
Simulation Tools for Model-Based Robotics:
Comparison of Bullet, Havok, MuJoCo, ODE and PhysX

Tom Erez, Yuval Tassa and Emanuel Todorov.

Abstract— There is growing need for software tools that can
accurately simulate the complex dynamics of modern robots.
While a number of candidates exist, the field is fragmented.
It is difficult to select the best tool for a given project, or
to predict how much effort will be needed and what the
ultimate simulation performance will be. Here we introduce
new quantitative measures of simulation performance, focusing
on the numerical challenges that are typical for robotics as
opposed to multi-body dynamics and gaming. We then present
extensive simulation results, obtained within a new software
framework for instantiating the same model in multiple engines
and running side-by-side comparisons. Overall we find that
each engine performs best on the type of system it was designed
and optimized for: MuJoCo wins the robotics-related tests,
while the gaming engines win the gaming-related tests without
a clear leader among them. The simulations are illustrated in
the accompanying movie.

I. INTRODUCTION

As robots become more complex and dynamically-
capable, scripted movements and hand-tuned servo con-
trollers are no longer sufficient to achieve high levels of
performance, especially in uncertain environments. Instead
there is growing need for model-based approaches in mul-
tiple areas of robotics. These include testing and validation
of candidate control strategies before executing them on the
robot; dynamically-consistent state estimation and model-
predictive control which rely on faster-than-realtime inter-
nal simulation; system identification which is by definition
model-based; and emerging machine learning techniques that
need large datasets of state transitions which are difficult to
obtain from the physical system.

Despite this need for fast and accurate simulation and the
availability of raw computing power to make it possible,
the existing simulation tools remain a limiting factor. Early
work in robot dynamics gave rise to a range of efficient
recursive algorithms [1], implemented perhaps most notably
in SD/FAST [2] as well as the MATLAB Robotics Tool-
box [3]. That phase focused on smooth multi-joint dynamics,
largely leaving contact dynamics for future work. Yet con-
tacts are the primary means by which robots interact with
their environment. Accurate contact modeling and simulation
remains an active area of research. Spring-damper models of
contact dynamics were replaced by impulse-based velocity-
stepping methods [4], [5], [6], [7], different flavors of which
lie at the core of most physics engines used today. However
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many of these engines are aimed at graphics and animation,
where it is often sufficient to achieve visually-plausible
simulation, reducing the motivation to pursue the more
elusive goal of physically-accurate simulation. Simulating
contact dynamics with a velocity-stepping method is in itself
problematic because it calls for solving NP-hard problems at
each simulation step. Consequently much recent effort in this
area has focused on developing convex approximations that
yield similar contact behavior while being more tractable
computationally [8], [9], [10], [11], further complicating the
question of physical accuracy.

The notion of a physics engine in multi-body dynamics
and gaming dates back to MathEngine, and indeed many of
the engines used today can trace their origins back to it,
in terms of methodology if not code. These engines use a
Cartesian representation, maintaining 6 degrees of freedom
(DOF) for each body, and imposing joints as equality con-
straints in 6N -dimensional space where N is the number
of bodies. This approach is natural for systems with few
or no joints constraints. However a robot with N links has
configuration space whose dimensionality is much closer
to N that 6N . Thus the preferred approach in robotics is
to work in generalized/joint coordinates – which is both
more efficient computationally, and more accurate because
joint constraints cannot be violated. This is one reason why
SD/FAST, which is actually older than MathEngine and its
descendants, remains popular in robotics. It does not handle
contact dynamics, and so a number of research groups have
developed their own contact solvers around the smooth multi-
joint simulation provided by SD/FAST.

The inadequacy of the Cartesian approach to heavily-
constrained systems such as robots is now well recognized.
This is currently prompting a new wave of simulators that
aim to combine the best of the earlier approaches: efficient
recursive algorithms in joint space, and modern velocity-
stepping methods for contact dynamics. This category in-
cludes MuJoCo [12] and DART [13] (formerly RTQL8), as
well as additions to PhysX [14], Bullet [15] and Havok [16]
that utilize some form of joint-space representations. ODE
[17] is the only engine in our comparison that does not yet
have such functionality.

Are any of these engines suitable for wide adoption
in robotics, not just for kinematics and visualization, but
also for dynamics? A recent survey [18] found this field
to be rather fragmented: while high-level visualization and
modeling packages such as Gazebo and V-Rep are reasonably
popular, none of the physics engines surveyed stood out.
The most extensive usability test in this regard was the
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DARPA Virtual Robotics Challenge (VRC), where a real-
time simulation of the Atlas robot was implemented in ODE
and accessed by the research teams through Gazebo. While
the VRC was eventually a success, it is notable that for at
least 6 months out of the 9-month program the simulation
was borderline usable. Grasping with a high-DOF hand
remained problematic even longer. And this was done by an
experienced and well-funded development team, using one
of the more mature physics engines available, with extensive
help from a number of robotics experts participating in the
VRC. Hopefully the experience gained in the VRC will
transfer to other robots and tasks. Still, one has to wonder,
how much effort is required for an individual research group
to develop a realistic dynamic simulation of their robot.

The main goal of this paper is to compare multiple physics
engines on identical model systems and characterize their
speed, accuracy and stability. We hope that our tests will
help roboticists assess the performance they are likely to
achieve if they were to invest time in developing a detailed
simulation, and to choose the engine that best suits their
needs. Such comparisons are very much needed, which was
also one of the conclusions of another comparison study [18].
Earlier work along these lines [19] is becoming outdated
given the rapid development of physics simulation software.
More recent engine comparisons [20], [21] were done from
the viewpoint of multi-body dynamics, and the tests there are
mostly complementary to ours. These papers also describe
physics abstraction frameworks whose goals are similar to
our framework described in Section II. The Open Source
Robotics Foundation (OSRF) is currently working on a
comparison of ODE, Bullet and DART – which are the
engines integrated in Gazebo [22]. Accuracy tests of the
Vortex engine (but not other engines) are described in [23].
Even though all these tests are related, what distinguishes the
present work is the emphasis on more challenging model
systems that can stress-test the engines. In contrast, most
previous comparisons focused on simpler systems where
analytical benchmarks are available. The rationale for our
benchmarks is presented in Section III.

It should be noted that we are the developers of the
MuJoCo engine which is included in the comparisons, and
indeed a secondary goal of this paper is to identify the
strengths and weaknesses of MuJoCo. We have made every
effort to be objective, and will share our engine comparison
code so that others can validate and extend our results
(contact the first author if interested.) Such comparisons have
the potential to be contentious, especially since all developers
have invested a lot of effort in their software. This is why
we have avoided subjective discussions such as ease-of-
use and feature completeness, and have instead focused on
reproducible quantitative measurements. A related question
is, why not propose benchmarks which the engine developers
can implement in their software, perhaps as part of a joint
effort? This would be very useful if it happened, but the
most likely outcome is for such a proposal to be ignored. In
contrast, a benchmark proposal accompanied by extensive
simulation results is likely to have more impact.

II. SOFTWARE FRAMEWORK

In order to compare different physics engines, we created
a basic interface that has three functions:

● Create a simulation instance in a specified state.
● Advance the simulation one time step forward, given an

input of joint torques.
● Output the current state in a uniform format.

We implemented this interface using the API of the
different engines; see Appendix for the engine-specific im-
plementation details. We record the position (translation and
rotation) and velocity (linear and angular) of every rigid
body. The data is then used to compute features such as
momentum, energy, joint dislocation, joint limit violation and
contact penetration. The data is also used for visualization.

In order to allow models to be edited once and used in
all engines, we chose to specify the models in XML. Since
most of the engines we consider do not include a built-
in parser for any model definition markup languages, we
took a different route: we parse the model description in
one engine, extract the resulting body-joint configuration,
and use this information to create the simulation world in
every other engine, using the respective APIs to place bodies
in their global position, attach them with properly-oriented
constraints, and connect collision elements to the different
bodies. We chose MuJoCo and its native MJCF file format
to provide this service since it has a simple and compact data
representation format. But a different format such as URDF
could have also been used to obtain identical results.

In order to create a uniform playing field for the com-
parison, we identified a limited set of common features that
are supported by all engines and are relevant for a robotics
application. In particular, we restricted our models in the
following ways:

Joints: Only hinge joints are allowed between parent and
child. This excludes other common joints such as slide, ball,
and universal joints. For engines that use joint coordinates,
we also allow a free joint that represents a floating body
(which is the default in Cartesian coordinates).

Collision: Only sphere and capsule geometries are sup-
ported for collision, as well as a fixed ground plane. This
excludes other convex shapes (such as boxes) and mesh
collisions, which are a complex topic that warrants its own
comparison framework.

Contact: We restrict contact dynamics to the basic case
of Coulomb friction, excluding features like restitution and
rolling friction.

Multibody Dynamics: The only forces that act on the
bodies are gravity, joint constraint forces, actuation torques
applied at the joints, and joint stiffness and damping. We
exclude (as much as the APIs allow; see Appendix) features
like body-level damping (which is unrealistic) and joint
friction (which is not supported by all engines).

In the name of uniformity we are not testing every engine-
specific feature, even if some of the omitted features may
offer an advantage for robotics applications.
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Fig. 1. Illustration of how we measure consistency violation errors. The red
dotted lines represent deviation, in our case in the body positions relative
to the reference trajectory.

III. TESTS AND METRICS

We seek to develop universal tests and performance met-
rics that can be applied to any model system. This is in
contrast with benchmarks such as single rigid-body motion or
energy and momentum conservation which rely on analytical
solutions. Although we include the latter when applicable,
typical robotic systems do not preserve energy, momentum,
symplectic forms or any other known quantity. Furthermore it
is unclear if the ability to do well on simple systems general-
izes to more complex systems, where the primary challenges
are multiple interacting contacts, poor conditioning of large
matrices and other scaling-related phenomena.

One candidate for such a universal test is simulation
stability in the sense of not blowing up (which is obvious
when it happens). Unfortunately gaming engines are known
for sacrificing physical accuracy to gain stability – by in-
troducing artificial damping, or even more drastic measures
such as ignoring Coriolis forces as in Havok and PhysX. On
the other hand any sensible measure of accuracy will detect
instability, thus we will focus on accuracy here.

We adopt a measure of physical accuracy that evaluates
self-consistency. A simulation can deviate from reality for
two types of reasons: numerical integration errors, and model
errors. Addressing the latter type of error involves system
identification – which is generally a harder problem than
simulation, and is outside the scope of the present compar-
ison. Numerical integration errors on the other hand can be
quantified in a universal way, which is what our measure
does. The idea is simple. Numerical integrators become exact
in the limit h→ 0 where h is the timestep. Therefore we can
integrate the system with very small h, in our case 1/64 msec,
and obtain an engine-specific reference trajectory. Then we
can increase h and check how much the results deviate from
this reference. This has to be done carefully because once
the state deviates from the reference, further deviations may
actually be physically correct (especially if the system is
near-chaotic). So we should measure deviations over small
integration intervals. This procedure is illustrated in Figure 1;
consistency violation is the average of the red dotted lines.

A related consideration is the speed-accuracy trade-off
inherent in every physics engine. A numerical integrator
of order n has global truncation error proportional to hn.
Velocity-stepping schemes for contact simulation, imple-
mented in all the engines we are comparing, rely on Euler
integration which has fixed order n = 1. Nevertheless we
can improve accuracy by reducing h; in the case of MuJoCo
we can also increase n which is done by sub-dividing the
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Fig. 2. Format of speed-accuracy tradeoff plots below.

timestep in Runge-Kutta fashion. In addition some engines
have iterative contact solvers with a user-adjustable number
of iterations. All these parameters have the same general
effect: improved accuracy at the expense of simulation speed.
The use of RK in conjunction with velocity-stepping is not
trivial, since velocity-stepping does not define an ordinary
differential equation. However one can measure the change
in velocity over an integration step, treat this change as a
proxy for the acceleration, and apply the RK equations as
usual. This is a general approach, and in theory it could be
applied to any of the other engines considered here, but in
practice it requires full control of the system state and no
hidden variables, which may be difficult to implement.

Different parameter settings correspond to different points
along the speed-accuracy curve (Figure 2). This is an ex-
ample of a Pareto front in multi-objective optimization: we
cannot maximize both of our conflicting criteria simultane-
ously. Therefore in order to evaluate an engine we need to
characterize its entire speed-accuracy curve, and in particular
how close it gets to the ideal-yet-unachievable top-right
corner. Most of our results are presented in this format (figure
3), where the X-axis represents simulation speed expressed as
a realtime factor, and the Y-axis represents different measures
of accuracy – including the consistency measure defined
above, as well as energy and momentum conservation when
applicable. In addition to speed-accuracy plots, we provide
raw CPU timing results independent of accuracy (figure 3).

Finally, one might ask how well these engines perform
in the context of specific robotic tasks. Unfortunately the
answer depends not only on the engine, but also on the
interaction between the engine and the specific controller
used to accomplish the task. Some controllers such as the
SIMBICON [24] walking controller are so robust that the
choice of engine makes little difference [25]. Indeed the latter
study is an engine comparison that did not find significant
differences (between ODE, Bullet, Havok and Vortex). But
in general such controller robustness cannot be expected.
Here we prefer to avoid tests that depend on elaborate
controllers. Instead we selected a task which is fundamental
to robotics and at the same time can be achieved with a naive
controller. This task is grasping an object rigidly and moving
it around. Our grasping controller is simply a PD controller
with constant reference positions for the finger joints.
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Fig. 3. Each row corresponds to a different test system. The first column illustrates the dynamical system. The second column shows raw speed as
thousands of evaluations per second for each engine. The third column shows the speed-accuracy trade-off in terms of our consistency measure.



After grasping is achieved, PD controllers in the arm as
well as gravity make the arm swing around, while the hand
hopefully maintains the grasp. Another reason we focus on
grasping is because even though it is not difficult with a
physical system, in the VRC it proved difficult to accomplish
in simulation. The quantitative measure of performance is
straightforward: for each engine we find the largest timestep
h for which the object remains in the hand during the entire
simulation.

In summary, we will characterize raw CPU speed and the
above speed-accuracy trade-off in several simulated systems,
energy and momentum conservation when applicable, and
grasp stability in the hand-object system.

IV. SIMULATIONS AND RESULTS

A. Model systems

The first column of Figure 3 illustrates the four model
systems used in our main comparison:

Grasping: A 35-DOF robotic arm, modeled after the
Shadow Hand robot, grasping a capsule using fixed spring-
dampers. Set-points for the spring correspond to a clenched-
fist configuration. Spring-damper parameters are respectively
K = 0.4 Nm/rad and B = 0.005 Nms/rad. This system has
large mass ratios and involves many simultaneous contacts,
making dynamic simulation difficult. At the same time it is
the kind of system many roboticists would like to model.

Humanoid: A 25-DOF humanoid model, which falls on
the floor and wiggles due to sinusoidal open-loop torques
applied to its joints. This (and the remaining) model systems
are not performing a specific task, but nevertheless are useful
for speed and accuracy measurements.

Planar Chain: A 5-DOF planar kinematic chain is com-
posed of five bodies and five frictionless hinge joints (rep-
resented by the light blue arrows in the Figure). The bodies
are shifted in the vertical plane to avoid collisions. This
system preserves kinetic energy and angular momentum. It
is initialized with non-zero joint velocities, after which the
simulation unfolds under the passive dynamics. The resulting
complex path of the tip is shown with the dark blue line.

27 Capsules: Randomly-oriented capsules are allowed to
fall onto the floor. This system has 27 ⋅ 6 = 162 DOFs and
is similar to the object-stacking demos often used in gaming
engines. It is not directly relevant to robotics, but we include
it to illustrate performance on the kind of system that gaming
engines are optimized for. See also Section V.

B. Raw Timing

The second column of Figure 3 illustrates the raw speed
of the engines. All tests were performed on an i7-3930K pro-
cessor running Windows 8.1. We used high-resolution timers
to time the main step function of each engine, excluding any
overhead from our framework. The data were then converted
into number of evaluations per second, shown in kHz.

We see that on systems relevant to robotics, MuJoCo is
the fastest engine in the comparison, sometimes by a wide
margin. In the gaming scenario however (i.e. the capsule test)
ODE wins by a large margin, while MuJoCo is the slowest.

The conclusion here is simple: each engine is good at simu-
lating the type of system it was designed and optimized for.
MuJoCo was designed for robotics while the other engines
were designed for gaming. In particular, MuJoCo represents
the system in joint coordinates and performs all computations
and numerical integration in that representation, while the
other engines use Cartesian coordinates.

Note BulletMB in the Planar Chain system. This is the
recent articulated version of Bullet, which we could only
get to work reliably on systems without contact such as the
chain model. While it is 3 times slower than MuJoCo, it still
outperforms all the engines that use Cartesian coordinates by
a significant margin in this test.

C. Consistency

The third column of Figure 3 shows the consistency
results, which we believe are the most informative regarding
overall engine accuracy. The speed-accuracy curve for each
engine is obtained by running the simulation at many dif-
ferent values of the timestep h, from 1/64 msec to 32 msec
increasing by a factor of 2. For each value of h and for each
engine we also measure the CPU time it takes to execute
a single update (this was the raw timing data discussed
above), and then compute the corresponding realtime factor.
Consistency is measured as explained earlier, averaging over
10 trajectory pieces in each case.

MuJoCo outperforms all other engines by orders of mag-
nitude (note the log scale), even on the capsule test where it
is the slowest. The largest difference is seen for the planar
chain, where the test is won not so much by the engine but
by the RK integrator. On the other systems however the RK
integrator does not seem to help.

The least consistent engines were PhysX and Havok –
which is interesting because they are probably the most heav-
ily optimized gaming engines in our comparison. This result
confirms the common knowledge that gaming optimizations
to do not target accuracy but rather stability.

Note the grasp model where ODE and Bullet have partial
speed-accuracy curves. This is because for larger timesteps
they go unstable on this system, and therefore we could not
measure consistency in a meaningful way.

D. Grasp stability

The grasp model was the most challenging. We ran the
simulation at different values of the timestep h and recorded
the largest value for which the object was still in the hand
at the end of the simulation. The results in milliseconds are:

engine max timestep (ms)
Bullet 1/32
MuJoCo Euler 16
MuJoCo RK 16
ODE 1/4
PhysX 2

Recall that the timestep values we are testing are spaced
logarithmically, so these measurements are only accurate
up to a factor of 2, but still the picture is clear. MuJoCo
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Fig. 4. Top row: conservation of kinetic
energy (left), angular momentum (center)
and linear momentum (right) for the float-
ing humanoid, a.k.a ‘astronaut’. In all cases
ground contact and gravity are disabled. For
the energy conservation case, joint limits,
self-contacts and actuators are also disabled.
Bottom row: energy and angular momen-
tum conservation for the planar chain. Note
that this system can apply forces (but not
torques) to the world and so it does not
preserve linear momentum.

produces qualitatively accurate simulation (in terms of not
dropping the object) with large time steps. PhysX is a
distant second, but still significantly better than the remaining
engines. Note that all engines manage to complete the test at
small timesteps – so their underlying physics model indeed
predicts that the object should remain in the hand. But as
the timestep increases they effectively simulate a different
physics model which can no longer hold the object.

It is an open question whether this model system can be
tuned to work better in the gaming engines. The experience
with grasping in the VRC suggests that at least for ODE, it
will be difficult to go above 1 msec even with the implicit
damping implemented by OSRF (which is not yet part of the
official ODE codebase and so is not used in our tests).

E. Energy and Momentum Conservation

By removing the ground plane and disabling gravity, the
humanoid model (now called ‘astronaut’) preserves momen-
tum. Further disabling joint limits, contacts and actuators (but
initializing with non-zero joint velocities) allows for energy
conservation. The planar chain preserves energy and angular
momentum (but not linear momentum) so it can be tested
without any modification.

Figure 4 shows the measured energy and momentum drift,
again expressed as a speed-accuracy curve. In the energy
conserving systems the RK integrator wins by orders of
magnitude, as it should. The angular momentum picture is
more mixed. In the astronaut test ODE performs very well
despite using Euler integration. This is probably because it
implements semi-implicit integration of Coriolis forces [26].

The linear momentum conservation test (top-right) shows
a genuine advantage of simulation in Cartesian coordinates.
Constant linear momentum means that the system state
remains on a manifold which is a linear subspace in Cartesian
coordinates, and so numerical integration has no reason to
accumulate errors. Indeed, the Cartesian engines are actually
more accurate with larger time steps. The same manifold is
curved in joint coordinates. The RK integrator manages to
deal with this curvature to some extent, but even it cannot
compete with Cartesian engines on this test.

V. LARGE-SCALE SIMULATION IN JOINT SPACE

Thus far we focused on models where the number of rigid
bodies and DOFs is modest and the computational challenges
come from complex kinematic structures that propagate
interaction forces instantaneously, large mass ratios, multiple
simultaneous contacts. Such systems are typical for present-
day robotics. Our tests showed that simulation in joint
coordinates (used in MuJoCo) has significant advantages
over the Cartesian coordinates preferred in gaming engines.
Yet there is a different class of systems where Cartesian
coordinates are advantageous – namely systems that consist
of a large number of floating bodies. The computational
challenges there have to do with scaling, often demonstrated
in simulations such as box-stacking that are not directly
relevant to robotics. Nevertheless one can imagine future
applications involving robots in crowds, many interacting
robots, robots manipulating many movable objects – in which
case scaling to larger systems becomes essential. These
applications will require engines that can simultaneously



meet both types of challenges, combining the advantages of
joint and Cartesian coordinates.

There are already efforts under way to produce such
engines. PhysX, Bullet and Havok now have the option to
use joint coordinates, even though the PhysX implementation
turned out not to be using real joint coordinates (see ap-
pendix), and the Bullet implementation is not yet ready (we
have not tested the Havok joint-coordinate option). MuJoCo
on the other hand has a sparse solver designed to be scalable.
This feature set was not used in the systematic comparisons
above, and we only demonstrate it in this section.

The model system here consists of N = (25, 50, 75, ...250)
capsules. It is simulated for 10 sec with a timestep of 10
msec, Euler integration. The initial and final configurations
for the N = 250 system are shown in the top of Figure 5. The
bottom of the figure compares the CPU time for MuJoCo’s
(still experimental) sparse solver and the dense solver used
in the rest of the paper. The CPU time in the absence of
contacts is also shown in both plots. We see that the sparse
solver has linear scaling, and for the largest system it is 76
times faster than the dense solver – whose scaling is between
quadratic and cubic. Preliminary tests show that MuJoCo’s
sparse solver in this setting is about 2 times slower than
gaming engines, however it does have linear scaling.

The poor scaling of the dense solver is not surprising.
Indeed a recent comparison [22] of ODE, Bullet and DART
found that DART (which also uses joint coordinates) has
the same problem. It arises from the fact that both the
joint-space inertia M and the contact Jacobian J in this
case are very sparse, and yet the inverse contact inertia
A = JM−1JT which is the Hessian of the underlying LCP
or QP tends to be dense. So the key is to avoid working
with A directly and instead use Hessian-free methods. This
requires elaborate indexing machinery which is unnecessary
in Cartesian coordinates – and so gaming engines have an
advantage for such systems even if a sparse solver is used.

VI. SUMMARY

We introduced a speed-accuracy measure of simulator
performance, applicable to complex systems where analytical
benchmarks are not available. We also characterized perfor-
mance in terms of energy and momentum conservation when
applicable, as well as grasp stability. None of the engines be-
ing compared was uniformly better than all others. MuJoCo
was both the fastest and the most accurate on constrained sys-
tems relevant to robotics, and was capable of stable grasping
at a much larger time step. On systems composed of many
disconnected bodies it was the slowest in term of raw CPU
speed (while ODE was the fastest), however it remained the
most accurate overall. Semi-implicit integration of Coriolis
forces (in ODE) significantly improved performance in the
presence of rotating floating bodies. Runge-Kutta integration
(in MuJoCo) outperformed semi-implicit Euler integration by
orders of magnitude for smooth dynamics, but its advantages
were lost in the presence of contact dynamics. Simulation
in Cartesian coordinates yielded better linear momentum
conservation compared to joint coordinates.

Fig. 5. Comparison of MuJoCo’s sparse and dense contact solvers on
many-body systems. Simulation time 10 sec; Euler integration with 10 msec
timestep. The top plots show the initial and final configurations of the 250-
capsule system. The bottom plots show the CPU time to complete each
simulation. We also tested MuJoCo in the absence of contacts, where the
results for the sparse and dense solvers are identical because the solver is
not actually invoked. Note the different scales on the vertical axis.

APPENDIX: IMPLEMENTATION DETAILS

1) ODE: ODE is an open-source physics engine. It is
probably the engine most commonly used in robotics ap-
plications, most notably in the VRC. It is integrated with
Gazebo and V-REP, as well as other robotics frameworks.
ODE implements a sophisticated integrator for angular DOFs
[26], a feature that contributes to its performance in the
energy and angular momentum tests.

ODE has an iterative solver and an exact solver. As part
of the VRC effort, OSRF has developed implicit damping
for ODE (John Hsu, personal communication) but this has
not yet been merged with the main version in the official
repository, and therefore is not included in our comparisons.
We were unable to run stable simulations with the exact
solver, in contrast to the experience of others [27]. This may
be because we are testing contact configurations where the
underlying LCPs become harder to solve exactly. Therefore
we only report results using the iterative solver. We used 50
iterations, which Stevens et al. [22] found to be necessary to
achieve comparable accuracy to Bullet and DART.

We implemented our own PD controller in ODE, which
was straightforward using dJointGetHingeAngle to
measure hinge angle and dJointGetHingeAngleRate
to measure hinge velocity.

2) Bullet: Bullet is another open-source physics engine
that is also integrated with many of the popular robotics
software platforms, including V-REP and Gazebo.

While Bullet has built-in functionality for spring-dampers
at hinge joints, its damping functionality does not conform



to the standard PD controller design pattern: it is impulse-
based, and therefore uses abnormal units to specify damping
(instead of using Nms/rad, the damper’s parameter roughly
corresponds to “what fraction of the velocity should be
retained in the next timestep”). Impulse-based damping is
likely to be more numerically stable and robust than ex-
plicit force-based damping; however, in order to maintain
uniformity with the other engines, we implemented a PD
controller using explicit damping torques. Since Bullet uses
a Cartesian representation, equality constraint violations may
lead to the rotation axes being different in two connected
bodies. We measured the joint velocity by averaging the two
rotation axes and comparing the angular velocities of the
two connected bodies along the mean rotation axis. The joint
angle was determined using getHingeAngle.

We implemented a comparison instance that uses the new
Featherstone functionality in Bullet, but this functionality is
not yet fully debugged and exhibits unexpected behavior
in some simulations, so we were able to use this new
functionality only in tests without contact.

3) PhysX: PhysX, together with Havok, is among the
most widely used gaming engines. It also makes the most
drastic compromises in terms of physical accuracy – in
particular it ignores Coriolis forces [28]. This alone makes
it unsuitable for robotics applications where accuracy is
important, but we include it in our comparisons anyway.

While PhysX supports hinge joints, we used a constrained
6D joint instead for the benefit of using a built-in PD
controller class PxD6Drive.

We also implemented an articulation-based instance, but
we experienced several difficulties: first, articulation joints
have 3 DOFs, so in order to create a hinge we had to impose
artificially-tight swing limits. Furthermore, the articulation
API does not offer a direct way to compute joint angles. We
therefore do not include these results in our comparisons.

4) Havok: Havok also ignores Coriolis forces, and there-
fore is also unsuitable to applications where accuracy is
important. Note however that a Havok engineer suggested
a possible way to manually introduce such forces [29].

Havok does not support plane geometries, and therefore
we implemented the ground plane using a big box, setting the
collision margin (setRadius) to 0. The Havok API does
not provide a way to query the angle of a hinge constraint;
we tried to implement this feature in several ways, including
following the example of ODE’s codebase and advice from
Havok engineers on the developers’ forum [30], but none of
these solutions worked well enough. Therefore, we currently
have no working PD controller for Havok, and it is therefore
excluded from the grasping test in the current version.

5) MuJoCo: MuJoCo is the engine we have developed
and used extensively in our research over the past 5 years.
MuJoCo has a built-in implementation of Hinge PD con-
trollers that uses implicit damping. We present results for two
versions of MuJoCo, using the semi-implicit Euler intrator
vs. the 4th-order Runge-Kutta integrator.
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