stack; the
current method’s registers are always on the top stack frame. These registers loosely
correspond to local variables in the Java method and store primitive types and object
references. All computation occurs on registers; therefore, values must be loaded from
and stored to class fields before and after use, respectively. Note that DEX uses class
fields for all long-term storage, unlike hardware-register-based machine languages
(e.g., x86) that store values in arbitrary memory locations. This additional context
aids taint propagation in our design.

As of Android 2.3, the Dalvik VM contains a Just-In-Time compiler (JIT) to boost
performance by translating bytecode to optimized native code at runtime.

Native Methods. The Android middleware provides access to native libraries for
performance optimization and to support third-party libraries such as OpenGL and
Webkit. Additionally, Android’s Java implementation, which is based on Apache Har-
mony (harmony.apache.org), frequently uses system libraries to implement functional-
ity (e.g., math routines). Native methods are written in C/C++ and expose functionality
provided by the underlying Linux OS. They can also access Java internals and hence
are included in our trusted computing base (Section 2).

Android contains two types of native methods: internal VM methods and JNI meth-
ods. The internal VM methods access interpreter-specific structures and APIs. JNI
methods conform to Java native interface standards specifications [Liang 1999], which
requires Dalvik to separate Java arguments into variables using a JNI call bridge.
Conversely, internal VM methods must manually parse arguments from the inter-
preter’s byte array of arguments. This difference impacts our design.

ACM Transactions on Computer Systems, Vol. 32, No. 2, Article 5, Publication date: June 2014.



�

�

�

�

�

�

�

�

5:6 W. Enck et al.

Fig. 2. TaintDroid architecture within Android.

Binder IPC. Android’s IPC subsystem is called Binder. Fundamental to Binder are
parcels, which serialize both active and standard data objects. The former includes ref-
erences to Binder objects, which allows the framework to manage shared data objects
between processes. A Binder kernel module passes parcels between processes.

4. TAINTDROID

TaintDroid is a realization of our multiple-granularity taint tracking approach within
Android. TaintDroid uses variable-level tracking within the VM interpreter. Multiple
taint markings are stored as one taint tag. When applications execute native methods,
variable taint tags are patched on return. Finally, taint tags are assigned to parcels
and propagated through Binder.

Figure 2 depicts TaintDroid’s architecture. Information is tainted (1) in a trusted
application with sufficient context (e.g., the location provider). The taint interface in-
vokes a native method (2) that interfaces with the Dalvik VM interpreter, storing spec-
ified taint markings in the virtual taint map. The Dalvik VM propagates taint tags
(3) according to dataflow rules as the trusted application uses the tainted information.
Every interpreter instance simultaneously propagates taint tags. When the trusted
application uses the tainted information in an IPC transaction, the modified binder
library (4) ensures the parcel has a taint tag reflecting the combined taint markings
of all contained data. The parcel is passed transparently through the kernel (5) and
received by the remote untrusted application. Note that only the interpreted code is
untrusted. The modified binder library retrieves the taint tag from the parcel and as-
signs it to all values read from it (6). The remote Dalvik VM instance propagates taint
tags (7) identically for the untrusted application. When the untrusted application in-
vokes a library specified as a taint sink (8), for example, network send, the library
retrieves the taint tag for the data in question (9) and reports the event.

Implementing this architecture requires addressing several system challenges, in-
cluding: (a) taint tag storage, (b) interpreted code taint propagation, (c) native code
taint propagation, (d) IPC taint propagation, and (e) secondary storage taint propaga-
tion. The remainder of this section describes our design and concludes with a discus-
sion of our integration of TaintDroid with the JIT version of the Dalvik VM introduced
in Android version 2.3.

ACM Transactions on Computer Systems, Vol. 32, No. 2, Article 5, Publication date: June 2014.
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4.1. Taint Tag Storage

The choice of how to store taint tags influences performance and memory overhead. Dy-
namic taint tracking systems commonly store tags for every data byte or word [Chow
et al. 2004; Yin et al. 2007]. Tracked memory is unstructured and without content se-
mantics. Frequently taint tags are stored in nonadjacent shadow memory [Yin et al.
2007] and tag maps [Zhu et al. 2009]. TaintDroid uses variable semantics within the
Dalvik interpreter. We store taint tags adjacent to variables in memory, providing spa-
tial locality.

Dalvik has five variable types that require taint storage: method local variables,
method arguments, class static fields, class instance fields, and arrays. In all cases, we
store a 32-bit bitvector with each variable to encode the taint tag, allowing 32 different
taint markings.

Method Local Variables. Temporary variables used for computation within a method
are called “method local variables” and are the primary use of registers in the Dalvik
interpreter. Registers contain both primitive type (i.e., scalar) values and object ref-
erences. Registers are always 32 bits. For 64-bit types (e.g., long and double), Dalvik
stores the value in two adjacent 32-bit registers and manages the registers separately.
It is left to the bytecode instructions to determine if one or two registers are used for
computation. The Dalvik interpreter uses a stack to manage the registers. On method
invocation, Dalvik pushes a new stack frame, allocating space for its registers. During
execution, registers are referenced by an index offset from the current frame pointer.
For example, register v0 is fp[ 0], register v1 is fp[ 1], and so on. On method termina-
tion, the stack frame is popped, losing the register values.

TaintDroid stores 32-bit taint tags for each register (regardless of its current taint
state) by allocating room for double the number of registers during the stack frame
push. Taint tags are stored immediately after registers for efficient reference (as de-
picted in Figure 3). TaintDroid accounts for tag storage by adjusting the frame pointer
index for each register vi to fp[ 2 · i] (a left bit shift), with the corresponding taint tag in
fp[ 2 · i + 1]. Note that for 64-bit scalars allocated as two adjacent 32-bit registers, the
taint tag is duplicated and stored after each register for consistency with the Dalvik
design.

Method Arguments. Dalvik uses registers to pass argument values to methods. A
target method can be either interpreted or native. Before a method is invoked, tempo-
rary copies of the specified argument registers are pushed onto the stack. If the target
method is interpreted, the new values become high-numbered local variable registers
in the callee stack frame. If the target method is native, a pointer to the stack top is
passed to the native method. The target native method is passed a pointer to a byte
array from which it must parse 32- and 64-bit values in using its method signature.

This difference in handling method arguments impacts taint tag storage, as shown
in Figure 3. Arguments for interpreted methods have interleaved taint tags for con-
sistency with local variable taint storage. Native methods, on the other hand, expect
a specific format in the received byte array of arguments, and interleaving taint tags
would require modification of all native methods. However, not all native methods
require taint tags for correct taint propagation (see Section 4.3). Therefore, we ap-
pend the argument taint tags to maintain compatibility and avoid extra modifications.
Finally, we allocate space for the taint tag of the return value for native methods. For
interpreted methods, the 32 bits go unused.

Class Fields. Similar to Java, Dalvik has both static and instance class fields. Static
fields store one value per class definition and are shared across all class instances,
whereas instance fields store a different value for each class instance. Storage of taint

ACM Transactions on Computer Systems, Vol. 32, No. 2, Article 5, Publication date: June 2014.
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Fig. 3. Modified stack format. Taint tags are interleaved between registers for interpreted method targets
and appended for native method arguments. Dark grayed boxes represent taint tags.

tags for static fields is straightforward: values are stored directly in a data structure
managed by the interpreter. Instance fields require more careful instrumentation. The
instance field data structure stores a byte-offset into a data object instance. Therefore
we interleave taint tags with values in the instance data in the same fashion used for
registers.1

Arrays. TaintDroid stores only one taint tag per array to minimize storage overhead.
Per-value taint tag storage is severely inefficient for Java String objects, as all char-
acters often have the same tag. Unfortunately, storing one taint tag per array may
result in false positives during taint propagation. For example, if untainted variable
u is stored into array A at index 0 (A[0]) and tainted variable t is stored into A[1],
then array A is tainted. Later, if variable v is assigned from A[0], v will be tainted,
even though u, which is the original variable assigned to A[0], was untainted. For-
tunately, Java frequently uses objects, and object references are infrequently tainted
(see Section 4.2). Therefore, this coding practice leads to less false positives.

4.2. Interpreted Code Taint Propagation

The granularity and flow semantics of taint tracking influence both performance
and precision. TaintDroid implements variable-level taint tracking within the Dalvik
VM interpreter. Variables provide valuable semantics for taint propagation, distin-
guishing, for example, data pointers from scalar values. TaintDroid primarily tracks

1Readers familiar with Android may recognize that the optimized DEX (ODEX) format hardcodes field byte-
offsets in the bytecode. However, the target device conventionally creates ODEX files on-demand, allowing
TaintDroid to ensure compatibility.
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primitive type variables (e.g., int, float, etc.); however, there are cases when object
references must become tainted to ensure taint propagation operates correctly; this
section addresses why these cases exist. However, first we present a formal logic for
taint tracking in the Dalvik machine language.

4.2.1. Taint Propagation Logic. The DEX machine language used by Dalvik has a unique
instruction set that requires a custom dataflow logic for taint propagation. We begin by
defining taint markings, taint tags, variables, and taint propagation. We then present
our logic rules for DEX.

Definition 1 (Universe of Taint Markings L). Let each taint marking be a label l.
We assume a fixed set of taint markings in any particular system. Example privacy-
based taint markings include location, phone number, and microphone input. We
define the universe of taint markings L to be the set of taint markings considered
relevant for an application of TaintDroid.

Definition 2 (Taint Tag). A taint tag is a set of taint markings. A taint tag t is in
the power set of L, denoted 2L, which includes ∅. Each variable has an associated tag
that is dynamically updated based on logic rules.

Definition 3 (Variable). A variable is an instance of one of the five variable types
described in Section 4.1 (method local variable, method argument, class static field,
class instance field, and array). Variable types have different representations. The lo-
cal and argument variables correspond to virtual registers, denoted vx. Class field vari-
ables are denoted as fx to indicate a field variable with class index x. fx alone indicates
a static field. Instance fields require an instance object and are denoted vy(fx), where
vy is the instance object reference variable. Finally, vx[ ·] denotes an array, where vx is
an array object reference variable.

Definition 4 (Virtual Taint Map Function τ(·)). Let v be a variable. τ(v) returns the
taint tag t for variable v. τ(v) can also be used to assign a taint tag to a variable.
Retrieval and assignment are distinguished by the position of τ(·) with respect to the
← symbol. When τ(v) appears on the right-hand side of ←, τ(v) retrieves the taint
tag for v. When τ(v) appears on the left-hand side, τ(v) assigns the taint tag for v. For
example, τ(v1) ← τ(v2) copies the taint tag from variable v2 to v1.

Definitions 1–4 provide the primitives required to define runtime taint propaga-
tion for Dalvik VM. Table I captures the propagation logic. The table enumerates ab-
stracted versions of the bytecode instructions specified in the DEX documentation.
Register variables and class fields are referenced by vX and fX , respectively. R and E
are the return and exception variables, respectively, maintained within the interpreter.
A, B, and C are constants in the bytecode.

The taint propagation logic uses conservative dataflow semantics for constant, move,
arithmetic, and logic instructions. Destination register values are always completely
overwritten, therefore the taint tag is set explicitly for each instruction. Constant val-
ues are considered untainted and therefore do not contribute to the taint tag of the
destination register. The interpreter maintains “hidden registers” for return and
exception values. These registers require taint tag storage and corresponding propa-
gation logic. The arithmetic and logic operations include unary negation, binary arith-
metic, bit shifts, and bitwise AND and OR (abstracted as ⊗ in the table). Finally,
the DEX bytecode does not require idioms to clear values (e.g., “xor eax, eax” in x86),
therefore no special handling is required.

The array and class field access instructions (i.e., put and get) propagate taint tags
almost identically to move instructions. However, as discussed in Section 4.2.2, there

ACM Transactions on Computer Systems, Vol. 32, No. 2, Article 5, Publication date: June 2014.
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Table I. DEX Taint Propagation Logic

Op Format Op Semantics Taint Propagation Description
const-op vA C vA ← C τ(vA) ← ∅ Clear vA taint
move-op vA vB vA ← vB τ(vA) ← τ(vB) Set vA taint to vB taint
move-op-R vA vA ← R τ(vA) ← τ(R) Set vA taint to return taint
return-op vA R ← vA τ(R) ← τ(vA) Set return taint (∅ if void)
move-op-E vA vA ← E τ(vA) ← τ(E) Set vA taint to exception taint
throw-op vA E ← vA τ(E) ← τ(vA) Set exception taint
unary-op vA vB vA ← ⊗vB τ(vA) ← τ(vB) Set vA taint to vB taint
binary-op vA vB vC vA ← vB ⊗ vC τ(vA) ← τ(vB) ∪ τ(vC) Set vA taint to vB taint ∪ vC taint
binary-op vA vB vA ← vA ⊗ vB τ(vA) ← τ(vA) ∪ τ(vB) Update vA taint with vB taint
binary-op vA vB C vA ← vB ⊗ C τ(vA) ← τ(vB) Set vA taint to vB taint
aput-op vA vB vC vB[ vC] ← vA τ(vB[ ·] ) ← τ(vB[ ·] ) ∪ τ(vA) Update array vB taint with vA taint
aget-op vA vB vC vA ← vB[ vC] τ(vA) ← τ(vB[ ·] ) ∪ τ(vC) Set vA taint to array and index taint
sput-op vA fB fB ← vA τ(fB) ← τ(vA) Set field fB taint to vA taint
sget-op vA fB vA ← fB τ(vA) ← τ(fB) Set vA taint to field fB taint
iput-op vA vB fC vB(fC) ← vA τ(vB(fC)) ← τ(vA) Set field fC taint to vA taint
iget-op vA vB fC vA ← vB(fC) τ (vA) ← τ(vB(fC)) ∪ τ(vB) Set vA taint to fC and obj. ref. taint

Register variables and class fields are referenced by vX and fX , respectively. R and E are the return and
exception variables maintained within the interpreter. A, B, and C are bytecode constants.

are several cases where the taint tag on the object reference must be included in the
propagation logic.

DEX also defines several array- and class-related instructions not included in Table I
(for brevity). The array-length instruction returns the length of an array, which we do
not consider tainted. Note that some taint propagation logics taint this value to aid
specific types of implicit flow propagation (e.g., Vogt et al. [2007]). The new-array and
fill-new-array instructions allocate a new array with constant values. The fill-data-
array copies constant values from the bytecode into an array. We assign a ∅ taint tag
to the array if none of the original array content remains. Lastly, we do not consider
the value returned from the instance-of class instruction to be tainted.

Finally, Table I does not show comparison instructions (cmp-X) that perform a com-
parison between registers and assign a destination register the value of 0, 1, or −1.
Our implementation currently assigns the destination register a ∅ taint tag. Subse-
quent work [Gilbert et al. 2011] propagates taint tags from the argument registers to
help define a “taint scope” for tracking specific types of implicit flows.

4.2.2. Tainting Object References. The propagation rules in Table I are straightforward
with two exceptions. First, taint propagation logics commonly include the taint tag
of the array index to handle translation tables (e.g., ASCII to UNICODE or char-
acter case conversion). For example, consider a translation table from lowercase to
uppercase characters: if a tainted value “a” is used as an array index, the resulting “A”
value should be tainted even though the “A” value in the array is not. Hence, the taint
logic for aget-op uses both the array and array index taint. Second, when the array con-
tains object references (e.g., an Integer array), the index taint tag is propagated to the
object reference and not the object value. Since DEX provides object semantics to our
propagation logic, we are able to include the object reference taint tag in the instance
get (iget-op) rule.

The code listed in Figure 4 demonstrates a real instance of where object reference
tainting is needed. Here, valueOf() returns an Integer object for a passed int. If the int
argument is between −128 and 127, valueOf() returns reference to a statically defined
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public static Integer valueOf(int i) {
if (i < -128 || i > 127) {

return new Integer(i); }
return valueOfCache.CACHE [i+128];

}
static class valueOfCache {

static final Integer [] CACHE = new Integer [256];
static {

for(int i=-128; i <=127; i++) {
CACHE[i+128] = new Integer(i); } }

}

Fig. 4. Excerpt from Android’s Integer class illustrating the need for object reference taint propagation.

Integer object. valueOf() is implicitly called for conversion to an object. Consider the
following definition and use of a method intProxy().

Object intProxy(int val) { return val; }
int out = (Integer) intProxy(tVal);

Consider the case where tVal is an int with value 1 and taint tag TAG. When int-
Proxy() is passed tVal, TAG is propagated to val. When intProxy() returns val, it calls
Integer.valueOf() to obtain an Integer instance corresponding to the scalar variable val.
In this case, Integer.valueOf() returns a reference to the static Integer object with value
1. The value field (of the Integer class) in the object has taint tag of ∅; however, since
the aget-op propagation rule includes the taint of the index register, the object refer-
ence has a taint tag of TAG. Therefore, only by including the object reference taint tag
when the value field is read from the Integer (i.e., the iget-op propagation rule) will the
correct taint tag of TAG be assigned to out.

4.3. Native Code Taint Propagation

Native code is not monitored by TaintDroid. We would like to have the same propaga-
tion semantics as interpreted code; therefore we define two necessary postconditions:
(1) all accessed external variables (i.e., class fields referenced by native methods) are
assigned taint tags according to the dataflow rules; and (2) the return value is assigned
a taint tag according to the dataflow rules. TaintDroid achieves these postconditions
through an assortment of manual instrumentation, method profiles, and heuristics
depending on situational requirements.

4.3.1. Internal VM Methods. Internal VM methods are called directly by interpreted
code, passing a pointer to an array of 32-bit register arguments and a pointer to a
return value. The stack augmentation shown in Figure 3 provides access to taint tags
for both Java arguments and the return value. Recall from Section 4.1 that TaintDroid
appends the argument array with taint tag storage for each argument as well as the
return value. We manually inspected Dalvik’s internal VM methods and instrumented
those requiring taint propagation. We also modified the interpreter to copy the return
value taint tag from the argument array to the internally managed return value taint
tag after the method terminates.

There are a relatively small number of internal VM methods which are infrequently
added between versions. Only 11 internal VM methods were added between versions
1.5 and 2.1 (primarily for debugging and profiling). Between 2.1 and 2.3.4, 9 methods
were removed and 10 methods were added (again methods were primarily for debug-
ging and profiling). For the total 186 internal VM methods in Android version 2.3.4,
only 5 required patching: the System.arraycopy() native method for copying array con-
tents, and several native methods implementing Java reflection.
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4.3.2. JNI Methods. The vast majority of Android’s native methods use the Java Na-
tive Interface. JNI methods are invoked through the JNI call bridge, which is in and
of itself an internal VM method. The call bridge parses Java arguments and assigns
a return value based on the method’s descriptor string. We patched the call bridge to
provide taint propagation for all JNI methods using method profiles. A method profile
is a list of (from, to) pairs indicating flows between variables, which may be method
parameters, class variables, global variables, or return values. The current implemen-
tation of TaintDroid uses a manual definition of method profiles based on empirical
findings. However, given the large volume of JNI methods, this task is much better
suited for automated source-code analysis.

Instead of defining method profiles for every JNI method, we introduced a heuristic
that provides conservative taint propagation for a large class of native methods that
do not reference objects in their arguments, return value, or method body. The lack
of referencing objects indicates information must flow from the method arguments to
the return value. For example, the native cos() implementation returns the cosine of
the passed argument. More generally, our heuristic assigns the union of the argument
taint tags to the return value taint tag. Note this conservative calculation may cause
false positives.

The heuristic has only false negatives for methods using objects. Objects allow in-
formation flows other than to the return value. Information may flow into an object
directly or indirectly referenced by: (1) a method argument, (2) a field in the method’s
class, or (3) the return value. To expand coverage, we extend the heuristic to recog-
nize object references to arrays and Java String objects when used as arguments and
the return value. While this heuristic has both false positives and false negatives, we
empirically found it effective in our experiments.

4.4. IPC Taint Propagation

Taint tags must propagate between applications when they exchange data. The track-
ing granularity affects performance and memory overhead. Therefore, to balance over-
head and precision, our original implementation of TaintDroid [Enck et al. 2010] uses
message-level taint tracking. While we found message-level taint tracking to be largely
effective in practice (i.e., minimal false positives), we have also experimented with
more precise byte-level tracking for IPC. We now discuss both variants.

Message-level IPC tracking. Recall that Android’s IPC uses binder messages called
parcels. Android constructs parcels in a userspace library that we modified to include
taint tag information. For message-level IPC tracking, we added a taint tag variable
to the parcel object. When new data is written to the parcel, we bitwise OR (i.e., union)
the new data’s tag with the existing tag and store the result. When the parcel is even-
tually transmitted over binder, the taint tag is appended to the data buffer, making
the modifications transparent to the kernel. On the receiver side, the taint tag is im-
mediately retrieved and automatically assigned to all variables read from the parcel.

Fine-grained IPC tracking. Message-level taint propagation for IPC can lead to false
positives, because all data in the message shares the same taint tag. However, finer-
grained tracking will incur a higher performance overhead. Since our original pa-
per [Enck et al. 2010], we have explored the best way to include fine-grained tracking.

We decided to implement byte-level tracking. We could not simply use a shadow par-
cel, because it would increase IPC size by 400%. Instead, we chose a taint tag vector
approach that is slightly slower, but significantly more memory efficient in the aver-
age case. The taint tag vector contains a start position and number of bytes for each
tainted variable in the parcel. If two taint variables are adjacent, the entries, vector
entries are combined. On the receiver side, our parcel library changes apply taint tags
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automatically to variables based on the taint vector if any part of the variable’s bytes
are tainted.

During our experimentation, we observed false positives due to message-level track-
ing only when tracking the IMSI (see Section 8). However, byte-level tracking im-
poses a greater performance overhead. Section 7 compares the performance of the two
approaches.

4.5. Secondary Storage Taint Propagation

Taint tags may be lost when data is written to a file. To address this, our design
stores one taint tag per file. The taint tag is updated on file write and propagated
to data buffers on file read. Taint tags are stored in the file system’s extended at-
tributes. For our original implementation of TaintDroid [Enck et al. 2010], we imple-
mented extended attribute support for Android’s host file system (YAFFS2). However,
the YAFFS2 implementation in Android 2.3 includes xattr support, removing the need
to modify the kernel. Additionally, by default Android formats SDCards as FAT, which
does not support xattr-like storage. Therefore, we made minimal modifications to
Android to support ext2-formatted SDcards. Interestingly, we found that some applica-
tions assume the SDcard can be used to share files between UIDs. Therefore we needed
to explicitly set the permission mode to 666 and 777 when creating files and directo-
ries, respectively. These permissions are only applied to files and directories created
under /sdcard. Finally, note that, as with arrays and IPC, storing one taint tag per
file leads to false positives and limits the granularity of taint markings for databases
(see Section 5). Alternatively, we could track taint tags at a finer granularity at the
expense of added memory and performance overhead.

4.6. Taint Interface Library

Taint sources and sinks defined within the virtualized environment must communi-
cate taint tags with the tracking system. We abstract the taint source and sink logic
into a single taint interface library implemented as the dalvik.system.Taint Java class.
The interface performs two functions: (1) adding taint markings to variables; and
(2) retrieving taint markings from variables. The library only provides the ability to
add and not set or clear taint tags, as such functionality could be used by untrusted
Java code to remove taint markings.

Adding taint tags to arrays and strings via internal VM methods is straightforward,
as both are stored in data objects. However, because scalar values are stored in the
stack frame, this method cannot add the taint to the passed value. Instead, it returns
a value that is tainted: tainted = Taint.addTaintInt(foo, tag). Retrieving the tag
of a variable is similar: tag = Taint.getTaintInt(foo). Note that the stack storage
does not pose complications for taint tag retrieval.

4.7. Integration with Dalvik JIT

With the release of Android 2.3, a just-in-time compiler (JIT) was added to the Dalvik
VM to boost performance for bytecode execution [Cheng and Buzbee 2010]. JITs typ-
ically seek to improve performance by identifying frequently executed bytecode se-
quences and translating them to optimized native code at runtime. In the Dalvik VM,
the interpreter profiles execution to identify candidate “hot” traces, which are subse-
quently compiled and optimized by the JIT. Within a trace, the JIT applies standard
optimizations such as register promotion, redundant load/store elimination, and vari-
ous loop optimizations. Once compiled and optimized, traces are stored in a per-process
cache and reused when the same execution path is traversed again. JITs typically pro-
vide the greatest performance gains for compute-intensive workloads—the Dalvik VM
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5:14 W. Enck et al.

JIT achieves significant speedups of 2x to 5x for such workloads [Cheng and Buzbee
2010].

Because JIT has the potential to provide substantial performance gains over the
standard interpreter, it is important for TaintDroid to support JIT to avoid impos-
ing an unnecessary performance penalty for applications that benefit from it. Adding
taint tracking to the JIT required modifying trace compilation, namely, the process
by which a sequence of DEX bytecodes is translated to an intermediate representa-
tion (IR) amenable to optimization. A handler for each bytecode instruction generates
a sequence of IR instructions implementing the bytecode’s logic. We modified these
handlers to insert the same taint propagation logic implemented in the Dalvik inter-
preter. Once a bytecode sequence and its corresponding taint propagation logic have
been translated to IR form, the JIT proceeds with the normal steps of optimizing the
trace and compiling it to ARM native code.

5. PRIVACY HOOK PLACEMENT

Using TaintDroid for privacy analysis requires identifying and instrumenting privacy-
sensitive sources. Complex operating systems such as Android provide applications
information in a variety of ways, such as direct access, as well as service interface.
Each potential type of privacy-sensitive information must be studied carefully to de-
termine the best method of defining the taint source. Taint sources can only add taint
tags to memory for which TaintDroid provides tag storage. This section discusses how
valuable taint sources and sinks can be implemented within these restrictions. We
generalize such taint sources based on information characteristics.

Low-Bandwidth Sensors. A variety of privacy-sensitive information types are ac-
quired through low-bandwidth sensors, for example, location and accelerometer. Such
information often changes frequently and is simultaneously used by multiple appli-
cations. Therefore, it is common for a smartphone OS to multiplex access to low-
bandwidth sensors using a manager. This sensor manager represents an ideal point
for taint source hook placement. For our analysis, we placed hooks in Android’s
LocationManager and SensorManager services, which are part of our trusted com-
puting base.

High-Bandwidth Sensors. Privacy-sensitive information sources such as the micro-
phone and camera are high bandwidth. Each request from the sensor frequently re-
turns a large amount of data that is only used by one application. Therefore, the
smartphone OS may share sensor information via large data buffers, files, or both.
When sensor information is shared via files, the file must be tainted with the appro-
priate tag. Due to flexible APIs, we placed hooks for both data buffer and file tainting
for tracking microphone and camera information.

Information Databases. Shared information such as address books and SMS mes-
sages are often stored in file-based databases and accessed through Android’s content
provider programming abstraction. There are several possibilities for adding taint
sources to content providers. Our original implementation [Enck et al. 2010] added
the taint tag directly to the file storing the data, thereby tainting all data read from
the file. The current implementation patches Android’s ContentResolver and Cursor-
Wrapper classes to programmatically taint query response strings based on the con-
tent provider authority. For example, an address-book taint marking is added for the
“com.android.contacts” authority. Similar rules are added for bookmarks, SMS, and
MMS. Note that, while this file-level granularity was appropriate for these valuable
information sources, others may exist for which files are too coarse grained. However,
we have not yet encountered such sources.
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Device Identifiers. Information that uniquely identifies the phone or the user is
privacy sensitive. Not all personally identifiable information can be easily tainted,
however, the phone contains several easily tainted identifiers: the phone number, SIM
card identifiers (IMSI, ICC-ID), and device identifier (IMEI) are all accessed through
well-defined APIs. We instrumented the APIs for the phone number, ICC-ID, and
IMEI. An IMSI taint source has inherent limitations discussed in Section 8.

Network Taint Sink. Our privacy analysis identifies when tainted information is
transmitted over the network interface. The VM interpreter-based approach requires
the taint sink be placed within interpreted code. Hence, we instrumented the Java
framework libraries at the point the native socket library is invoked.

6. APPLICATION STUDY

This section reports on two application studies that use TaintDroid to analyze how
popular Android applications use privacy-sensitive user data. The first study was per-
formed on 30 applications downloaded in April 2010 as part of our original TaintDroid
paper [Enck et al. 2010]. To provide a longitudinal perspective, in September 2012 we
downloaded updated versions of these same applications, of which only 20 still existed.

6.1. Experimental Setup

Our 2010 application study selected 30 applications as follows. We started with a
snapshot of the 50 most popular free applications in Android Market in April 2010
(1,100 apps in total). We then narrowed the list by considering only those apps that had
both Internet permission and at least one of location, camera, and audio permissions
(358 apps). From this set, we randomly selected 30 applications for study (8.4% sample
size) that span 12 categories. Table II enumerates these 30 apps. For our September
2012 study, we attempted to download updated versions of these 30 apps; however, 10
of the applications no longer existed. Furthermore, two of the updated apps depended
on third-party native libraries and therefore failed to run in TaintDroid.

For both studies, we started each application, performed any initialization or regis-
tration required, and then manually exercised the offered functionality. We recorded
system logs including detailed information from TaintDroid: tainted binder messages,
tainted file output, and tainted network messages with the remote address. To verify
our results, we also logged the network traffic using tcpdump on the WiFi interface
and repeated experiments on multiple Nexus One phones running TaintDroid (based
on Android 2.1 for the 2010 study and Android 2.3 for the 2012 study). The phones
used for experiments had a valid SIM card; however, the SIM card was inactive, forc-
ing all the packets to be transmitted via the WiFi interface. The packet trace was used
only to verify the exposure of tainted data flagged by TaintDroid.

In addition to the network trace, we also noted whether applications acquired user
consent (either explicit or implicit) for exporting sensitive information. This provides
additional context for identifying possible privacy violations. For example, by selecting
the “use my location” option in a weather application, the user implicitly consents to
disclosing geographic coordinates to the weather server.

6.2. Findings

Table II shows the results of both the 2010 and 2012 study. The table classifies disclo-
sures into implicit consent, explicit consent, and potential privacy violation categories
based on the resolved host name corresponding to the network destination. We con-
sider a disclosure to have implicit consent if it is clear that information will be sent
to a host based on the performed actions. A disclosure has explicit consent if the user
explicitly agrees to an EULA or terms of service upon starting the application. This
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Table II. Information Sent Off Device in 2010 Study (left semicircle) and 2012 Study (right semicircle)
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3001 Wisdom Quotes Lite [com.xim.wq lite] � � �
Antivirus Free [com.antivirus] �∗ � � � � �
Astrid [com.timsu.astrid] � �∗ �
Barcode Scanner [com.google.zxing.client.android]
Blackjack [spr.casino] �
Cestos Full [com.chickenbrickstudios.cestos full] �
The coupons App [thecouponsapp.coupon] � � � � �
The directory for Germany [de.dastelefonbuch.android] �
Evernote [com.evernote] �∗ � � � �
Hearts (Free) [com.bytesequencing.hearts ads] � �
Horoscope [fr.telemaque.horoscope] � �
iXmat Barcode Scanner [com.ixellence.ixmat.android.community]
Myspace [com.myspace.android] � �
Solitare Free [com.mediafill.solitaire] � �
Traffic Jam Free [com.jiuzhangtech.rushhour] �
Trapster [com.trapster.android] �∗ ���
The Weather Channel [com.weather.Weather] ��
Yellow Pages [com.avantar.yp] �� �

Updated Version Crashes Due to Native Library
Bump [com.bumptech.bumpga] � �
Layar [com.layar] � �

No longer in Android Market
Babble Book [com.kalicinscy.babble]
BBC News listen & tweet [daaps.media.bbc] �
Children’s ABC Animals (lite) [com.mob4.childrenabc.animals] �
Knocking Live Video Beta [com.pointyheadsllc.knockingvideo] �
Mabilo Ringtones [mabilo.ringtones] �
Manga Browser [com.mangabrowser.main] �
Movies and showtimes [com.stylem.movies] �
Pro Basketball Scores [com.plusmo.probasketballscores] �
Slide: Spongebob [com.mob4.slideme.qw.android.spongebob] �
Wertago for Nightlife [com.wertago] � �†
2010 study: � = implicit consent, � = explicit consent, � = potential violation
2012 study: � = implicit consent, � = explicit consent, � = potential violation
∗ Multiple uses result in both implicit consent and potential violation. † Sent the hash of the value.

requires the user to select “I agree” (or similar) in a dialog. Some applications dis-
played a link to a privacy policy for a short duration, or listed a link to a privacy
policy at the bottom of the screen or in a settings menu. We did not consider these
applications to have explicit consent. Note that if an app had both implicit and ex-
plicit consent, we indicate it as implicit consent. Finally, the remaining disclosures
were considered potential privacy violations. In some cases, information had multiple
disclosures wherein some uses had implicit consent and others were potential privacy
violations (as indicated in the table).

Location Data to Advertisement Servers. In the 2010 study, 15 of the 30 applica-
tions exposed location data to third-party advertisement or analytics servers without
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requiring implict or explicit user consent. Of these disclosures, 5 apps sent geo-
coordinates to ad.qwapi.com, 5 apps to admob.com, 2 apps to ads.mobclix.com (1
sent location both to admob.com and ads.mobclix.com), and 4 apps sent location to
data.flurry.com. Of the 15 applications, only 2 presented an EULA on first run; how-
ever, neither EULA indicated this practice. Note that Table II shows 19 applica-
tions had privacy violations in the 2010 study. This is because 4 applications (Bump,
Coupons, Trapster, and Yellow Pages) sent the location, but not to one of the aforemen-
tioned ad servers.

Exposure of location information occurred both in plaintext and in binary for-
mat. The latter highlights TaintDroid’s advantages over simple pattern-based packet
scanning. Applications sent location data in plaintext to admob.com, ad.qwapi.com,
ads.mobclix.com (11 applications) and in binary format to FlurryAgent (four applica-
tions). The plaintext location exposure to AdMob occurred in the following HTTP GET
string.

...&s=a14a4a93f1e4c68 &..&t=062 A1CB1D476DE85B717D9195A6722A9 &
d%5 Bcoord %5D=47.661227890000006%2C -122.31589477&...

Investigating the AdMob SDK revealed the s= parameter is an identifier unique to an
app publisher, and the coord= parameter provides the geographic coordinates.

For FlurryAgent, we confirmed location exposure by the following sequence of
events. First, a component named “FlurryAgent” registers with the location manager
to receive location updates. Then, TaintDroid log messages show the application re-
ceiving a tainted parcel from the location manager. Finally, the application reports
“sending report to http://data.flurry.com/aar.do” after receiving the tainted parcel.

Device Unique ID. Twenty out of the 30 applications downloaded in 2010 required
permissions to read phone state and the Internet. In the 2010 study, TaintDroid de-
tected that 9 of those 20 apps sent the IMEI to a network server. The IMEI uniquely
identifies a specific mobile phone and is used to prevent a stolen handset from access-
ing the cellular network. Seven out of the 9 applications did not specify IMEI collection
in the EULA (if even present). We found 2 of the 7 applications included the IMEI when
transmitting the device’s geographic coordinates to their content server, potentially
repurposing the IMEI as a client ID.

In comparison, 2 of the 9 applications treated the IMEI with more care. Layar dis-
played a privacy statement that clearly indicated that the application collects the de-
vice ID. Wertago uses a hash of the IMEI instead of the number itself, which does not
reveal the value itself. We verified this practice by comparing results from two different
phones.

Phone Information. In addition to the IMEI, in the 2010 study we found that 2 appli-
cations also transmitted to their servers: (1) the device’s phone number, (2) the IMSI,
which is a unique 15-digit code used to identify an individual user on a GSM network,
and (3) the ICC-ID number, a unique SIM card serial number. We verified messages
were flagged correctly by inspecting the plaintext payload.2 In neither case was the
user informed that this information was sent off the phone.

This finding demonstrates that Android’s coarse-grained access control provides
insufficient protection against third-party applications seeking to collect sensitive
data. Moreover, we found that one application sent the phone information every time
the phone boots. While this application displays a terms of use on first use, it does not

2Because of the limitation of the IMSI taint source as discussed in Section 8, we disabled the IMSI taint
source for experiments. Nonetheless, TaintDroid’s flag of the ICC-ID and the phone number led us to find
the IMSI contained in the same payload.
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specify collection of this highly sensitive data. Surprisingly, this application transmits
the phone data immediately after install, before first use.

Legitimate Flags. In the 2010 study, 37 exposures identified by TaintDroid were
deemed clearly legitimate use. The flags resulted from four applications and the OS
itself while using the Google Maps for Mobile (GMM) API. TaintDroid’s logs indicate
an HTTP request with the “User-Agent: GMM . . . ” header, but a binary payload. Given
that GMM functionality includes downloading maps based on geographic coordinates,
it is obvious that TaintDroid correctly identified location information in the payload.
Our manual inspection of each message along with the network packet trace confirmed
that there were no false positives. We note that there is a possibility of false nega-
tives that are difficult to verify with the lack of the source code of the third-party
applications.

6.3. Longitudinal Study

The 2012 study is intended to provide insight into how application developers are
reacting to the increased awareness of consumer privacy concerns. When our origi-
nal study was published [Enck et al. 2010], relatively little public attention was given
to privacy problems in smartphone apps. Since this study, there have been many news
stories and academic works providing further investigation [Enck et al. 2011; Grace
et al. 2012; Hornyack et al. 2011].

Permission Changes. Focusing on four permission types considered in the original
study [Enck et al. 2010] (location, camera, microphone, phone state), we found the
following. Hearts removed the location permission. Trapster removed the camera per-
mission. MySpace also removed the camera permission, but it added the phone-state
permission. Evernote and Solitare Free also added the phone-state permission and a
substantial number of new permissions; however, Evernote’s new permissions were
likely due to new functionality, whereas the purpose for Solitaire Free’s new permis-
sions (get accounts, read contacts, get tasks) was less clear.

Changes in Information Disclosure. Table II contrasts the 2010 and 2012 studies.
In the 2010 study, 19 applications had potential location-privacy violations, and we
detected that 15 of those applications sent the location to an ad or analytics server.
Of these 15 apps, 7 were no longer available in the Android Market. Of the remaining
8, 3 still sent location to an ad or analytics server (though not necessarily the same
server). The other 5 either no longer exposed location or did not expose it during our
experiment. Note that, as mentioned before, Hearts removed its location permission.
The 2010 study identified Trapster as a potential location-privacy violator, but not
to an ad server. In the 2012 study, we noted implicit consent to send location to a
Trapster server, but not to send it to flurry.com. There were also two new potential
location-privacy violators. The MySpace app sent location information to e.com during
login. We observed implicit consent for Evernote to send location to evernote.com, but
not to google-analytics.com.

There were also significant changes to IMEI disclosure. Of the original seven poten-
tial violators, only three were confirmed to still have that behavior. However, five other
applications were observed to disclose the IMEI without implicit or explicit consent.
Note that, while three apps added phone-state permissions, none of the apps dropped
the phone-state permission. Therefore, the privacy-violating functionality may still ex-
ist, but was not exercised during our experiments (despite repeated trials). Conversely,
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the observed new functionality may have also existed in the 2010 version, but was not
exercised (except when the previous version did not have the phone-state permission).

Next, we make special note of Antivirus Free and The Coupons App. Both of these
applications were identified as exposing multiple types of phone information in the
2010 study. Antivirus Free still contains the phone-state permission, and deeper in-
vestigation is required to determine if the behavior has truly changed. As for The
Coupons App, we noted a logged Java error with a URL containing the IMEI, IMSI,
phone number, and location, as well as an email address. Therefore, without the error,
the information may have been disclosed and therefore detected by TaintDroid.

Finally, our improved and added taint sources revealed two additional potential pri-
vacy violations. First, we observed the 3001 Wisdom Quotes Lite application sending
the list of installed applications to applovin.com. Second, we observed Astrid send-
ing address-book entries to ajax.googleapis.com and analytics.localytics.com. However,
this occurred when a contact was used in a task name, and appears an unintended
consequence of using the contact for this purpose.

Explicit Consent. EULAs and privacy policies are becoming more common in ap-
plications; however, we observed very few instances of explicit consent. The Weather
Channel application opened a dialog box to ask the user to use location information
for advertisements. Trapster displays a terms of service informing the user that it will
collect the device ID and IP address (but not location).

Whether or not the app acquired explicit consent was not always clear. For example,
Evernote sends location and phone number in an encoded format to google-analytics.
com. It has a link at the bottom of the account signup screen indicating that the user
agrees to the privacy policy when creating a new account. While the link to the pri-
vacy policy does indicate using personal information and geographic region, it does not
mention the phone number. Furthermore, the link to the privacy policy may be easy to
overlook for most users.

Other applications with links to privacy policies were even less accessible, appearing
only for a few seconds during application launch. For example, in the 2012 experiment,
when Solitaire Free was started for the first time, a small dialog was displayed indicat-
ing the applovin library will access user data to enable social gaming/advertisements.
The dialog contains a privacy policy URL in small text at the bottom and is only shown
several seconds, and only on first use. The privacy policy indicates the library had ac-
cess to address book, applications installed, device information, and location. However,
since the policy was difficult to see and the user did not need to accept it, we do not
classify the corresponding disclosure as explicit consent. In other cases, such as, Ces-
tos, a URL is never displayed and the user must visit the developer’s Web site to find
the privacy policy.

6.4. Summary

Our study shows the effectiveness of the TaintDroid system in accurately tracking
applications’ use of privacy-sensitive data. While monitoring these applications, Taint-
Droid generated no false positives (with the exception of the IMSI taint source which
we disabled for experiments; see Section 8). The flags raised by TaintDroid helped to
identify potential privacy violations. While our sample set is relatively small (only 30
of hundreds of thousands of apps), the ways in which privacy-sensitive information is
disclosed indicates significant privacy concerns for smartphone applications.

7. PERFORMANCE EVALUATION

In this section, we measure the overhead incurred by TaintDroid. Experiments were
performed on a Google Nexus One (macrobenchmarks and Java microbenchmark) and
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Table III. Macrobenchmark Results

Android TaintDroid
App Load Time 79 ms 91 ms
Address Book (create) 275 ms 309 ms
Address Book (read) 89 ms 98 ms
Phone Call 171 ms 197 ms
Take Picture 2913 ms 2938 ms

Nexus S (IPC microbenchmark) running Android OS version 2.3. Within the inter-
preted environment, TaintDroid incurs the same performance and memory overhead
regardless of the existence of taint markings. Hence, we only need to ensure that file
access includes appropriate taint tags.

7.1. Macrobenchmarks

During the application study, we anecdotally observed limited performance overhead.
We hypothesize that this is because: (1) most applications are primarily in a “wait
state,” and (2) heavyweight operations (e.g., screen updates and Web page rendering)
occur in unmonitored native libraries.

To gain further insight into perceived overhead, we devised five macrobenchmarks
for high-level smartphone operations. Each experiment was measured 50 times and
observed 95% confidence intervals at least an order of magnitude less than the mean.
In each case, we excluded the first run to remove unrelated initialization costs. Exper-
imental results are shown in Table III.

Application Load Time. The application load time measures from when Android’s
Activity Manager receives a command to start an activity component to the time the
activity thread is displayed. This time includes application resolution by the Activ-
ity Manager, IPC, and graphical display. TaintDroid adds only 15% overhead, as the
operation is dominated by native graphics libraries.

Address Book. We built a custom application to create, read, and delete entries for
the phone’s address book, exercising both file read and write. Create used three SQL
transactions while read used two. The subsequent delete operation was lazy, returning
in 0ms, and hence was excluded from our results. TaintDroid adds approximately 12%
and 10% overhead for address-book entry creates and reads, respectively. Note that
the user experiences less than 40ms overhead when creating or viewing a contact.

Phone Call. The phone call benchmark measured the time from pressing “dial” to
the point at which the audio hardware was reconfigured to “in call” mode. TaintDroid
adds less than 30ms per phone call setup (∼15% overhead), which is significantly less
than call setup in the network that takes on the order of seconds.

Take Picture. The picture benchmark measures from the time the user presses the
“take picture” button until the preview display is reenabled. This measurement in-
cludes the time to capture a picture from the camera and save the file to the SDcard.
TaintDroid had an overhead of less than 1%.

7.2. Java Microbenchmark

Figure 5 shows the execution-time results of a Java microbenchmark. We used an An-
droid port of the standard CaffeineMark 3.0 [Pendragon Software Corporation 1997].
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Fig. 5. Microbenchmark of Java overhead.

CaffeineMark uses an internal scoring metric that roughly corresponds to the number
of Java instructions executed per second; as a result, scores are useful only for rela-
tive comparisons. The “overall” results indicate a cumulative score across individual
benchmarks.

The unmodified Android system with JIT enabled had an average score of 5,466,
while TaintDroid measured 3,693. TaintDroid has a 32% overhead with respect to
the unmodified system in JIT mode. With JIT disabled, the scores for unmodified An-
droid and TaintDroid were 1,194 and 983, respectively, indicating an 18% overhead
for TaintDroid. The larger relative overhead for JIT mode is expected. A key factor
in TaintDroid’s low CPU overhead is the fact that executing the Dalvik bytecode in-
struction logic is only a small portion of the overall machine instructions required to
execute the Dalvik VM. JIT mode reduces the time spent executing non-bytecode logic,
and hence executing TaintDroid in JIT mode has a larger relative overhead.

7.3. IPC Microbenchmark

Our original TaintDroid implementation [Enck et al. 2010] only provided message-
level IPC taint propagation. While our experimentation revealed only a limited num-
ber of false positives, we have since explored a finer-grained, byte-level taint tracking
for IPC (see Section 4.4).

The IPC benchmark measures the overhead due to the parcel modifications for both
message-level tracking and fine-grained byte-level tracking. For this experiment, we
developed client and service applications that perform binder transactions as fast as
possible. The client and service exchange messages of variable size: 1, 10, or 100 inte-
ger values. The experiment measures the time for the pair of applications to exchange
messages 10,000 times. For each message size, we tainted zero, one, or all of the items
contained in the parcel with unique taint tags.

Figure 6 shows the results of the IPC benchmark. TaintDroid with message-level
tracking was about 35% slower than Android for single-item parcels and 230% slower
for parcels containing 100 items. Since message-level tracking adds only four bytes
to each IPC object, overhead due to data size is unlikely. A more likely cause of the
overhead is the continual copying of taint tags as values are marshalled into and out
of the parcel byte buffer. The increase in overhead as parcel size increases is likely due
to a reduction of spatial locality when packing and unpacking parcels because of the
taint tag appended at the end.

Fine-grained byte-level tracking is 50%–475% slower than Android. Byte-level track-
ing adds complexity to the parcel read and write routines. This results in a greater
overhead than that of message-level tracking. For both message-level and byte-level
tracking, the presence of tainted items in the message did not have a significant im-
pact on the overhead — the greatest effect observed was an increase from 28.6 seconds
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Fig. 6. IPC overhead microbenchmark.

for untainted 100-item parcels to 31.3 seconds for completely tainted parcels with byte-
level tracking.

8. DISCUSSION

Approach Limitations. TaintDroid tracks only explicit dataflows in which a bytecode
directly transfers information from its source objects to its destination objects. Taint-
Droid does not track implicit dataflows in which an app’s control flow (e.g., con-
ditional branching) or covert channels (e.g., volume control [Schlegel et al. 2011])
indirectly transfer sensitive information. Handling implicit flows is long-standing
problem [Denning and Denning 1977] that requires carefully balancing undertainting,
overtainting, and efficiency. TaintDroid is designed for minimal performance overhead,
and Section 6 shows that TaintDroid tracks nonmalicious applications well enough to
reveal a wide range of suspicious behavior. However, truly malicious apps can circum-
vent TaintDroid and exfiltrate privacy-sensitive information through implicit flows.
Fully tracking implicit flows requires some form of static program analysis [Denning
and Denning 1977; Myers 1999; Schwartz et al. 2010] to compute which objects’ val-
ues are influenced by changes in control flow. One approach is to limit programmers’
expressiveness so that the set of influenced objects is restricted [Myers 1999], but this
approach cannot be applied to existing apps. Without programming-language restric-
tions, computing the set of influenced objects must be performed conservatively, lead-
ing to rampant overtainting and false alerts [Schwartz et al. 2010]. Several projects
have explored selectively propagating taint based on the amount of sensitive informa-
tion transferred by implicit flows [Cox et al. 2014; Kang et al. 2011; McCamant and
Ernst 2008]. However, this approach is unlikely to be practical for the kinds programs
and data types targeted by TaintDroid (e.g., location-based mobile apps). Finally, Taint-
Droid cannot track information flows that cross machine boundaries; once information
leaves the phone, TaintDroid cannot detect when it returns in a network reply.

Implementation Limitations. Android uses the Apache Harmony [2011] implemen-
tation of Java with a few custom modifications. This implementation includes sup-
port for the PlatformAddress class, which contains a native address and is used by
DirectBuffer objects. The file and network IO APIs include write and read “direct”
variants that consume the native address from a DirectBuffer. TaintDroid does not
currently track taint tags on DirectBuffer objects because the data is stored in opaque
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native data structures. Currently, TaintDroid logs when a read or write “direct” vari-
ant is used, which anecdotally occurred with minimal frequency. Similar implemen-
tation limitations exist with the sun.misc.Unsafe class, which also operates on native
addresses.

Taint Source Limitations. While TaintDroid is very effective for tracking sensitive
information, it causes significant false positives when the tracked information con-
tains configuration identifiers. For example, the IMSI numeric string consists of a Mo-
bile Country Code (MCC), Mobile Network Code (MNC), and Mobile Station Identifier
Number (MSIN) that are all tainted together.3 Android uses the MCC and MNC ex-
tensively as configuration parameters when communicating other data. This causes
all information in a parcel to become tainted, eventually resulting in an explosion
of tainted information. Thus, for taint sources that contain configuration parameters,
tainting individual variables within parcels is more appropriate. However, as our anal-
ysis results in Section 6 show, message-level taint tracking is effective for the majority
of our taint sources, and byte-level tracking can be enabled if necessary.

Security Evaluation Limitations. TaintDroid trades off precision for performance
in array, IPC, and file taint tracking. Due to coarse-grained tracking in these areas,
TaintDroid might have false positivies. To check if positives are true or false, we may
compare results of more fine-grained taint tracking systems with those of TaintDroid.
However, even for the fine-grained taint tracking systems, we do not have ground
truths for the applications we study. It is challenging to automatically infer ground
truths to evaluate taint tracking systems; this is a great topic for future research.

9. RELATED WORK

Mobile-phone host security is a growing concern. OS-level protections such as Kirin
[Enck et al. 2009], Saint [Ongtang et al. 2009], APEX [Nauman et al. 2010], CRePE
[Conti et al. 2010], SEAndroid [Smalley and Craig 2013], and FlaskDroid [Bugiel
et al. 2013] provide finer-grained controls to prevent access to sensitive informa-
tion. Aurasium [Xu et al. 2012] and RetroSkeleton [Davis and Chen 2013] seek
similar semantics by rewriting applications to include inline reference monitors. How-
ever, these approaches only prevent information from being accessed; once informa-
tion enters the application, no additional mediation occurs. XManDroid [Bugiel et al.
2011a], TrustDroid [Bugiel et al. 2011b], and Aquifer [Nadkarni and Enck 2013]
extend Android to track information flows at a coarse granularity between applica-
tions. TISSA [Zhou et al. 2011], MockDroid [Beresford et al. 2011], and AppFence
[Hornyack et al. 2011] replace sensitive information with fake values. AppFence also
extends TaintDroid [Enck et al. 2010] work with access control. CleanOS [Tang et al.
2012] modifies TaintDroid to enable secure deletion of information from application
memory. From an integrity perspective, IPC Inspection [Felt et al. 2011] and Quire
[Dietz et al. 2011] track Android intent messages through a chain of applications to
prevent privilege escalation attacks.

Decentralized information-flow control (DIFC) enhanced operating systems such as
Asbestos [Vandebogart et al. 2007] and HiStar [Zeldovich et al. 2006] label processes
and enforce access control based on Denning’s lattice model for information-flow se-
curity [Denning 1976]. Flume [Krohn et al. 2007] provides similar enhancements for
legacy OS abstractions. DEFCon [Migliavacca et al. 2010] uses a logic similar to these

3Regardless of the string separation, the MCC and MNC are identifiers that warrant taint sources.
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DIFC OSes, but focuses on events and modifies a Java runtime with lightweight isola-
tion. Related to these system-level approaches, PRECIP [Wang et al. 2008] labels both
processes and shared kernel objects such as the clipboard and display buffer. How-
ever, these process-level information-flow models are coarse grained and cannot track
sensitive information within untrusted applications.

Tools that analyze applications for privacy-sensitive information leaks include Pri-
vacy Oracle [Jung et al. 2008] and TightLip [Yumerefendi et al. 2007]. These tools
investigate applications while treating them as a black box, thus enabling analysis
of off-the-shelf applications. However, this black-box analysis tool becomes ineffective
when applications use encryption prior to releasing sensitive information.

Language-based information-flow security [Sabelfeld and Myers 2003] extends exist-
ing programming languages by labeling variables with security attributes. Compilers
use the security labels to generate security proofs, such as Jif [Myers 1999; Myers and
Liskov 2000] and SLam [Heintze and Riecke 1998]. Laminar [Roy et al. 2009] provides
DIFC guarantees based on programmer-defined security regions. However, these lan-
guages require careful development and are often incompatible with legacy software
designs [Hicks et al. 2006].

Dynamic taint analysis provides information tracking for legacy programs. The
approach has been used to enhance system integrity (e.g., defend against software at-
tacks [Clause et al. 2007; Newsome and Song 2005; Qin et al. 2006]) and confidential-
ity (e.g., discover privacy exposure [Egele et al. 2007; Yin et al. 2007; Zhu et al. 2009]),
as well as to track Internet worms [Costa et al. 2005]. Dynamic tracking approaches
range from whole-system analysis using hardware extensions [Crandall and Chong
2004; Suh et al. 2004; Vachharajani et al. 2004] and emulation environments [Chow
et al. 2004; Yin et al. 2007] to per-process tracking using dynamic binary translation
(DBT) [Cheng et al. 2006; Clause et al. 2007; Qin et al. 2006; Zhu et al. 2009]. The
performance and memory overhead associated with dynamic tracking has resulted in
an array of optimizations, including optimizing context switches [Qin et al. 2006], on-
demand tracking [Ho et al. 2006] based on hypervisor introspection, and function sum-
maries for code with known information-flow properties [Zhu et al. 2009]. If source code
is available, significant performance improvements can be achieved by automatically
instrumenting legacy programs with dynamic tracking functionality [Lam and cker
Chiueh 2006; Xu et al. 2006]. Automatic instrumentation has also been performed on
x86 binaries [Saxena et al. 2008], providing a compromise between source-code trans-
lation and DBT. TaintDroid’s design was inspired by these prior works, but addressed
different challenges unique to mobile phones. To our knowledge, TaintDroid is the first
taint tracking system for a mobile phone and is the first dynamic taint analysis system
to achieve practical system-wide analysis through the integration of tracking multiple
data object granularities.

DroidScope [Yan and Yin 2012] is a recent system that implements taint tracking in
the Android emulation layer for offline security analysis. DroidScope runs the analysis
outside the smartphone software stack and can analyze kernel-level attacks. However,
the system is not for realtime monitoring and cannot cover subtleties from real devices.

Finally, dynamic taint analysis has been applied to virtual machines and inter-
preters. Haldar et al. [2005] instrument the Java String class with taint tracking to
prevent SQL injection attacks. WASP [Halfond et al. 2008] uses positive tainting of in-
dividual characters to ensure the SQL query contains only high-integrity substrings.
Chandra and Franz [2007] propose fine-grained information-flow tracking within the
JVM and instrument Java bytecode to aid control-flow analysis. Similarly, Nair et al.
[2007] instrument the Kaffe JVM. Vogt et al. [2007] instrument a Javascript inter-
preter to prevent cross-site scripting attacks. Xu et al. [2006] automatically instru-
ment the PHP interpreter source code with dynamic information tracking to prevent
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SQL injection attacks. The Resin [Yip et al. 2009] environment for PHP and Python
uses dataflow tracking to prevent an assortment of Web application attacks. When
data leaves the interpreted environment, Resin implements filters for files and
SQL databases to serialize and deserialize objects and policy with byte-level gran-
ularity. TaintDroid’s interpreted code taint propagation bears similarity to some of
these works. However, TaintDroid implements system-wide information-flow tracking,
seamlessly connecting interpreter taint tracking with OS sharing mechanisms.

10. CONCLUSIONS

We have presented TaintDroid, an efficient, system-wide information-flow tracking
tool that can simultaneously track multiple sources of sensitive data. TaintDroid
achieves efficiency, a 32% performance overhead on a CPU-bound microbenchmark,
by integrating four granularities of taint propagation (variable-level, message-level,
method-level, and file-level).

We used our TaintDroid implementation to study the behavior of 30 popular third-
party applications. Our 2010 study revealed that two-thirds of the applications in our
study exhibit suspicious handling of sensitive data, and that 15 of the 30 applications
reported users’ locations to remote advertising servers. A similar fraction of the tested
applications in our 2012 study also potentially misused users’ sensitive data. Our find-
ings demonstrate the effectiveness and value of enhancing smartphone platforms with
TaintDroid.

TaintDroid is an ongoing effort that has been actively used by the systems security
community. TaintDroid is available for Android version 2.1, version 2.3 (and adding
JIT support), version 4.1, and version 4.3. Information for downloading and building
TaintDroid can be found at http://appanalysis.org.
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