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Abstract— We present a system for optimal control of dexter-
ous manipulation. We use numerical optimization to automate
the planning of the robot’s motion while reasoning about its
effects on the object. The user specifies the high-level task (e.g.,
the desired effect on the object), and the optimization allows
the robot to autonomously discover the low-level details of the
motion that fulfils this task. Applying this optimization in real
time allows the system to adapt the plan to changes in the
environment and the task. We demonstrate the effectiveness
of the integrated system using a four-finger robot platform
manipulating a cylindrical object.

I. INTRODUCTION
Dexterous manipulation is an exciting open question in

robotics: how multiple manipulators (e.g., fingers) can co-
ordinate to effectively manipulate an object [1]. This is a
challenge of hardware design – how to build strong and
compliant fingers, as well as control — how to generate
behavior that can intelligently affect the object in the desired
way. The grasping community has dedicated much resources
to this question, and several basic abstractions such as force
closure [2] have proven instrumental in crafting solutions
in various circumstances. However, autonomous real-time
discovery of effective manipulation maneuvers in the general
case is still an open challenge.

In circumstances where the environment can be designed
and carefully controlled (such as an industrial setting), strong
assumptions can be made to simplify the problem. The
standard practice is for control engineers to craft a motion
that can accomplish a specific task, and then use stiff robots
to execute it. In contrast, we are interested in circumstances
where the robot must interact with a non-static environment,
where predefined motions cannot be used. In place of the
control engineer making the decisions for the robot, we strive
to build autonomous systems that can find effective behavior
as the environment, and the task, rapidly change.

We use optimal control to automate the mapping from
high-level goals to low-level control: we specify the task in
the form of a cost function, and a numerical optimization
algorithm is responsible for identifying the low-level details
of the motion that accomplishes this task. Re-applying this
optimization in real time allows the optimizer to adapt the
plan to unexpected changes in the environment.

In our previous work we built a custom physics engine
for optimization and control of contact-rich systems [3], de-
signed trajectory optimization algorithms that use this engine
to perform real-time optimization [4], and implemented a
software framework that supports this core capability [5].
Here we present the first application of this framework to

controlling robotic hardware (section III). The setup we
present here consists of four 3-DOF Phantom robots, used as
fingers that jointly lift a cylindrical object to a desired height
and move it about the workspace as it tracks a target position
(section V). While this is a simple task that can probably
be achieved through a series of hand-crafted solutions, the
optimization framework allows us to specify the task in high-
level terms (in this case, referring to the desired state of the
object), eliminating the need to tailor the controller to the
specifics of a particular system and application. In this sense,
the integrated system is generalizable, and would work just
as well in many different robots and tasks.

Generating the control signal through online receding-
horizon optimization is called Model-Predictive Control
(MPC). However, as the name suggests, MPC requires an
accurate dynamical model of the robot, its environment, and
their interaction, and identifying such a model can be difficult
and time-consuming. However, many robot platforms come
equipped with a low-level, position-based controller, and we
can use this controller to execute the optimal plan in the
actuated dimensions of the system. If the plan is feasible
(i.e., does not violate the constraints of the controller), and
correctly predicts the effect on the unactuated dimensions
of the system (e.g., the dynamics of the object), the task
will be executed successfully despite lacking an accurate
dynamical model of the robot. In order to explore the
capabilities of such a hybrid system (online optimization +
position control), the results we present here employ a low-
level position controller we tuned for our hardware platform,
which is responsible for executing the online-optimized plan.

Furthermore, many existing robotic platforms have limited
contact sensing (or none at all). While we are actively
developing a contact sensor for the fingertip of the Phantom,
at this phase of the project we are interested to see how
well the integrated system can control the object in the
absence of contact sensing. This is a challenge since position
control is not designed to account for the effects it may
have on various objects in the environment. In this paper
we propose a method that relies on contact smoothing in
order to effectively use position control in the context of a
manipulation task (section IV-B).

II. RELATED WORK

A basic challenge in contact-rich domains is the need
to reason both about the motion of the system and the
forces acting between the system and its environment. One
basic and common method to bridge these two domains is
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Fig. 1: An overview of the integrated system. The hub computer communicates at 2KHz with the Phantom computers and
at 3KHz with the control computer. The effective estimation/control loop of the overall system is around 1KHz.

impedance control: by setting the target position for the robot
inside the object, the system is driven to produce force on it.
Here we achieve a similar effect by using contact smoothing
(section IV-B).

In the literature on articulated robots, contacts are most
often considered in the context of collision avoidance (e.g.,
[6], [7]). However, generating and executing effective plans
in tasks that require multiple contacts between the en-
vironment requires reasoning about the dynamical effects
of this physical interaction. The two classic examples for
such collision-rich domains are locomotion and dexterous
manipulation.

In the study of robot locomotion, two abstractions have
emerged as useful in planning effective gaits. The older is
Zero-Moment Point (ZMP) [8], which provides an effective
heuristic to determine where to place the foot in the next step,
given the current state of the system. Another such heuristic
can be derived from the Spring-Loaded Inverted Pendulum
(SLIP) [9], which accounts for the system’s dynamics and
can produce running gaits.

In the study of robot manipulation, the fundamental ab-
straction is that of closure [2]. This is fundamentally a
static measure, as it measures how well can the system
reject perturbations on the object. While other measures for
the quality of a grasp are considered in the literature [10],
effective reasoning on the mutual effects of multiple contacts
is still considered a hard problem. Optimal control is capable
in principle to identify effective behavior without relying on
such heuristics. In practice, optimal control may benefit from
incorporating these notions as cost terms, as it allow us to
identify effective behavior with a shorter planning horizon.

An impressive example of generating manipulation be-
havior from optimization principles is quadrotor acrobatics
[11]; however, this domain affords several simplifications
that do not translate directly to robot hands. Using numerical
optimization to plan manipulation trajectories in the general
case has been considered before mostly in the graphics
literature [12], [13], but while this work produces creative
and impressive motion, it is currently too slow for real time

control of a physical robot.

III. HARDWARE

Our hardware platform consists of four Sensable Tech-
nologies Phantom Haptic devices (three Phantom Premium
1.0 and one bigger Phantom Premium 1.5). Although these
robots are traditionally used to render virtual forces, it is
easy to use them as manipulators since the API allows us to
directly set the current to the electric motors actuating the
system at a 2KHz control loop. The spatial resolution of the
joint encoders is 0.03mm. The maximum torque the motors
can produce is estimated to be 0.14Nm, corresponding to
8.5N at the end-effector. The Phantom robot is cable-driven
and the gear ratios are very low (approximately 10). These
characteristics create a fast, compliant robotic manipulation
system.

The phantom API allows up to 2 devices to be controlled
by a single computer. Therefore, we use two dedicated com-
puters to transmit the control signals and the joint encoder
readings. The custom driver we built has certain built-in
safety mechanisms, limiting the maximum joint velocities
and preventing strong impacts with the joint limits. These
two computers communicate with another computer that
fuses the data streams (the phantom data and Vicon motion
capture data, see below) and performs basic filtering and
estimation. The control signal is generated by a computer
that runs the optimization framework, which is the only
computationally-intensive part of the system (section IV);
here we use a server with two 6-core Intel X5690 processors.
We use UDP for our network communications and we are
able to maintain about 1KHz control loop over this system
setup. See figure 1 for a schematic of the overall system
setup.

In order to use the Phantoms for manipulation, we fitted
custom fingertips as the end-effectors of the robots. We use
3d-printed L-shaped appendages with silicon-covered tips.
These custom fingertips also contain a preliminary version
of our force sensor that is under development in our lab. In
this paper, however, we are not using these force sensors.
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Fig. 2: A photo of the four Phantoms and the object.
Note the silicon-covered fingertips and the reflective markers
on the top of the object used for estimating the object’s
configuration.

The realtime tracking of the manipulated object and the
position of the Phantoms’ bases is performed by Vicon
Motion Capture system consisting of 7 Vicon Bonita VGA
cameras running at 240Hz. The output of the Vicon is the
position of all the motion capture markers it sees. In order
to estimate the position of the object and the Phantoms, we
perform object extraction to find the markers that belong
to every single object we track, and use the Orthogonal
Procrustes Analysis to find the position and orientation of
the object being tracked.1

A. Kinematic calibration

It is important that the model’s kinematics are accurate
so that the planner can predict the robot’s effect on the
object. There are several sources for kinematic inaccuracy in
a kinematic model of the Phantom robot: first, the joint en-
coders are not absolutely correct. The output of the encoders
is a regular quadrature-encoded signal, outputting ticks for
the direction of motion that are integrated by the Phantom
PCI card, and therefore we need to manually identify the
nominal position. Additionally, the mapping between the
joint encoders and the joint angle is not straightforward —
since the system is cable-driven, the thickness of the cable
and the tension in the cable affect the ratio between the
encoders and the joint angles. Another source of kinematic
inaccuracy is our custom fingertip — although we designed
it and know its dimensions, the assembly and mounting
processes may introduce errors.

In order to eliminate these inaccuracies, we created a
kinematic calibration process. First we use a custom-built
calibration jig to manually bring the robot to the zero

1Even though the Vicon system provides that functionality out of the box,
we chose to re-implement it on our side to allow for maximum flexibility
and control over the process.

Fig. 3: The MuJoCo model of a Phantom robot. Note that
the four-bar linkage coupling the top engine with the distal
joint is not modelled. The exact position and orientation of
the fingertip is one of the parameters discovered through the
calibration process.

configuration, and set the Phantom drivers to this nominal
position. Then we attach a Vicon marker to the tip of the end-
effector and move the robots through a predefined trajectory
that roughly explores the workspace for one minute. We use
this data to optimize for the free parameters mentioned above
with a simple gradient descent algorithm. Since we have a
fairly-good initialization, this optimization process usually
converges within a few iterations. After this calibration
process, we estimate out kinematic error to be less than 1mm.

By looking at the correlation between the Vicon reading
and the encoder output we can estimate the delay produced
by the Vicon system. We find that the best calibration fit is
produced when we introduce an offset of 11ms between the
Vicon and the encoder data. This information is currently not
used in our estimation/control loop, but it suggests that using
Vicon for state estimation may become the limiting factor as
we move forward to faster manipulation tasks.

Given a desired position and velocity, our low-level
controller attempts to track both values using a simple
Proportional-Derivative (PD) controller. Tracking a desired
velocity is helpful since our we are tracking dynamic trajec-
tories (as opposed to fixed set points). We empirically found
proper gain values for this controller, with the coefficient on
the position error being 10 times larger than the coefficient
on the velocity difference.

Our optimization framework requires a model of the entire
system — robot and environment. The Phantom platform
employs a link loop structure in order to move the end-
link actuator closer to the center of the system so as to
reduce the robot’s inertia and avoid excessive motor load.
Although MuJoCo, our physics engine, can in principle
handle equality constraints of this type, we found that their
inclusion increases the computational cost with little added
value. Therefore, we model the robot as a simple 3-DOF
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4-link manipulator (compare the robot in figure 2 to the
model in figure 3). The kinematic transformation between
our model and the Phantom is simple since the model’s
“shin” angle is simply the sum of the Phantom’s “shin” and
“thigh” joint encoders. We apply this transformation to the
controller’s output to obtain the control signal sent to the
actuators.

IV. ONLINE OPTIMIZATION FRAMEWORK

Given a robot and a low-level controller, we need to
provide it with a plan that realizes the high-level goals
while adapting to the immediate state of the robot and its
environment. Here, we employ an integrated framework for
online optimization built for applications of this type [5].
The system is built around MuJoCo [3], a physics engine
designed for real-time optimization and control. Our frame-
work allows us to specify a dynamical model of the robot
and the object in XML format, which also includes a section
describing the cost function that defines the high-level task
(section V). Formally, MuJoCo computes the forward model

x′ = f(x,u) (1)

given the system’s state x and control signal u, as well
as and the cost function c = `(x,u). MuJoCo can also
compute the first- and second-order derivatives of these
functions if needed (at additional computational cost) for
use in the optimization. These derivatives are used by our
optimization algorithm to find a sequence of N future
controls U = {u1, . . .uN} such that the future trajectory
X = {x0,x1, . . .xN} (computed by integrating the dynamics
f starting from our best estimate of the system’s current state
x0 = x̂) minimizes the cumulative cost

C =

N

∑

i=1

`(xi,ui).

In order to find the optimal control sequence U∗ we use
the iterative-LQG algorithm [14] [4] which relies on the
Bellman Principle to approximate the optimal cost-to-go:

V (x, i) = min
u

[`(x,u) + V (f(x,u), i+1)]. (2)

The algorithm first integrates (1) and computes a first-order
expansion of the dynamics (∂f/∂x, ∂f/∂u) and a second-
order expansion of the cost around every step of the current
trajectory, followed by a backward pass which computes
a modification δU that brings the trajectory to a local
minimum. Algorithm I provides a high-level overview of the
iLQG algorithm.

At runtime, the optimizer is constantly sampling the
current estimate of the system’s state and producing new
plans. The most recent solution is used to control the system
while the optimizer is computing the next solution; therefore,
only the initial part of every plan is ever executed. In order
to maximize computational efficiency, we use a receding-
horizon scheme — every optimization iteration is initialized
with the previous optimum U∗ and the most recent estimate
of the system’s state x̂.

Algorithm I Trajectory optimization
Inputs: The dynamics f , the running and final costs `i, `N ,
the current state x0 and the warm-start sequence U.
Outputs: A locally-optimal control sequence U∗.
1) Rollout: Integrate U to get the initial (xi,ui) trajectory.

2) Derivatives: Compute the derivatives of ` and f .

3) Backward Pass: Approximate a local 2nd-order solution
to (2), obtain a search direction ∆U∗.

4) Forward Pass: Integrate U+α∆U∗ with several line search
parameters 0 < α < 1 and pick the best one.

A. Planning with approximate physics

Creating a dynamical model for optimization presents us
with a conflict: on the one hand, we want the model to be
accurate; on the other hand, we want a numerical stability,
a long planning horizon, and quick computation. In light of
this conflict, it is reasonable to deliberately use an inaccurate
model for planning, and trust that the online re-optimization
will mitigate the errors introduced by this model mismatch.

Since many robots are shipped without a dynamical model
but with a low-level position controller, in the current phase
of this project we wish to explore whether our framework
can generate dynamical behavior such as manipulation in
the absence of an accurate dynamical model. Therefore, the
dynamical parameters of the robots’ model are arbitrarily
chosen to maximize the numerical stability of the simulator,
and do not reflect the physical reality of the robots. Specif-
ically, by adding armature and damping to the joints we
gain numerical stability and can take large timesteps when
computing tentative plans. Since the computational cost of
optimization is proportional to the number of steps in the
planning horizon, larger time steps mean the optimizer can
plan further into the future.

We assume that since these parameters only affect the
dynamical model of the fully-actuated part of the system,
the low-level position controller can realize any reasonable
plan. In contrast, the dynamical model of the object needs
to be accurate — in order to achieve effective manipulation,
the planner must account for the dynamics of the object.

B. Contact smoothing

Using position control for a task that requires contact is
not obvious — unless the contact is made with a predictably-
soft surface (e.g., a linear spring), the robot’s position is
not informative of the contact forces applied once the robot
and the object make contact. Note that this is not merely a
limitation due to lack of force sensing. Even if we had a force
sensor, the data it provides would be related to the control
signal rather than the state, and so it is not clear how to incor-
porate this data into the planning process. One way to solve
this limitation is with impedance control, setting a target
position that lies inside the object, thereby causing the robot
to apply forces on the object. However, using impedance
control requires tuning additional parameters beyond the PD
gains.
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A similar effect can be achieved by planning through
contact smoothing, where the optimizer expects the fingers to
penetrate into the object upon contact. When using position
control on a plan that involves smooth contacts, the target
position lies inside the object, and therefore the robot will
continue to push into the object even after contact is made.
Contact dynamics in MuJoCo are modelled with an addi-
tional smoothness term [3]; the value of softness coefficient
we used induces a penetration of 10mm when the object is
simulated standing on the ground.

V. THE LIFTING TASK

The model used for optimization reflects the results of
kinematic calibration (section III-A). The masses of every
link of the robot are set to 1kg; in reality, we estimate that
the phantom’s limbs weigh about 50 grams, plus another
120 grams for the motor, so the dynamical model is off by
a factor of 10; however, the low-level position controller is
able to compensate for this modelling error. The manipulated
object is a rigid cylinder with an added foam lip near its top
(figure 2), weighing 200 grams. We embedded four reflective
markers on the top lid in a known configuration that is used
to track the object in the Vicon marker data. We use a
planning horizon of 30 steps, which results in a policy update
every 20ms on average (figure 4). Since MuJoCo can stably
simulate the system at a timestep of 10ms, this results in a
planning horizon of 0.3s.

The task involves bringing the object to a desired position.
This is realized by a cost term penalizing the distance
between the object’s planar position and a planar target:

c1 =
√

δ2x + δ
2
y. (3)

In order to maintain the object upright, we include a term
penalizing the deviation angle from the vertical:

c2 = α. (4)

Finally, we have a cost term for deviation of the object’s
height from a set value:

c3 = δz. (5)

All these terms are only functions of the object’s position. In
order to ensure that the optimization is aware of the potential
interaction between the fingers and the object, we add a term
that drives the fingers to desired positions near the object.
Given the end-effector position pj of Phantom j and the
position of the corresponding target tj , which is attached
to the frame of the object, we compute the distance ∆j =

∣∣pj − tj ∣∣2 and set:

ct =
4

∑

j=1

∆j . (6)

The total cost is a linear combination of these costs, along
with a quadratic penalty on the applied torques:

`(x,u) = 0.001uTu + 0.01ct +
3

∑

k=1

ck, (7)

Fig. 4: Computation time for the online optimization. The
first column represents the sum of all other columns. The
dots show the maximum and minimum times recorded, and
the error bars show one standard deviation.

(a) Lifting (b) Dropping

Fig. 5: Lifting and dropping performance. The purple dots
indicate the planned position of the object’s height, while the
solid blue line indicates the actual trajectory.

and the weights reflect the relative importance of the different
cost components.

The system’s behavior is best illustrated by the movie
attached to this submission. Here we quantify some of the
behaviors seen in that movie by looking at the response of
our system in various scenarios. The metrics we present are
the target tracking ability, the mismatch between expectation
and reality, as well as computational costs, which we expect
to be a limiting factor in future deployments of the system.

Figure 5 shows the performance during lifting and drop-
ping of the object. Some oscillations can be seen when we
move the desired height of the object. This is probably due
to our using very soft contacts in our planner: the planner
produces trajectories in which the fingertip penetrates the
object, and during lifting the desired target is higher than the
fingertip’s contact position with the object, leading to slight
overshooting. Figure 6 shows a zoom-in of this overshoot,
where the slower policy updates are visible.

Figure 7 shows the ability of our system to track a moving
target. The task is to maintain a certain height while only
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Fig. 6: Zoomed-in comparison of real trajectory versus
planned height for the object. The policy updates are clearly
seen at approximately 50Hz.

Fig. 7: Object position in the XY plane (light colors)
overlayed with desired position (dark colors).

tracking the horizontal position of the target. The object
clearly follows the target while exhibiting the same minor
oscillations as in the lifting task. Figure 8 shows the response
of our system while the bases of the Phantoms are being
moved.

As the movie demonstrates, our system exhibits robustness
to significant perturbations: we can push the Phantom arms
and the object, and even lift and move the bases of multiple
Phantoms, and the system recovers and finds new plans that
maintains the object’s desired state.

VI. FUTURE WORK

There are several ways to extend the work presented here.
Using a simple proportional controller to execute trajectories
planned on a model with very soft contacts works well for
simple tasks such as lifting and tracking a target, but this
strategy would fail on tasks requiring more complex fingertip

Fig. 8: Object position in the XY plane while the bases are
being moved.

motions such as a finger-gait rotating the object. In order to
apply MPC properly, we intend to identify the dynamical
parameters of the Phantom robots and build a dynamically-
accurate model. This will allow us to use our optimization
framework for direct torque control.

Our dynamic planner relies on computing the contact
forces, and even without an accurate dynamical model of the
Phantoms, the forces acting on an object can be computed
independently of the Phantom’s dynamics. Therefore we
expect those forces to produce the desired motion when
applied to the object. We can then use a model with normal
contact softness, and perform impedance control by addiing
to the set positions a vector such that if the end-effector
tries to follow it it would produce the desired forces. Since
we know the contact forces from our planner, it is simply
a matter of multiplying by the contact-space Jacobian to
convert the forces to joint angle displacements.

Another route forward is to produce a good inverse dy-
namics model, and use it to compute the torques required
to achieve certain accelaration at a given state (position
and velocity) of the robot. Since we have a trajectory from
our optimizer, we can readily compute the velocity and
accelaration. A smaller gain PID controller can be used on
top of the inverse dynamics model to correct for the model
errors.
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